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Abstract

Fatigue life of components or test specimens often exhibit a sig-
nificant scatter. Furthermore, size effects have a non-negligible influ-
ence on fatigue life of parts with different geometries. We present a
new probabilistic model for low-cycle fatigue (LCF) in the context of
polycrystalline metal. The model takes size effects and inhomogeneous
strain fields into account by means of the Poisson point process (PPP).
This approach is based on the assumption of independently occurring
LCF cracks and the Coffin-Manson-Basquin (CMB) equation. Within
the probabilistic model, we give a new and more physical interpretation
of the CMB parameters which are in the original approach no material
parameters in a strict sense, as they depend on the specimen geometry.
Calibration and validation of the proposed model is performed using
results of strain controlled LCF tests of specimens with different sur-
face areas. The test specimens are made of the nickel base superalloy
RENE 80.

Key Words: Fatigue; Poisson point process; Coffin-Manson-Basquin
equation

1 Introduction

In fatigue analysis, standardized specimen tests are commonly used to rep-
resent temperature and stress conditions in engineering parts under cyclic
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loading. Results of these tests are usually visualized in E - N and S - N dia-
grams (Wöhler curves) for strain and stress controlled fatigue, respectively.
Within the safe-life approach of fatigue design, these diagrams are employed
to predict the fatigue life of engineering parts. In addition, safety factors
are applied to take the scatter for fatigue life, size effects and uncertainties
in the stress and temperature fields into account. In contrast to that, in
a probabilistic approach, these quantities are explicitly taken into account:
In the present paper, such a probabilistic model is presented for the failure
mechanism of surface driven low-cycle fatigue (LCF). Inhomogeneous strain
fields as well as the size effect are inherently considered within the model.
As a consequence, this opens up the possibility for a new, more physical
approach to the Coffin-Manson-Basqin (CMB) equation whose parameters
in the original interpretation are no material parameters in a strict sense
since they depend on the specimen geometry.

The stochastic nature of LCF crack initiation is a result of the LCF
failure mechanism on micro- and mesoscales, confer [1, 2, 3]. The residual
scatter of the number of load cycles to crack initiation is typically rather
large1 so that reliability statistics is supposed to play an important part in
LCF design. As LCF cracks mostly initiate at the surface we focus on sur-
face driven LCF. For different materials and temperature regimes, there are
numerous physical mechanisms that can lead to the formation of technical
LCF cracks. However, during their initiation phase, LCF cracks only influ-
ence strain fields on the micro- and mesoscales, because they are very small
in their spatial extent compared to specimen or part dimensions. There-
fore, one can assume that LCF crack formation in one surface region has
no impact on the crack forming process on another part of the surface. In
particular, this is supported by the fact that we only consider the number of
cycles until the first crack has initiated. We can thus consider crack forma-
tion as a problem of spatial statistics [4] and use the notion of the Poisson
point processes (PPP), confer [5, 6]. The corresponding intensity measure
is a surface integral over some local function that is supposed to depend on
the local strain field. This local function can also be interpreted as a hazard
density function [7], which constitutes another possible starting point for
deriving this probabilistic model. Note that [2] also emphasizes the role of
the PPP.

For the density of the intensity measure we employ a Weibull approach
which is commonly used in reliability statistics, confer [7]. This results in a
Weibull distribution for the numberN of cycles to first crack initiation with a
scale parameter given by the CMB equation. In this context, our model leads
to a new interpretation of the CMB parameters which are now independent

1Even under lab conditions, the factor between the highest and lowest load cycles to
crack initiation can easily become 10 and higher, when 10-100 specimens are tested (a
typical number for industrial applications).
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of the geometry due to the incorporated size effect via the assumption of
independently occurring first crack initiations. We also show a functional
relationship between the classical parameters for a specific geometry and
those newly interpreted and more physical ones. The model is calibrated by
means of LCF test results of standardized specimens and of the maximum
likelihood method [5]. After the calibration, we predict Wöhler curves for
different specimen geometries to validate our probabilistic model for LCF.
Note that it is in principle possible to calibrate our model with LCF test
results of arbitrary geometries2 under surface driven LCF failure mechanism.
Thus, notched specimens or even engineering parts in conjunction with finite
element analysis (FEA) simulations could be used for the calibration.

