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Abstract. We study Dirac operators in the framework of twist-deformed noncommutative
geometry. The definition of noncommutative Dirac operators is not unique and we focus on
three different ones, each generalizing the commutative Dirac operator in a natural way. We
show that the three definitions are mutually inequivalent, and that demanding formal self-
adjointness with respect to a suitable inner product singles out a preferred choice. A detailed
analysis shows that, if the Drinfeld twist contains sufficiently many Killing vector fields, the
three operators coincide, which can simplify explicit calculations considerably. We then
turn to the construction of quantized Dirac fields on noncommutative curved spacetimes.
We show that there exist unique retarded and advanced Green’s operators and construct
a canonical anti-commutation relation algebra. In the last part we study noncommutative
Minkowski and AdS spacetimes as explicit examples.
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1 Introduction and summary

Noncommutative geometry has long been of interest from a purely mathematical perspective as
a natural generalization of ordinary differential geometry. It is also of crucial interest from a
physical perspective, since it generically plays a role when the principles of quantum mechanics
are combined with those of general relativity [1, 2]. In both contexts, Dirac operators are of ma-
jor importance: they are relevant for structural questions in noncommutative geometry [3] and
essential for the description of fermionic fields in models for high-energy physics. Interestingly
enough, the construction of noncommutative Dirac operators, while straightforward for simple
examples of noncommutative spacetimes like the Moyal-Weyl Minkowski spacetime, becomes
ambiguous on curved spacetimes and for more general deformations. The origin and potential
implications of these ambiguities clearly have to be understood in detail, and it is the aim of this
paper to present a survey of possible definitions of noncommutative Dirac operators together
with a study of their distinct features. We shall investigate various definitions in the framework
of twist-deformed noncommutative geometry, and for the coupling of Dirac fields to the noncom-
mutative background geometry we employ techniques of noncommutative vielbein gravity [4].
This allows us to consider a quite large class of deformations, namely those constructed from
Abelian Drinfeld twists, of generic parallelizable Lorentzian manifolds. Of particular interest
will be semi-Killing deformations, which play an important role in the construction of exact
solutions of the noncommutative Einstein equations in [5, 6, 7].
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The outline of this paper is as follows: After reviewing the framework of noncommutative
vielbein gravity in Section 2, we present three definitions of noncommutative Dirac operators.
That set of examples is not meant to be exhaustive, they are rather chosen for the reason that
they arise as natural noncommutative generalizations of the commutative Dirac operator and
yield the correct classical limit. For the special class of semi-Killing deformations we prove
in Section 3 that all three noncommutative Dirac operators coincide. Furthermore, for actual
Killing deformations, which in particular includes the Moyal-Weyl Minkowski spacetime, we
show that all noncommutative Dirac operators coincide with the undeformed one. This leaves
the question of whether the three definitions are equivalent altogether, which we can answer in
the negative after a study of deformed spacetimes which do not satisfy the semi-Killing property.
By constructing suitable examples, including the quantum plane and a particular curved Moyal-
Weyl spacetime, we show that the three noncommutative Dirac operators are mutually different.
We then turn to the question for the preferred choice among the three operators, given that
they are all inequivalent. The crucial requirement turns out to be formal self-adjointness with
respect to a suitable inner product, which indeed singles out one of the three operators as a
preferred choice. As an application we investigate in Section 4 the construction of solutions
and Green’s operators of the noncommutative Dirac equation. We show that, provided the
classical limit of our noncommutative spacetimes yields an oriented and time-oriented globally
hyperbolic Lorentzian manifold, there exist unique retarded and advanced Green’s operators
which also characterize the solution space. These results are used in Section 5 to show that the
preferred noncommutative Dirac operator can be used to construct a quantum field theory of
Dirac fields on the noncommutative curved spacetimes that we consider. In order to illustrate
our constructions we provide in Section 6 explicit examples of noncommutative Dirac operators
that are of physical interest.

2 Dirac operators on noncommutative curved spacetimes

In this section we introduce three natural definitions for Dirac operators on noncommutative
curved spacetimes. The constructions can in principle be carried out on deformed Lorentzian
or Euclidean manifolds of any dimension, but to fix notation we mostly focus on Lorentzian
manifolds of dimension 4. In Section 3.2 we will also study 2-dimensional examples and so we
collect the analogous definitions also for that case.

2.1 Preliminaries

In the following we review techniques from deformation quantization of smooth manifolds by
Drinfeld twists and the framework of noncommutative vielbein gravity.

Twist-deformed noncommutative geometry: Let M be a D-dimensional manifold and
C∞(M) be the algebra of smooth complex-valued functions on M . The noncommutative geome-
tries that we shall consider are those which arise as deformations of M by an Abelian Drinfeld
twist

F := e−
iλ
2

Θαβ Xα⊗Xβ , (1)

where Θαβ is an antisymmetric, real and constant matrix (not necessarily of rank D) and Xα

are mutually commuting real vector fields on M , i.e. [Xα, Xβ] = 0 for all α, β. The deformation
parameter λ is assumed to be infinitesimally small, i.e. we work in formal deformation quan-
tization. In this setup a formal power series extension C[[λ]] of the complex numbers, as well
as of all vector spaces, algebras, etc., has to be performed, but for notational simplicity we will
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suppress the square brackets [[λ]] denoting these extensions. We can assume, without loss of
generality, that Θαβ is of the canonical (Darboux) form

Θ =


0 1 0 0 · · ·
−1 0 0 0 · · ·
0 0 0 1 · · ·
0 0 −1 0 · · ·
...

...
...

...
. . .

 . (2)

The twist (1) is used to define a ?-product on C∞(M) by

f ? g := µ
(
F−1f ⊗ g

)
= f g +

iλ

2
ΘαβXα(f)Xβ(g) + . . . , (3)

where µ is the usual point-wise product and the action of the vector fields Xα on the func-
tions f, g is via the (Lie) derivative. Furthermore, we can deform the de Rham calculus(
Ω• :=

⊕D
n=0 Ωn,∧, d

)
on M into a differential calculus on the ?-product algebra

(
C∞(M), ?