In the first part of Section 2 we recall the CMB life prediction approach
which will be the deterministic basis of our probabilistic model. In Sub-
section 2.2 we derive a model for crack initiation based on the PPP which
leads to the probabilistic model for LCF presented in Subsection 2.3. At the
end of this section, we give a new interpretation of the CMB parameters.
In Section 3 we discuss results of the experimental validation of our model
by considering different specimen geometries. Section 4 ends this paper by
summarizing the theoretical and experimental results of this work and by
giving an outlook on future work on this probabilistic model.

2 Fatigue and reliability statistics

In this section, we discuss theoretical concepts in fatigue analysis and then
introduce our probabilistic model for LCF which is based on the PPP. The
model can also be derived from a spatial hazard approach.

2.1 Fatigue and the Coffin-Manson-Basquin Equation

In fatigue analysis, the CMB equation is often used to describe the relation-
ship between strain or stress and the number of cycles until crack initiation
with respect to standardized test specimens3, confer [1]. Here, we focus
on surface driven and strain controlled fatigue and refer to [1, 2, 3, 8] for
backgrounds on fatigue failure mechanism with respect to polycrystalline
metal.

Following [1] the Basquin equation εela =
σ′
f

E (2Ni)
b can be used to de-

scribe the range of a Wöhler curve which is dominated by elastic behav-
ior. The parameter σ′

f is called fatigue strength coefficient and b fatigue

2In order to apply continuum mechanics the geometry has to consist of sufficiently
many grains. Moreover, information on when the first LCF crack initiation occurred is
needed which can be practically difficult.

3Standardized test specimens are characterized by a smooth and cylindrical shape, see
Figure 2.
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strength exponent. For the plastic range of the Wöhler curve the Coffin-
Manson equation εpla = ε′f (2Ni)

c can be employed, where the parameters ε′f
and c are called fatigue ductility coefficient and fatigue ductility exponent,
respectively. Confer [3] for a detailed discussion of the physical origin of this
equation. Combining the previous equations results in the CMB equation

εa =
σ′
f

E
(2Ni)

b + ε′f (2Ni)
c, (1)

whose parameters can be estimated according to test data, confer [7, 9] and
Subsection 2.3.

In case of surface driven LCF, structural design concepts often consider
the component’s position of highest surface strain and then take the Wöhler
curve into account which corresponds to the conditions at that surface posi-
tion. In addition, safety factors are introduced to account for the stochastic
nature of fatigue, for size effects4 and for uncertainties in the stress and
temperature fields. Note that sometimes more than one position of highest
surface strains is considered. This concept and variants thereof are called
safe-life approach to fatigue design and they are often used in engineering,
confer [1]. In contrast to this approach, we now present a statistical model
for crack initiation.

2.2 Crack Initiation as Spatio-Temporal Poisson Point Pro-

cess

Our probabilistic model for LCF is based on a statistical model for crack
initiation which we present in this subsection. To this aim, we introduce the
variable n of load cycles that the component underwent. Though strictly
speaking n is a natural number, we follow the widely spread convention to
treat n as a continuous, time-like number.

Let Ω be the volume filled by the mechanical component and ∂Ω its
surface. We assume that we can associate a surface location x in ∂Ω and a
cycle number n between zero and infinity to the initiation of each LCF crack.
We further consider collections B of such pairs of locations and times, i.e.
B ⊂ ∂Ω×(0,∞] in mathematical terms5. By N(B, ǫ) we denote the number
of cracks that initiated at some location and time in B, given the strain state
ε = ε(x) on the component’s surface. As the number of cracks initiating in
a time interval in a certain surface region is not predictable, N(B, ε) =
N(B, ε)(ω) is a random quantity. Obviously, if B can be decomposed into

4Note that different geometries of test specimens lead to different Wöhler curves, for
example. We will discuss size effects in more detail in Subsection 2.4 and 3.2.

5Here and in the following some mathematical details (e.g. measurability of and σ-
additivity in B) are deliberately suppressed.
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subsets B1, . . . , Bn without any overlap, we have

N(B, ε) =

n
∑

j=1

N(Bj , ε). (2)

Hence the random counts of crack initiations with specified location and time
set B have the structure of random counting measures – also called point
processes – that are studied extensively in the mathematical literature [5].

So far we have only set a mathematical frame. The assumptions under-
lying our model are as follows

A1) Identification of single cracks: At one location and point in time,
at most one crack can initiate.

A2) Local dependence of the load situation: Two surface regions with
the same surface area and the same strain state will have the same
statistical properties of crack initiation in any given time interval.

A3) Independence: Given a number B1, . . . , Bn of non-intersection col-
lections of location and time instances, the random counts N(B1, ε),
. . . , N(Bn, ε) of cracks initiated in B1, . . . , Bn are statistically inde-
pendent.

Let us discuss the above assumptions. The first one is just a convention on
what we consider to be a crack. The second assumption just states that
initiation of cracks is a local phenomenon. In the given formulation, it also
rules out some potentially interesting effects - like dependency of the LCF
crack count statistics on local curvature of the surface. Also we assumed
constant material properties over the surface of the component and constant
temperature. It is however not difficult to consider extended models with
local temperature- and curvature fields in addition to the strain field.

The last assumption is justified by the fact that, in the regime that we
consider, LCF cracks are sufficiently small such that they do not change the
strain state on a macroscopic state. Thus, the initiation of a crack at some
surface location and time does not influence the initiation of crack at another
time and another location. This assumption will however break down at a
subgranual scale, as a LCF crack will traverse the entire grain. We however
consider this as a good approximation as long as the number of grains on
a surface with specified load is sufficiently large, which in particular is the
case in LCF material testing, confer Section 3.

It is an interesting fact that the above three assumptions already im-
ply that N(B, ε) is Poisson distributed N(B, ε) ∼ Po(λ(B, ε)), confer6 [5,

6Here assumption A1) encodes the mathematical property of simplicity and A3) the
independence of increments in the language of that reference.
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Corollary 7.4]. Thus we have the following probabilities for the number of
crack initiations in B

P (N(B, ε) = r) = e−λ(B,ε)λ(B, ε)r

r!
, r = 0, 1, 2 . . . . (3)

Here λ = λ(B, ε) is the intensity parameter of the Poisson distribution which
is equal to the expected value, denoted by E, of crack initiation counts in
B, given the strain state ε on the surface ∂Ω of the component. Note that
by (2) we have for the expected values of crack initiation counts in B, given
the decomposition of B into B1, . . . , Bn as described above,

λ(B, ε) = E





n
∑

j=1

N(Bj , ε)



 =

n
∑

j=1

E [N(Bj , ε)] =

n
∑

j=1

λ(Bj , ε). (4)

Consequently, λ(., ε) is additive in the set argument B. A reasonable model
for λ(., ε) realizing assumptions A1) and A2) is given by

λ(B, ε) =

∫

B
ρ(n, ε) dAdn, (5)

with dA the surface volume measure on ∂Ω and ρ(n, ε) the crack formation
intensity function. The latter carries the dimension av. counts of crack
initiation per square meter and load cycle.

If B consists of all location and time instances with locations in a portion
D of the surface ∂Ω and ’time’ n in some interval (s, t], the Poisson intensity
takes the form λ(D × (s, t]) =

∫ t
s

∫

D ρ(n, ε) dAdn.

In particular, we are interested in the situation, where the entire com-
ponent is crack free up to some time (cycle number) n, which we define as
survival up to this time. Let Ni be the (random) time of initiation of the
first crack on ∂Ω, i.e. Ni equals the minimal n such that N(∂Ω× (0, n]) > 0.
Survival up to time n is defined as the absence of a crack up to that time.
The probability of survival up to time n, SNi

(n) = P (Ni > n), then is given
by

SNi
(n) = P (’no crack initiation on ∂Ω up to n’)

= P (N(∂Ω × (0, n], ε) = 0) = exp

{

−

∫ n

0

∫

∂Ω
ρ(ε, n) dAdn

}

.
(6)

From (6) we immediately deduce the following expressions for the dis-
tribution function

FNi
(n) = 1− SNi

(n) = 1− exp

{

−

∫ n

0

∫

∂Ω
ρ(ε, n) dAdn

}

(7)
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and hazard rate function

hNi
(n) = lim

∆nց0

1

∆n
P (Ni ∈ (n, n+∆n]|Ni > n)

= lim
∆nց0

1

∆n

FNi
(n+∆n)− FNi

(n)

SNi
(n)

=

∫

∂Ω
ρ(ε, n) dA.