)
by defining the ∧?-product

ω ∧? τ := ∧
(
F−1ω ⊗ τ

)
= ω ∧ τ +

iλ

2
ΘαβLXα(ω) ∧ LXβ (τ) + . . . , (4)

where the action of the vector fields Xα on the differential forms ω, τ is via the Lie derivative.
The undeformed differential d satisfies the graded Leibniz rule with respect to the ∧?-product,
i.e. d(ω∧?τ) = (dω)∧?τ+(−1)|ω| ω∧?(dτ) with |ω| denoting the degree of ω, and hence

(
Ω•,∧?, d

)
is a differential calculus over

(
C∞(M), ?

)
. We extend the involution ∗ on

(
C∞(M), ?

)
, which is

given by point-wise complex conjugation, to a graded involution on
(
Ω•,∧?, d

)
by applying the

rules (ω ∧? τ)∗ = (−1)|ω| |τ | τ∗ ∧? ω∗ and (dω)∗ = d(ω∗). The undeformed integral
∫
M : ΩD → C

satisfies the graded cyclicity property: for all ω, τ ∈ Ω• with compact overlapping support such
that |ω|+ |τ | = D,∫

M
ω ∧? τ =

∫
M
ω ∧ τ = (−1)|ω| |τ |

∫
M
τ ∧? ω . (5)

This completes our snapshot review of twist-deformed noncommutative geometry and we refer
the reader to [8] for a more detailed discussion.

Noncommutative vielbein gravity: Let now M be a 4-dimensional manifold. Following
[4], we describe the noncommutative gravitational field by a noncommutative vierbein field V
and a noncommutative spin connection Ω. Both V and Ω are one-forms that are valued in
the 4-dimensional Clifford algebra (4 × 4-matrices). We can expand V and Ω in terms of the
gamma-matrix basis {1, γ5, γa, γaγ5, γab} as

Ω =
1

4
ωab γab + i ω 1 + ω̃ γ5 , V = V aγa + Ṽ aγaγ5 . (6)

We use the gamma-matrix conventions of [4], which we include for completeness in Appendix A.
Notice that noncommutative vielbein gravity contains more fields than its commutative coun-
terpart, where Ṽ a = ω = ω̃ = 0. The reason is that SL(2,C) (Lorentz) ?-gauge transformations
do not close and have to be extended to GL(2,C) ?-gauge transformations. As in [4] we re-
quire that in the commutative limit Ṽ a|λ=0 = ω|λ=0 = ω̃|λ=0 = 0, which means that setting
λ = 0 the noncommutative vierbein and the noncommutative spin connection yield a usual
commutative SL(2,C) vierbein and spin connection. Let us denote these classical fields by
V(0) := V a

(0) γa := V |λ=0 and Ω(0) := 1
4ω

ab
(0)γab := Ω|λ=0.
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The ?-gauge transformations of noncommutative vielbein gravity act on V and Ω by

δεV = [ε ?, V ] , δεΩ = dε+ [ε ?, Ω] , (7)

where ε = 1
4 ε

ab γab+ i ε 1+ ε̃ γ5 is a Clifford algebra valued function and [ε ?, V ] := ε?V −V ?ε is
the ?-commutator. We impose the reality conditions ε† = −γ0εγ0, V † = γ0V γ0, Ω† = −γ0Ωγ0,
and we notice that these are consistent with the ?-gauge transformations. Furthermore, we
assume the noncommutative spin connection to be ?-torsion free, i.e. 0 = dΩV := dV −{Ω ?, V }
where {Ω ?, V } = Ω ∧? V + V ∧? Ω is the ?-anticommutator. The ?-torsion constraint is part of
the equations of motion of noncommutative vielbein gravity [4].

Let us now consider Dirac fields ψ, i.e. functions valued in the representation vector space of
the Clifford algebra. We denote the Dirac adjoint by ψ := ψ†γ0. The ?-gauge transformations
act on ψ and ψ by δεψ = ε ? ψ and δεψ = −ψ ? ε, respectively. Notice that the matrix ψ ? ψ
transforms in the adjoint representation, δε(ψ ? ψ) = [ε ?, ψ ? ψ]. For all Dirac fields ψ1, ψ2 with
compact overlapping support we define the inner product

〈ψ1, ψ2〉 := i

∫
M

Tr
(
ψ2 ? ψ1 ? V ∧? V ∧? V ∧? V γ5

)
, (8)

which is ?-gauge invariant due to (5), (7) and the cyclicity of the matrix trace Tr.

Lemma 1. The inner product (8) is hermitian, it reduces to the canonical commutative one for
λ = 0 and it is non-degenerate, i.e.:

a) 〈ψ1, ψ2〉∗ = 〈ψ2, ψ1〉

b) 〈ψ1, ψ2〉 =
∫
M ψ1ψ2 vol +O(λ), where vol = V a

(0) ∧ V
b

(0) ∧ V
c

(0) ∧ V
d

(0)εabcd

c) If 〈ψ1, ψ2〉 = 0 for all ψ2, then ψ1 = 0

Proof. We show a) by the following short calculation

〈ψ1, ψ2〉∗ = −i
∫
M

Tr
(
γ†5 V

† ∧? V † ∧? V † ∧? V † ? (ψ2 ? ψ1)†
)

= −i
∫
M

Tr
(
ψ1 ? ψ2γ0γ5γ0 ? V ∧? V ∧? V ∧? V

)
= i

∫
M

Tr
(
ψ1 ? ψ2 ? V ∧? V ∧? V ∧? V γ5

)
= 〈ψ2, ψ1〉 . (9)

In the second equality we have used (graded) cyclicity, the reality condition V † = γ0V γ0,

(ψ2 ? ψ1)† = γ0ψ1 ? ψ2γ0, γ2
0 = 1 and γ†5 = γ5. In the third equality we have used γ5γ0 = −γ0γ5,

γ2
0 = 1 and γ5V = −V γ5.