(8)

2.3 A Probabilistic Model for LCF

In this subsection, we introduce a model for the up to now unspecified crack
formation intensity function ρ(n, ε). Here, ε is the strain field in the ge-
ometry under consideration. In the case of a uniaxially loaded specimen,
this could be a constant, while for a more complex part this can be ob-
tained as the result of an FEA, confer [10, 11]. In this work, we focus on
polycrystalline metal such as RENE 80 which is considered to be isotropic.
Elastic and plastic anisotropy of the single crystal grains is supposed to re-
sult in an average isotropic behavior within the considered material volume
containing a large number of grains. The following probabilistic model for
LCF is motivated by simplicity and continuity in the sense that its basis is
the ’deterministic’ CMB life prediction approach. We furthermore follow a
simple scale-shape formulation for the probability law that is quite common
in reliability statistics, confer [7], for example.

Let the scale field Nidet(x), x ∈ ∂Ω, be the solution of the CMB equation
(1):

ε(x) =
σ′
f

E
(2Nidet(x))

b + ε′f (2Nidet(x))
c, (9)

where ε(x) is the strain field. Having obtained the scale field Nidet we now
follow a Weibull approach, see also [2], and set for some shape parameter m

ρ(n, ε(x)) =
m

Nidet(ε(x))

(

n

Nidet(ε(x))

)m−1

. (10)

Inserting this into (7) and integrating over n, we arrive at the cumulative
distribution function for the proposed probabilistic LCF model

FNi
(n) = 1− exp

(

−

∫

∂Ω

(

n

Nidet

)m

dA

)

(11)

for n ≥ 0 and some m ≥ 1, which yields the probability for LCF crack
initiation in the interval (0, n]. Note thatNidet has the units [Nidet ] =cycles×
meter2/m which is achieved by changing the units of σ′

f and ǫ′f accordingly.
The shape parameter m determines the scatter of the distribution where

small values for m ≥ 1 correspond7 to a large scatter and where the limit

70 < m ≤ 1 is not realistic for fatigue.
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m → ∞ is the deterministic limit. Note that the approach via (11) includes
the assumption that m is independent of the strain state ε. The Weibull
hazard function can be easily replaced by any other differentiable hazard
function with scale parameter Nidet. Furthermore, it is important to stress
that volume driven fatigue could be considered as well by replacing the
surface integral in (11) with a volume integral whose integrand only differs
by different material parameters. For a discussion of volume driven fatigue
such as high-cycle fatigue HCF confer [1, 8], for example.

Now, we show how to calibrate them by means of LCF test results with
standardized test specimens using of the maximum likelihood method, confer
[7]. First, note that the cumulative distribution function FNi

(n) of (11) can
be effectively simplified, as the surface is subjected to homogeneous strain
and temperature fields. Thus, the surface integral reduces to multiplication
with the surface area between the gauge length. For the probability density

function fNi
(n) = d

dnFNi
(n) with η =

(

∫

∂Ω N−m
idet

dA
)−1/m

the expression

fNi
(n) =

m

η

(

n

η

)m−1

exp

[

−

(

n

η

)m]

(12)

holds. We subsume the parameters (CMB parameters and the Weibull shape
parameter m) of the model in a vector θ. Let {ni, εi, |∂Ωi|}i=1,...,q denote
the experimental data set for q strain controlled LCF tests, where ni is the
number of cycles until crack initiation, εi the strain on the gauge surface
and where |∂Ωi| is the surface area in the gauge length. We estimate θ by
means of maximum likelihood, where the so-called log-likelihood function

log
(

L
(

{(ni, εi, |∂Ωi|)}i∈{1,...,q}
)

[θ]
)

=

q
∑

i=1

log(fNi
(|∂Ωi|, εi)(ni)[θ]). (13)

is maximized with respect to the parameters. Thus, the likelihood estimator
θ̂ is given by

log
(

L
(

{(ni, εi, |∂Ωi|)}i∈{1,...,q}
)

[θ̂]
)

=max
θ

{

log
(

L
(

{(ni, εi, |∂Ωi|)}i∈{1,...,q}
)

[θ]
)}

.
(14)

Recalling that the CMB parameters are not the same as obtained from fitting
the standard CMB approach we will consider this fact in more detail in the
next subsection.

2.4 A New Interpretation of the CMB Parameters

The CMB equation is a model for LCF life of standardized test specimens.
However, due to the statistical nature of fatigue-crack initiation the speci-
men size has an influence on crack-initiation life, i.e. the number of cycles

8
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to crack initiation should decrease with increasing specimen size. This ef-
fect is based on the assumption, that the number of possible crack initiation
sites increases with specimen size, confer [12, 13]. As in our case cracks are
generally initiated at slip bands in surface grains, the quantity that deter-
mines the size effect is the specimen surface. In the following, we give a new
interpretation of the CMB parameters in context of the probabilistic model
for LCF which considers the size effect via the assumption of independently
occurring crack initiations. We also derive a relationship between the pa-
rameters of the model and those of the original CMB approach. This will
also be important for the validation of the model.

At first, we employ the fact that the specimen is subject to homoge-
neous temperature and strain fields at the gauge surface ∂Ω which leads to
∫

∂Ω (n/Nidet)
m dA = |∂Ω| (n/Nidet)

m so that we can rewrite the cumulative
distribution function (11):

FNi
(n) = 1− exp

(

−

(

n

ηdet(|∂Ω|)

)m)

, (15)

where |∂Ω| is defined as the area of the gauge surface ∂Ω and where

ηdet(|∂Ω|) = |∂Ω|−
1
mNidet (16)

is the Weibull scale. Because a standardized test specimen with gauge sur-
face area equal to 1 satisfies ηdet(|∂Ω| = 1) = Nidet (from now on, all such
specimens are called unit specimens), Nidet is the Weibull scale of the unit
specimen. Note that ηdet(|∂Ω|) and Nidet are the 1 − 1

e ≈ 63% quantiles of
crack initiation life as is the case for the scale parameter of every Weibull dis-
tribution. Thus, we will also write η63%det (|∂Ω|) andN63%

idet
instead of ηdet(|∂Ω|)

and Nidet , respectively. Note that

η63%det (|∂Ω|) = (ln 2)−
1
m η50%det (|∂Ω|), (17)

where η50%det is the 50% quantile (median) with respect to the Weibull distri-
bution of the test specimen with gauge surface area |∂Ω|. Our probabilistic
model assumes that the solution of the CMB equation yields N63%

idet
. There-

fore, one can interpret the CMB parameters b, c, ε′, σ′ to be belonging to the
Wöhler curve of the unit specimen.

In many statistical methods of fatigue analysis the computed Wöhler
curve yields a median value for the number of life cycles. This value corre-
sponds to η50%det (|∂Ω|). Thus, we consider η50%det (|∂Ω|) by combining (16) and
(17)

Nidet = |∂Ω|
1
m ηdet(|∂Ω|) =

(

|∂Ω|

ln(2)

)
1
m

η50%det (|∂Ω|).

9



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

Inserting this expression into the previously mentioned CMB equation for
the unit specimen results in

εa =
σ′
f

E

(

|∂Ω|

ln(2)

)
b
m (

2 η50%det (|∂Ω|)
)b

+ ε′f

(

|∂Ω|

ln(2)

)
c
m (

2 η50%det (|∂Ω|)
)c

. (18)

Noting that the exponents b and c are not affected by the size effect and
defining

σ′
f (|∂Ω|) =

(

|∂Ω|

ln(2)

)
b
m

σ′
f , ε′f (|∂Ω|) =

(

|∂Ω|

ln(2)

)
c
m

ε′f , (19)

equation (18) leads to the following CMB equation for the standardized
specimen with gauge surface area |∂Ω|:

εa =
σ′
f (|∂Ω|)

E

(

2 η50%det (|∂Ω|)
)b

+ ε′f (|∂Ω|)
(

2 η50%det (|∂Ω|)
)c

. (20)

Because the parameters b, c, ε′, σ′ are a result of fitting our probabilistic
model the CMB equation (20) is the prediction of our model for the Wöhler
curve of a standardized specimen with gauge surface area |∂Ω|. In the next
section, we will validate this prediction by fitting our model to an LCF
test campaign and comparing a predicted Wöhler curve to the outcome of
another test campaign.

Vice versa, we can use already existing values for CMB parameters of
the original CMB approach to compute the CMB parameters of our new
model by means of (19): For different gauge surface areas |∂Ω1| and |∂Ω2|
we obtain

σ′
f (|∂Ω1|)

σ′
f (|∂Ω2|)

=

(

|∂Ω1|

|∂Ω2|

)
b
m

,
ε′f (|∂Ω1|)

ε′f (|∂Ω2|)
=

(

|∂Ω1|

|∂Ω2|

)
c
m

. (21)

Equations (19) and (21) show that for small m ≥ 1, i.e. for significantly high
scatter, the size effect plays an important role, whereas in the deterministic
limit m → ∞ there is no size effect.