To show b) let us set in (8) λ = 0 and use that V |λ=0 = V(0) = V a
(0) γa (i.e. that Ṽ a

vanishes at order λ0). Using further that the antisymmetrized product of 4 gamma-matrices is
γ[aγbγcγd] = −iγ5 εabcd and that γ2

5 = 1 we obtain the desired result.

c) is a consequence of b) and the fact that the classical inner product
∫
M ψ1ψ2 vol is non-

degenerate. �

2.2 Construction of noncommutative Dirac operators

We now turn to the construction of Dirac operators on our noncommutative curved spacetimes.
To this end we define the ?-covariant differential acting on Dirac fields by dΩψ := dψ−Ω?ψ. On
adjoint Dirac fields we analogously define dΩψ := dΩψ = dψ+ψ?Ω and note that dΩ(ψ1?ψ2) :=
d(ψ1 ? ψ2)− [Ω ?, ψ1 ? ψ2] = (dΩψ1) ? ψ2 + ψ1 ? (dΩψ2).
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The Aschieri-Castellani Dirac operator: The first noncommutative Dirac operator is mo-
tivated by the noncommutative Dirac field action proposed in [4]

SAC = −4

∫
M

Tr
(
(dΩψ) ? ψ ∧? V ∧? V ∧? V γ5

)
. (10)

Since the inner product (8) is non-degenerate, we can define a Dirac operator /D
AC

by requiring
that, for all ψ1 of compact support,

〈ψ1, /D
AC
ψ2〉 = −4

∫
M

Tr
(
(dΩψ2) ? ψ1 ∧? V ∧? V ∧? V γ5

)
. (11)

This yields precisely the equation of motion operator corresponding to the action (10). Since this
Dirac operator naturally arises from a real action which reduces to the standard commutative
one for λ = 0, it has the following nice properties:

Lemma 2. The following properties hold true:

a) 〈ψ1, /D
AC
ψ2〉 = 〈/DAC

ψ1, ψ2〉, i.e. /D
AC

is formally self-adjoint with respect to 〈 , 〉.

b) /D
AC|λ=0 = /D(0), where /D(0) is the classical Dirac operator corresponding to

(
V(0),Ω(0)

)
.

Proof. We show a) by the following calculation

〈/DAC
ψ1, ψ2〉 = 〈ψ2, /D

AC
ψ1〉∗ = −4

∫
M

Tr
(
γ†5 V

† ∧? V † ∧? V † ∧? ((dΩψ1) ? ψ2)†
)

= 4

∫
M

Tr
(
ψ2 ? dΩψ1γ0γ5γ0 ∧? V ∧? V ∧? V

)
= 4

∫
M

Tr
(
ψ2 ? (dΩψ1) ∧? V ∧? V ∧? V γ5

)
= −4

∫
M

Tr
((

(dΩψ2) ? ψ1 − dΩ(ψ2 ? ψ1)
)
∧? V ∧? V ∧? V γ5

)
= 〈ψ1, /D

AC
ψ2〉+ 4

∫
M

d Tr
(
ψ2 ? ψ1 ? V ∧? V ∧? V γ5

)
= 〈ψ1, /D

AC
ψ2〉 . (12)

In the third equality we have used graded cyclicity, γ2
0 = 1 and γ†5 = γ5. In the fourth equality

we have used that dΩψ = dΩψ, γ5γ0 = −γ0γ5, γ2
0 = 1 and γ5V = −V γ5. In equality five we

have used that dΩ(ψ2 ? ψ1) = (dΩψ2) ? ψ1 + ψ2 ? (dΩψ1), in equality six the ?-torsion constraint
dΩV = 0 and in equality seven Stokes’ theorem.

To prove b) notice that V ∧? V ∧? V γ5|λ=0 = i V a
(0) ∧ V

b
(0) ∧ V

c
(0) εabcdγ

d. Let us denote by

V −1
(0) =: E(0) aγ

a the inverse of the vierbein V(0), that is a vector field on M with values in

the Clifford algebra. Expanding dΩ|λ=0ψ2 in the vierbein basis, dΩ|λ=0ψ2 = V a
(0)

(
E(0) a(ψ2) −

Ω(0) a ψ2

)
=: V a

(0)∇(0) aψ2, we obtain for (11) at λ = 0

〈ψ1, /D
AC
ψ2〉|λ=0 = −4i

∫
M

Tr
(
(∇(0) eψ2)ψ1 γ

d
)
V e

(0) ∧ V
a

(0) ∧ V
b

(0) ∧ V
c

(0)εabcd

=

∫
M
ψ1 i γ

d∇(0) dψ2 vol =

∫
M
ψ1 /D(0)ψ2 vol . (13)

�

We emphasize already at this point that the definition of the Dirac operator via (11), while
certainly useful to establish its nice features, is also rather implicit, which would eventually
complicate explicit applications. We shall therefore introduce two more options to construct
noncommutative Dirac operators in the next two paragraphs.
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The contraction Dirac operator: For the next noncommutative Dirac operator we shall
follow closely the usual construction of a Dirac operator on commutative spacetimes, which
goes as follows: Let V(0) = V a

(0)γa be a classical vierbein, Ω(0) a classical spin connection and

let us denote by V −1
(0) = E(0) aγ

a the inverse vierbein. The classical Dirac operator is /D(0)ψ =

i γa∇(0) aψ = i γa
(
E(0) a(ψ)−Ω(0) aψ

)
, where we have expressed Ω(0) in the vierbein basis Ω(0) =

V a Ω(0) a. Notice that this operator can be written in an index-free form /D(0)ψ = i ιV −1
(0)

(
dψ −

Ω(0)ψ
)
, where ι is the contraction operator (interior product) extended to matrix-valued vector

fields and vector-valued one-forms in the obvious way.