3 Experimental validation

In this section we consider LCF test results of specimens with different
geometries to calibrate and validate the proposed probabilistic model. The
specimens are made of a polycrystalline superalloy.

3.1 Material and Specimens

The investigated material is the polycrystalline cast nickel base superalloy
RENE 80. The chemical composition of the alloy is given in Table 1. In

10
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Element Ni Cr Co Ti Mo W Al C B Zr

Weight - % 60.0 14.0 9.5 5.0 4.0 4.0 3.0 0.17 0.15 0.03

Table 1: Chemical composition of the investigated material.

Lsmall [mm] Dsmall [mm] Surface [mm2] Vol. [mm3]

12.0 7.0 263.9 461.8

Table 2: Geometrical parameters of the small specimen geometry.

Figure 1 the microstructure of the material after heat treatment is shown
in an optical (OM) and scanning electron microscopy (SEM) image. The
material shows the typical dendritic structure of a cast alloy. Furthermore
the microstructure is quite coarse grained with a grain diameter of approx-
imately 2mm (Figure 1a) and strengthened by ordered γ′ - precipitates,
which appear in a cubic morphology embedded in the γ - matrix (Figure
1b).

Figure 1: Microstructure of RENE 80 by using OM (a) and REM (b).

Cylindrical rods were eroded by electro-discharge-machining from the
slabs and afterwards turned to the final specimen geometry. Figure 2 shows
one of the specimen geometries used for the LCF tests. The diameter
(Dsmall), the gauge length (Lsmall) and the resulting surface and volume
of the gauge section of the specimen are listed in Table 2.

In addition to tests with this specimen geometry, we consider already
existing LCF test results of Siemens AG for T=850 ◦C regarding the same
material subject to the same heat treatment. The corresponding specimen
geometry has a 2.86 times larger surface of the gauge section. In the fol-
lowing, we refer to these specimens as the standard specimens and to the
specimens according to Table 2 as the small ones.

For the investigation of the LCF lifetime behavior a servo-hydraulic
fatigue testing machine with a maximum load of 100kN has been used.
All LCF tests were carried out at 850 ◦C at isothermal conditions in to-
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Figure 2: Small specimen geometry for the fatigue tests.

tal strain control with a load ratio8 of R = −1. The load cycles were
applied with triangular waveform at a frequency of 0.1Hz for high strain
amplitudes (εa,tot = 0.55% − 0.65%) and 1Hz for low strain amplitudes
(εa,tot = 0.15% − 0.25%), respectively.

The crack-initiation lifetime is defined by a drop of the curve which is
given by the maximum stress’ dependence on the number of already con-
ducted load cycles. In case of no extremely large strain amplitude, this curve
starts with approximately stable maximum stress before first crack initia-
tions take place after a certain number of load cycles. When the first crack
initiation occurs, the curve starts to drop as the cross-section area of the
specimen decreases and thereby a lower tensile force is needed for imposing
the prescribed strain amplitude. Note that the maximum stress is defined
as the ratio of this tensile force (which depends on the current load cycle)
and the fixed cross-section area of the specimen at the beginning of the LCF
tests. Considering equal crack areas at crack initiation life Ni, the drop of
the maximum stress was calculated separately for each geometry using the
following equation:

Ssmall = Sstandard ·

(

Dstandard

Dsmall

)2

(22)

with Ssmall/standard stress drops andDsmall/standard diameters of the small and
standard specimen, respectively. The LCF test results for both specimen
geometries are given in Figure 3 in the representation total strain amplitude
(εa,tot) versus cycles to crack initiation (Ni).

8The load ratio is defined by the minimum strain divided by the maximum strain.
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3.2 Calibration of the Model and Prediction of Wöhler Curves

For the calibration of the model we have chosen the LCF test resultsNistandard(εa,tot)
of the standard specimen geometry as the corresponding data basis is much
larger here than for the small specimen. In Figure 3, test results for both
geometries are shown, together with several Wöhler curves. The calibration

Ni (Cycle, log)

S
tr

ai
n 

(%
, l

og
)

low high

0.
2

0.
6

Small Specimen (Prediction 50%)

Standard Specimen (Fit 50%)

Unit Specimen (Fit 63%)

Figure 3: LCF test results of the small (red) and standard (green) specimens.
The standard specimen data are used for the calibration of the model. The
calibration leads to the Wöhler curve (blue) of the unit specimen and, via
formulae (19), to the Wöhler curve (green) of the standard specimen. The
Wöhler curve (red) for the small specimen is predicted by the probabilistic
model for LCF, where formulae (19) is employed, again.

of the probabilistic model for LCF is conducted according to the maximum
likelihood method as described at the end of Subsection 2.2. The Wöhler
curve of the unit (blue) specimen describes the functional dependence of the
Weibull scale parameter on the strain amplitude εa,tot. Using formulae (19)
leads to the Wöhler curves of the standard (green) and small (red) speci-
mens with the 50%-Weibull quantiles (medians). It is important to point
out that the curves for the unit and standard specimens are based on the
calibration, whereas the curve for the small specimen is a pure prediction of
our probabilistic model. The horizontal bars denote the 92.5% confidence
intervals – see Figure 3 – that have been computed via a fully parametric
bootstrap sampling procedure in conjunction with the percentile method as
described in [7, 14].

For model diagnostics we consider the quotient

q =
Nistandard(εa,tot)

Nidet,standard(εa,tot)
, (23)
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Figure 4: Q-Q plot (a) with respect to a Weibull fit of quotient q with scale 1
and values of q (b) at the tested strain amplitudes of the standard specimen.

with Nistandard(εa,tot) the actual test results of the standard specimens and
Nidet,standard(εa,tot) the corresponding fit of our model for the Weibull scale
parameter. Figure 4 (a) shows a Q-Q plot with respect to a Weibull fit of
q with scale 1. According to the Kolmogorov - Smirnov test with a p-value
of 17%, deviations from the Weibull distribution are not statistically signifi-
cant which supports the Weibull approach (10) of our model. Recalling our
assumption that the shape parameter m does not depend on the strain state
ε, we consider Figure 4 (b) which shows the values of q at the tested strain
levels of the standard specimen. Statistical tests cannot exclude a determin-
istic relationship between q and εa,tot, in particular for higher strain ranges,
which could be finally assessed with additional test results. Nevertheless,
note that the assumption of no significantly deterministic relationship be-
tween those quantities is often used, in particular with respect to design
relevant strain ranges.

Because the unit specimen has the largest gauge surface of all consid-
ered specimens its Wöhler curve is expected to contain the lowest life-cycle
numbers Ni. This expectation is confirmed by the results shown in Figure
3. The figure also shows that the fitting procedure and formulae (19) are
able to yield an appropriate Wöhler curve for the standard specimen. The
predicted Wöhler curve for the small specimen is shifted to higher life-cycle
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numbers Ni due to the incorporated size effect in our model9. However, this
predicted shift is not very large so that statements on the position of the
curves compared to the test results have to be considered carefully. Nev-
ertheless, the LCF test results support the assumption of a size effect for
lower strain amplitudes. A size effect is more difficult to be recognized in
the range of higher strain amplitudes, where plasticity effects are present.
Comparing the position of the Wöhler curve and the LCF test results of the
small specimen shows that our model estimates the size effect for lower strain
amplitudes very well. In the range of higher strain amplitudes, where plas-
ticity comes into play, our model seems to overestimate the shift to higher
life-cycle numbers Ni. Note that the prediction of our model in that range
has to be judged more carefully as only few calibration data were available
in the plastic range. This is also affirmed by the confidence intervals which
overlap more significantly in the plastic range. Moreover, consider the large
scatter in the data and a variety of possible error sources in the experiments
such as determining crack initiation, stress and strain amplitudes and slight
deviations from the homogeneity of strain and temperature fields.

Further investigations on the size effect can be found in [8, 15, 16], where
a smaller size effect for higher strain amplitudes is stated as well. According
to [15, 16] the small difference in the size effect between high and low strain
amplitudes may be explained by the fact that at lower strain amplitudes
plastic deformation is concentrated in individual slip systems of favorably
orientated grains, whereas at higher strain amplitudes plastic deformation
takes place over the whole gauge length. According to [17] this results in an
increased number of activated slip bands, so that a possible effect of surface
grain orientation becomes less important.

4 Conclusions

A probabilistic model for LCF has been derived from concepts of fatigue
analysis and point processes. It was shown that this model leads to a new
interpretation of the CMB parameters which are independent of the geom-
etry of standardized test specimens. Moreover, we have derived formulae
for the prediction of Wöhler curves of standardized specimens with different
surface areas. The prediction of such Wöhler curves was also the basis for
the validation of our probabilistic approach.