Using the deformed contraction operator ι? between vector fields and one-forms as defined in
[9], we generalize the above construction to the noncommutative setting. Explicitly, for a vector
field v and a one-form ω we define

ι?v(ω) := ι
(
F−1v ⊗ ω

)
= ιv(ω) +

iλ

2
Θαβ ιLXα (v)

(
LXβ (ω)

)
+ . . . , (14)

where the action of the vector fields Xα on v and ω is via the Lie derivative. Since by hypothesis
the V a components of the noncommutative vierbein are invertible, we can define the ?-inverse
Ea (which are vector fields) by the ?-contraction condition ι?Ea

(
V b
)

= δba. We collect all Ea in
the Clifford algebra valued vector field V −1? := Ea γ

a. Following the same strategy as in the
commutative case we define the contraction Dirac operator by

/D
contr

ψ := i ι?V −1?

(
dΩψ

)
= i γaι?Ea

(
dΩψ

)
. (15)

Since the involved operations reduce to the classical ones for λ = 0, this Dirac operator also has
the correct classical limit /D

contr|λ=0 = /D(0).

The deformed Dirac operator: The last noncommutative Dirac operator is motivated by
the framework of Connes for noncommutative spin geometry [3]. In this formalism the Dirac
operator enters as a fundamental degree of freedom of the theory. Hence, one reasonable option
to obtain a noncommutative Dirac operator is to deform the classical Dirac operator /D(0) via
the techniques developed in [10]. More precisely, denoting the inverse twist by F−1 = f̄α ⊗ f̄α
we define the deformed Dirac operator by applying the deformation map constructed in [10]

/D
F
ψ :=

(
f̄α I /D(0)

)
f̄α(ψ) = /D(0)ψ +

iλ

2
Θαβ

(
Xα I /D(0)

)
Xβ(ψ) + . . . , (16)

where Xα I /D(0) := Xα ◦ /D(0) − /D(0) ◦Xα is the adjoint action. Also this Dirac operator has
the correct classical limit for λ = 0.

2.3 Two-dimensional Dirac operators

We now turn to the two-dimensional case which will be relevant for the examples in Subsection
3.2. Our conventions for the 2-dimensional Clifford algebra are as follows: ηab = diag(1,−1)ab
is the 2-dimensional Minkowski metric and the Clifford relation {γa, γb} = 2ηab is satisfied by
the 2× 2-matrices

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
. (17)

We also define γ3 := γ0γ1 and note that γab := 1
2 [γa, γb] = εab γ3, where εab is the 2-dimensional

ε-tensor, ε01 = 1. We further have γ†a = γ0γaγ0, γ†3 = γ3, γ2
3 = 1 and γ3γa = −γaγ3.
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The noncommutative twobein and spin connection have the following expansion in terms of
the gamma-matrix basis {1, γ3, γa}

V = V aγa , Ω = ω γ3 + ω̃ 1 . (18)

We define for ε = ε γ3 + ε̃ 1 the ?-gauge transformations δεV := [ε ?, V ] and δεΩ := dε+ [ε ?, Ω].
As in the case of 4-dimensional noncommutative vielbein gravity we had to introduce the extra
fields ω̃ and ε̃ such that the ?-gauge transformations close. In contrast to the case of D = 4 we
do not need additional terms in the twobein field and thus the interpretation of V as a soldering
form remains valid in D = 2 noncommutative vielbein gravity. We again impose the reality
conditions ε† = −γ0εγ0, V † = γ0V γ0 and Ω† = −γ0Ωγ0.

Let us consider Dirac fields ψ. The Dirac adjoint is ψ := ψ†γ0 and ?-gauge transformations
act on ψ and ψ via δεψ := ε?ψ and δεψ = −ψ?ε. We define in analogy to (8) a ?-gauge invariant
and hermitian inner product

〈ψ1, ψ2〉 :=

∫
M

Tr
(
ψ2 ? ψ1 ? V ∧? V γ3

)
. (19)

For λ = 0 we obtain the usual inner product 〈ψ1, ψ2〉|λ=0 =
∫
M ψ1ψ2 vol, since V ∧? V γ3|λ=0 =

V(0) ∧ V(0)γ3 = V a
(0) ∧ V

b
(0)εabγ

2
3 = vol.

Using the ?-covariant differential dΩψ := dψ − Ω ? ψ we define the D = 2 analog of the
Aschieri-Castellani Dirac operator (11) by requiring that, for all ψ1 of compact support,

〈ψ1, /D
AC
ψ2〉 = 2i

∫
M

Tr
(
(dΩψ2) ? ψ1 ∧? V γ3

)
. (20)

Using that γaγ3 = −εabγb we find that /D
AC

has the correct classical limit /D
AC|λ=0 = /D(0).

Furthermore, /D
AC

is formally self-adjoint with respect to the inner product (19) if the ?-torsion
constraint 0 = dΩV = dV − {Ω ?, V } holds. The contraction and deformed Dirac operator of
Subsection 2.2 are easily adapted to the case of D = 2.

3 Comparison of the noncommutative Dirac operators

In this section we study the three noncommutative Dirac operators defined in Subsection 2.2 in
more detail. In the first part we focus on the special class of semi-Killing deformations, for which
the three operators turn out to be equivalent. In the second part we study explicit examples
of more general deformations to work out the differences among the operators. To keep the
technical part as simple as possible we focus on two-dimensional spacetimes in that part.