The calibration of our model resulted in an appropriate fit for the Wöhler
curve of the standard specimen. For strain amplitudes not too high, we
could find a size effect regarding the test results of the small specimen, and
our model was able to appropriately predict the size effect’s impact on the
Wöhler curve. But for higher strain amplitudes in the plastic range, the size

9The model’s main assumption of independently occurring LCF crack initiations di-
rectly results in consideration of the size effect.
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effect could not be confirmed without ambiguity. In this range our model
seems to overestimate a size effect. However, considering the large scatter
for LCF life and a variety of possible error sources regarding the LCF tests,
this overestimation could not be finally concluded.

For future work, we propose to analyze the size effect in the plastic range
in more detail. Recall that for larger values of m, i.e. for smaller scatter, the
size effect decreases. More LCF test results in the plastic range could lead
to a different value of m. Furthermore, one could change the Weibull hazard
approach according to another distribution such as log-normal distribution.
Furthermore, it might be worthwhile to incorporate a mathematical concept
for the slip systems of the grains which could lead to a smaller scatter of
the corresponding LCF results as the random behavior of the slip systems
is then taken into account.

The comparison of predicted Wöhler curves for notched specimens with
corresponding LCF test results will play an important role in future work
because this will show how effective the proposed model will be in case of
inhomogeneous strain fields. It then might turn out that the model needs
to incorporate local information on the strain gradient. Similarly, the as-
pect of inhomogeneous temperature fields can be taken into account in the
model if the CMB approach considers an appropriate deterministic temper-
ature model for LCF. The model can also consider volume integrals and
can thereby be applied to volume driven LCF failure mechanism with initial
creep damage and to HCF failure mechanism, for example.

The model is also intended to be applied to FEA simulations of engi-
neering parts under cyclic loading. These simulations in conjunction with
field data can be employed to validate or recalibrate the proposed model.
Finally, let us mention an improved link to shape optimization which is given
by our probabilistic model. Due to the probabilistic nature of our model the
new objective functional (11) for LCF life is sufficiently regular so that ef-
ficient gradient based shape optimization schemes can be conducted, confer
[18, 19].
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[1] M. Bäker, H. Harders and J. Rösler, Mechanisches Verhalten der Werk-
stoffe, third edition, Vieweg+Teubner, Wiesbaden, 2008.

16



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

[2] B. Fedelich, A Stochastic Theory for the Problem of Multiple Surface
Crack Coalescence, International Journal of Fracture 91 (1998) 23-45.

[3] D. Sornette, T. Magnin and Y. Brechet, The Physical Origin of the
Coffin-Manson Law in Low-Cycle Fatigue, Europhys. Lett. 20 (5) (1992)
433-438.

[4] M. Sherman, Spatial Statistics and Spatio-Temporal Data: Covariance
Functions and Directional Properties, Wiley Series in Probability and
Statistics, 2010.

[5] O. Kallenberg, Random Measures, third edition, Akademie Verlag,
Berlin, 1983.

[6] A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan, editors,
Case Studies in Spatial Point Process Modeling, Lecture Notes in Statis-
tics, 185, Springer, 2006.

[7] L. A. Escobar and W. Q. Meeker, Statistical Methods for Reliability
Data, Wiley-Interscience Publication, New York, 1998.

[8] D. Radaj and M. Vormwald, Ermüdungsfestigkeit, third edition,
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AlMgSi0,7-Legierung, Materialwissenschaften und Werkstofftechnik 35
(2004) 21-28.

[14] A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Appli-
cation, Camebridge University Press, New York, 1997.

[15] V. P. Bennett and D.L. McDowell, Polycrystal Orientation Distribution
Effects on Microslip in High-Cycle Fatigue, International Journal of
Fatigue 25 (2003) 27-39.

17



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

[16] F. P. E. Dunne and A. Manonukul, High and Low-Cycle Fatigue Crack
Initiation using Polycrystal Plasticity, Proc. Roy. Soc. Lond. A 460
(2004) 1881-1902.

[17] Y. Duyi , P. Dehai, W. Zhenlin, X. Haohao, M. Xiaoyu, X. Chang-
wei, C. Xiaolin, Low-Cycle Fatigue Behavior of Nickel-Based Superalloy
GH4145/SQ at Elevated Temperature, Materials Science and Engineer-
ing A 373 (2004) 54-64.

[18] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization -
Shape Sensivity Analysis, Springer, Berlin Heidelberg, 1992.
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