3.1 Semi-Killing twists: Dirac operators unisono

Of particular interest for the explicit examples to be presented in Section 6 are those noncom-
mutative curved spacetimes that solve the noncommutative Einstein equations. As noted in
[5, 6, 7], any undeformed metric field solving the classical Einstein equations also solves the
noncommutative Einstein equations [9] if the twist is semi-Killing. Explicitly, an Abelian twist
(1) is semi-Killing if ΘαβXα⊗Xβ ∈ Ξ⊗K+K⊗Ξ, where Ξ is the Lie algebra of vector fields on
M and K := {X ∈ Ξ : LX(V ) = 0} is the Killing Lie algebra. Using the canonical form of Θαβ

(2), this condition is equivalent to requiring that either X2n or X2n−1 is a Killing vector field,
for all n = 1, 2, . . . . We note that all our examples of noncommutative Klein-Gordon operators
studied in [11] are of this type. The semi-Killing requirement allowed us in many cases to calcu-
late explicitly the noncommutative Klein-Gordon operators to all orders in λ. As we shall show
in Section 6 the same holds true for the noncommutative Dirac operators.
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Let us assume that the twist F is semi-Killing and furthermore that V = V(0), i.e. that
V only contains λ0-terms. The classical Levi-Civita connection Ω(0), specified uniquely by the
commutative torsion constraint dV(0)−{Ω(0), V(0)} = 0, has the invariance property LX(Ω(0)) = 0
for all X ∈ K. This implies that Ω := Ω(0) fulfills the ?-torsion constraint dV − {Ω ?, V } = 0.
Those (V,Ω)-pairs solve the noncommutative Einstein equations (in vielbein form) [4] whenever
they solve the commutative Einstein equations.

We denote by Ea the basis for the vector fields on M which is specified by the undeformed
contraction condition ιEa(V b) = δba. Notice that this condition implies that LX(Ea) = 0 for all
X ∈ K. Hence, also the deformed contraction condition ι?Ea(V b) = δba holds true for semi-Killing
twists. Due to the latter property, the ?-inverse vierbein reads V −1? = Eaγ

a. We expand the
?-covariant differential into this basis, i.e. dΩψ = V a ? ∇?aψ or equivalently ∇?aψ = ι?Ea

(
dΩψ

)
.

Defining the components Ωa of the spin connection by Ω =: V a Ωa, the conditions LX(Ω) = 0
and LX(V ) = 0 imply that LX(Ωa) = 0, for all X ∈ K, and thus Ω = V a Ωa = V a ? Ωa.
Furthermore, defining the differential operator E?a by the basis expansion dψ =: V a ? E?a(ψ)
(which is equivalent to E?a(ψ) = ι?Ea(dψ)) we obtain

∇?aψ = ι?Ea
(
dΩψ

)
= E?a(ψ)− Ωa ? ψ . (21)

The contraction Dirac operator (15) expressed in this basis reads

/D
contr

ψ = i γa∇?aψ = i γa
(
E?a(ψ)− Ωa ? ψ

)
. (22)

To evaluate the deformed Dirac operator /D
F

we first note that the classical Dirac operator
expressed in the vierbein basis reads /D(0)ψ = i γa ιEa

(
dψ − Ωψ

)
= i γa

(
Ea(ψ) − Ωa ψ

)
. Eval-

uating the deformation map in (16) we obtain that the deformed Dirac operator coincides for
semi-Killing twists with the contraction Dirac operator,

/D
F
ψ =

(
f̄α I /D(0)

)
f̄α(ψ) = i γa∇?aψ = /D

contr
ψ . (23)

In this calculation we have used that LX(Ωa) = 0 whenever X ∈ K. Finally, we compute
explicitly the Aschieri-Castellani Dirac operator (11) for semi-Killing twists. Due to the semi-
Killing property the following holds true

i V ∧? V ∧? V ∧? V γ5 = i V ∧ V ∧ V ∧ V γ5 = 1 vol , (24a)

V ∧? V ∧? V γ5 = V ∧ V ∧ V γ5 = i V a ∧ V b ∧ V c εabcdγ
d . (24b)

Hence, the inner product (8) reads

〈ψ1, ψ2〉 =

∫
M
ψ1 ? vol ? ψ2 , (25)

where vol = V a ∧ V b ∧ V c ∧ V d εabcd is the classical volume form, and (11) simplifies to

〈ψ1, /D
AC
ψ2〉 = 4i

∫
M
ψ1 ? (V a ∧ V b ∧ V c)εabcd γ

d ∧? dΩψ2 =

∫
M
ψ1 ? vol ? i γd∇?dψ2 . (26)

This shows that for semi-Killing twist all three definitions of noncommutative Dirac operators
coincide. We would like to stress that for generic semi-Killing twists the noncommutative Dirac
operators do not coincide with the classical one /D(0), cf. Section 6 for explicit examples. In
summary, we have obtained the following

Proposition 3. For semi-Killing deformations the three noncommutative Dirac operators de-
fined in Subsection 2.2 are all equivalent. For practical purposes one can therefore choose the
technically most convenient one.
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If all vector fields Xα in the twist F are Killing, then the differential operator E?a defined
by dψ =: V a ? E?a(ψ) coincides with the vector field Ea (the inverse vierbein). Furthermore,

Ωa?ψ = Ωa ψ and thus we obtain for the contraction Dirac operator (22) /D
contr

ψ = i γa
(
Ea(ψ)−

Ωa ψ
)

= /D(0)ψ. Since actual Killing twists are contained in the class of semi-Killing twists, all

three noncommutative Dirac operators coincide and we thus have /D
contr

= /D
F

= /D
AC

= /D(0) for
Killing twists. The same result has been obtained for noncommutative Klein-Gordon operators
in [11, 12].

3.2 Non-semi-Killing twists: bringing up the differences

We have seen in the previous subsection that the three noncommutative Dirac operators are
equivalent for semi-Killing deformations. This naturally raises the question whether the opera-
tors are equivalent altogether, which we answer now. Let us first provide an example which shows
that the Aschieri-Castellani Dirac operator differs from the others. To this end, we consider the
2-dimensional Minkowski spacetime M = R2 described by the twobein V = V a γa = dt γ0 +dx γ1

and deform it by the twist (1) with X1 = t∂t and X2 = x∂x. Notice that this deformation leads
to the commutation relations of the quantum plane t ? x = eiλ x ? t. The ?-torsion constraint
is solved by Ω = 0. The ?-inverse Ea of V a is defined by ι?Ea(V b) = δba and it is given by
E0 = ∂t, E1 = ∂x. We further find for the ?-covariant derivative dΩψ = dψ = V a ? ∇?aψ =

dt ? e−
iλ
2
x∂x∂tψ + dx ? e

iλ
2
t∂t∂xψ. This leads to the following contraction Dirac operator on the

quantum plane

/D
contr

ψ = iγa∇?aψ = i
(
γ0 e−

iλ
2
x∂x∂tψ + γ1 e

iλ
2
t∂t∂xψ

)
. (27)

The deformed Dirac operator (16) also can be explicitly evaluated by using that t∂t I ∂t = −∂t
and t∂t I ∂x = 0 (and similarly for x∂x). We find that it agrees with the contraction Dirac
operator in the case of the quantum plane. Finally, we evaluate the Aschieri-Castellani Dirac

operator. Using that dt ∧? dx = e
iλ
2 dt ∧ dx = e

iλ
2 vol/2, with vol denoting the classical volume

form, we obtain for the inner product (19)

〈ψ1, ψ2〉 = cos(λ/2)

∫
M
ψ1 ? vol ? ψ2 . (28)

Furthermore, evaluating (20) we obtain

〈ψ1, /D
AC
ψ2〉 = i

∫
M
ψ1 ? vol ?

(
e−

iλ
2 γ0∇?0ψ2 + e

iλ
2 γ1∇?1ψ2

)
, (29)

which yields the Aschieri-Castellani Dirac operator on the quantum plane

/D
AC
ψ =

i

cos(λ/2)

(
e−

iλ
2 γ0 e−

iλ
2
x∂x∂tψ + e

iλ
2 γ1 e

iλ
2
t∂t∂xψ

)
. (30)

Comparing (27) and (30) we observe that the noncommutative Dirac operators /D
contr

= /D
F

and /D
AC

do not coincide on the quantum plane. Notice that the difference is not just in the
overall factor, but the two terms have also acquired different phases. Furthermore, calculating
the formal adjoint of the operator (27) with respect to the inner product (28) we obtain

(/D
contr

)∗ ψ = i
(
e−iλ γ0 e−

iλ
2
x∂x∂tψ + eiλ γ1 e

iλ
2
t∂t∂xψ

)
. (31)

The formal adjoint operator does not agree with (27), hence /D
contr

and also /D
F

are not formally
self-adjoint on the quantum plane. Since formal self-adjointness is essential for the construc-
tion of a quantum field theory, cf. Section 5, this example singles out the Aschieri-Castellani
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Dirac operator, which is always formally self-adjoint by Lemma 2, from the three candidates of
noncommutative Dirac operators.

For completeness, we consider another example of a noncommutative spacetime to prove that
the contraction and deformed Dirac operators do not always coincide. Let us consider M = R2

with Cartesian coordinates (t, x) and the deformation given by the Moyal-Weyl twist, i.e. (1)
with X1 = ∂t and X2 = ∂x. We equip this deformed manifold with the noncommutative twobein
V = dt γ0 + Φ dx γ1, where Φ ∈ C∞(M) is a strictly positive function. We notice that the spin
connection Ω = dx ∂tΦ

2 γ3 satisfies the ordinary and ?-torsion constraint. The ?-inverse twobein
reads E0 = ∂t and E1 = Φ−1? ∂x, where Φ−1? is the ?-inverse function of Φ. For the contraction
Dirac operator (15) we obtain

/D
contr

ψ = i
(
γ0 ∂tψ + γ1 Φ−1? ? ∂xψ +

γ0

2
Φ−1? ? ∂tΦ ? ψ

)
. (32)

Evaluating the deformed Dirac operator (16) we find for this model

/D
F
ψ = i

(
γ0 ∂tψ + γ1 Φ−1 ? ∂xψ +

γ0

2
(Φ−1 ∂tΦ) ? ψ

)
. (33)

Notice that in this expression there appears the usual inverse Φ−1 of Φ as well as the usual
product Φ−1 ∂tΦ. In general, the expressions (32) and (33) do not coincide, which implies that
the contraction and deformed Dirac operators are distinct. Calculating the Aschieri-Castellani
Dirac operator (20) for this model we obtain that it coincides with (32).

In summary, we have obtained the following

Proposition 4. In general, the three noncommutative Dirac operators defined in Subsection 2.2
are mutually different.

As shown in Section 3.1, the differences disappear when we restrict ourselves to semi-Killing
deformations. Since the Aschieri-Castellani Dirac operator is in general formally self-adjoint,
cf. Lemma 2, while the others are not, the discussion in this section provides good arguments
singling out this particular noncommutative Dirac operator.

4 Solution theory of the noncommutative Dirac equation

In [12] we have discussed the solution theory of formal deformations of wave operators on
deformed globally hyperbolic spacetimes. In particular, we have constructed retarded/advanced
Green’s operators as well as the solution space of the deformed wave equation. In this section we
generalize these results to formal deformations of Dirac operators. This is essential to construct
a quantum field theory corresponding to the noncommutative Dirac operators introduced above.

Since it does not complicate our proofs, we shall work in the following more abstract setting
which contains the noncommutative Dirac operators above: Let π : V →M be a complex vector
bundle over a classical time-oriented and connected globally hyperbolic Lorentzian manifold M .
Let us denote the space of sections of this bundle by Γ∞(V ). We shall suppress as before the
brackets [[λ]] for the formal power series extension of this vector space. The class of operators
P? :=

∑∞
n=0 λ

n P(n) : Γ∞(V ) → Γ∞(V ) that we shall consider is characterized as follows: 1.)
P := P(0) : Γ∞(V ) → Γ∞(V ) is an operator of Dirac-type, i.e. −P 2 is a wave operator. 2.)
P(n) : Γ∞(V ) → Γ∞0 (V ), n ≥ 1, is a finite-order differential operator mapping to the space
of sections of compact support Γ∞0 (V ). The support condition is sufficient, however not in all
cases necessary, to construct the Green’s operators for P?. Notice that the massive Aschieri-

Castellani Dirac operator /D
AC

+ m, with m ∈ R, as well as all other noncommutative Dirac
operators studied above are examples for such P?, if we restrict to deformations of compact
support.
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It is well known that for classical operators of Dirac-type P : Γ∞(V )→ Γ∞(V ) there exist a
unique retarded and advanced Green’s operator G±, see e.g. [13] for a proof employing a modern
language. We remind the reader that a retarded/advanced Green’s operator is a linear map
G± : Γ∞0 (V )→ Γ∞(V ) satisfying the inhomogeneous equation of motion G± ◦ P = P ◦G± = id
and the support condition supp(G±ψ) ⊆ J±(supp(ψ)), for all ψ ∈ Γ∞0 (V ), where J±(supp(ψ))
is the forward/backward lightcone of the set supp(ψ).

Theorem 5. Let us define the map G±? :=
∑∞

n=0 λ
nG±(n) : Γ∞0 (V ) → Γ∞(V ) by G±(0) := G±

and, for n > 0,

G±(n) :=
n∑
k=1

n∑
j1=1

· · ·
n∑

jk=1

(−1)kδj1+···+jk,n G
± ◦ P(j1) ◦G± ◦ P(j2) ◦ · · · ◦G± ◦ P(jk) ◦G± ,

(34)

where δn,m is the Kronecker delta. Then G±? is the unique retarded/advanced Green’s operator
for P?, i.e. G±? ◦ P? = P? ◦ G±? = id and supp(G±(n)ψ) ⊆ J±(supp(ψ)), for all n ∈ N0 and

ψ ∈ Γ∞0 (V ).

Proof. The proof is straightforward by following the steps in the proof of [12, Theorem 1]. �

We now provide an explicit characterization of the solution space Sol :=
{
ψ ∈ Γ∞sc (V ) : P?ψ = 0

}
,

where the subscript sc denotes sections of spacelike compact support. All solutions are obtained
by the causal propagator G? := G+

? −G−? : Γ∞0 (V )→ Γ∞sc (V ) due to the following

Theorem 6. The following sequence of linear maps is a complex which is exact everywhere:

{0} // Γ∞0 (V )
P? // Γ∞0 (V )

G? // Γ∞sc (V )
P? // Γ∞sc (V ) (35)

Proof. This proof is obtained by following the steps in the proof of [12, Theorem 2]. However, a
small modification is required, since in [12, Theorem 2] we had given an inner product on Γ∞(V )
and we have assumed that the equation of motion operator P? is formally self-adjoint. These
properties were only used in [12, Equation (34)]. Since we did not assume an inner product
on Γ∞(V ), we have to replace the inner product in [12, Equation (34)] by the pairing between
Γ∞(V ) and Γ∞(V ∗), where V ∗ is the dual bundle of V . The Green’s and equation of motion
operators in the left entry of the inner product in [12, Equation (34)] also have to be replaced
by their formal adjoints acting on sections of V ∗. With this small modification the proof of [12,
Theorem 2] generalizes easily to our present setting. �

5 CAR quantization

With the tools developed in the previous section we can construct the canonical anti-commutation
relation (CAR) algebra corresponding to deformed Dirac-type operators P? : Γ∞(V )→ Γ∞(V ).
This is the observable algebra of the quantized noncommutative Dirac field. For this construc-
tion we also require a hermitian inner product 〈 , 〉 on Γ∞(V ) and that P? is formally self-adjoint

with respect to 〈 , 〉. Due to Lemma 2, the massive Aschieri-Castellani Dirac operator /D
AC

+m,
with m ∈ R, is of this kind, where the inner product is given by (8).

Let us define another inner product on Γ∞0 (V ) by using the causal propagator G? correspond-
ing to P?: for all ψ1, ψ2 ∈ Γ∞0 (V ),

〈〈ψ1, ψ2〉〉 := i 〈ψ1, G?ψ2〉 . (36)
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Since 〈ψ1, ψ2〉∗ = 〈ψ2, ψ1〉 and P? is formally self-adjoint (which implies that G? is formally
skew-adjoint) we obtain

〈〈ψ1, ψ2〉〉∗ = −i 〈G?ψ2, ψ1〉 = i 〈ψ2, G?ψ1〉 = 〈〈ψ2, ψ1〉〉 . (37)

Notice that, due to Theorem 6 and the fact that G? is formally skew-adjoint, 〈〈 , 〉〉 induces a
well-defined hermitian inner product on the quotient H? := Γ∞0 (V )/P?

[
Γ∞0 (V )

]
.

If V = DM is a Dirac spinor bundle and P? is such that P := P(0) = /D(0) + m, the inner
product 〈〈 , 〉〉 on H? is positive-definite. To show this statement let us consider the classical
limit λ = 0. We find by using Green’s formula [14, p. 160, Prop. 9.1] for the inner product in
this limit, that for all ψ1, ψ2 ∈ H?|λ=0 = Γ∞0 (DM)/P

[
Γ∞0 (DM)

]
,

〈〈ψ1, ψ2〉〉|λ=0 = i 〈PG±ψ1, Gψ2〉|λ=0 = i

∫
Σ
i γanaGψ1Gψ2 volΣ =

∫
Σ

(Gψ1)†Gψ2 volΣ .

Here Σ is any Cauchy surface and n = Ea n
a its future-pointing normal vector field. In the

last equality we have used that we can choose n = E0. Since the inner product 〈〈 , 〉〉 is
positive-definite at order λ0 it is positive-definite to all orders in the deformation parameter.

The inner-product space
(
H?, 〈〈 , 〉〉

)
can be quantized in terms of a CAR algebra, see e.g. [15]

for a modern review of these techniques: To any element ψ ∈ H? we associate an abstract
operator a(ψ) and consider the free unital ∗-algebra Afree generated by all a(ψ), ψ ∈ H?. We
define the CAR algebra ACAR := Afree/I as the quotient of Afree by the both-sided ∗-ideal I
generated by the elements, for all ψ1, ψ2 ∈ H? and α1, α2 ∈ C,

a
(
α1 ψ1 + α2 ψ2

)
− α1 a(ψ1)− α2 a(ψ2) , (38a){

a(ψ1), a(ψ2)
}
, (38b){

a(ψ1)∗, a(ψ2)
}
− 〈〈ψ1, ψ2〉〉 1 , (38c)

where { , } is the anti-commutator. The interpretation of this quotient is as follows: (38a)
allows us to regard a(ψ) as smeared linear field operators. (38b) and (38c) encode the CAR.
The on-shell condition is already implemented in H?. In the physics literature the Dirac field
operator is typically denoted by Ψ(x) and its adjoint by Ψ(x). This notation is related to ours
by a(ψ) = 〈Ψ, ψ〉 and a(ψ)∗ = 〈ψ,Ψ〉, where by the inner products we (formally) denote the
smearing of the field operators by test sections. In this notation (38b) states that Ψ(x) anti-
commutes with Ψ(y) and (38c) that the anti-commutator between Ψ(x) and Ψ(y) is non-trivial.

6 Explicit examples

In this section we will explicitly study the noncommutative Dirac operators discussed in Section
2 on two noncommutative (curved) spacetimes. For their attractive features, e.g. as solutions
to noncommutative Einstein equations, we will focus on semi-Killing deformations. As shown
in Subsection 3.1 all three noncommutative Dirac operators coincide in this case and we will
collectively denote them by /D?. These studies are complementing our explicit examples of
deformed Klein-Gordon operators [11].

6.1 κ-Minkowski spacetime

As a first example we consider M = R4 with global coordinates denoted by xµ = (t, xj) and the
Minkowski vierbein V = γaδ

a
µ dx

µ, along with the spin connection Ω = 0. For the twist (1) we
use X1 = ∂t and X2 = xj∂j , which yields a semi-Killing twist. The commutation relations of the
coordinate functions are those of κ-Minkowski spacetime, i.e. [t ?, xj ] = iλ xj and [xi ?, xj ] = 0.
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Various fields with their equation of motion operators have been studied on this particular
noncommutative spacetime, see [11] for the scalar field and [16] for the U(1) gauge field. We
supplement these studies by the Dirac field with equation of motion operator given by any of
the noncommutative Dirac operators introduced in Subsection 2.2, which all coincide for this
model since F is semi-Killing.

Using that LX1(V a) = 0, LX2(V 0) = 0 and LX2(V j) = V j we obtain for the ?-covariant
derivative, which is defined by dΩψ = V a ?∇?aψ, the following expression

∇?0 = ∂t , ∇?j = e
iλ
2
∂t∂j . (39)

Since the three noncommutative Dirac operators coincide for this model we choose to calculate
the simplest one, which is the contraction Dirac operator (15), and find

/D?ψ = i γa∇?aψ = i
(
γ0∂tψ + γje

iλ
2
∂t∂jψ

)
. (40)

For the solutions of the noncommutative Dirac equation /D?ψ = 0 we can then derive a dispersion
relation by squaring the equation of motion operator /D?. More explicitly, this yields

�? := −/D2
? = ηab∇?a∇?b = ∂2

t −4 eiλ∂t , (41)

where 4 := ∂2
1 + ∂2

2 + ∂2
3 is the spatial Laplacian. To study the dispersion relation we make a

plane wave ansatz ψ = χ ei(Et+kjx
j), where E is the energy, kj the momentum and χ ∈ C4 a

polarization spinor. Since /D?ψ = 0 implies �?ψ = 0 we obtain the deformed energy-momentum
relation

E2 − e−λE k2 = 0 ⇔ E2 eλE = k2 . (42a)

From the equation of motion /D?ψ = 0 we further obtain a condition on the polarization spinor(
γ0E + γjkj e

−λ
2
E
)
χ = 0 . (42b)

Without loss of generality we choose the spatial momentum along the third direction, i.e. k =

(0, 0, k), such that (42b) becomes
(
γ0E + γ3k e−

λ
2
E
)
χ = 0. Using the on-shell condition (42a)

this becomes independent of λ and reduces to the analogous equation in the commutative case.
We thus find that the physical spin polarizations, which are characterized as the solutions of
(42b), do not receive noncommutative corrections. Hence, this type of noncommutative geometry
does not introduce an anomalous spin precession.

6.2 Noncommutative anti de Sitter space

We now turn to a curved spacetime example, for which the natural first candidates are the
maximally symmetric (anti) de Sitter ((A)dS) spacetimes. We choose AdS which is of relevance
e.g. for model building in particle physics and AdS/CFT, but note that similar calculations
for the cosmologically relevant dS are fully analogous. A particle-physics model employing a
deformation of AdS can be found in [17].

We focus on the Poincaré patch of 4-dimensional AdS, that is, M = R3× (0,∞) with coordi-
nates xµ = (xi, z) and the vierbein V = γaRz

−1 δaµ dx
µ. The generalization to higher dimensions

is straightforward and just amounts to using the higher dimensional Clifford algebras. In the
following we fix the radius of curvature to R = 1, and for the gamma-matrices we denote the
contraction with the (inverse) vielbein explicitly by a hat, e.g. γ̂µ := Eµa γa = z δµaγa. To de-
form this space we employ the twist (1) with the 2N mutually commuting vector fields Xα,
α = 1, . . . , 2N , given by

X2n−1 = T i
2n−1∂i , X2n = ϑ(z)T i

2n∂i , n = 1, 2, . . . , N . (43)
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In this expression the T iα are real numbers and ϑ(z) ∈ C∞(0,∞) is a real valued function. Notice
that this twist is semi-Killing, since all X2n−1 are Killing vector fields. The ?-commutation
relations of the coordinate functions (xi, z) read

[xi ?, xj ] = iλ ϑ(z) ΘαβT iα T
j
β , [xi ?, z] = 0 . (44)

Hence, this model describes a z-dependent Moyal-Weyl deformation of the R3 hypersurfaces at
constant z. The ?-torsion free spin connection for this model is Ω = −1

2V
i γi3.

To compute the ?-covariant derivative dΩψ = V a ?∇?aψ we first notice that LX2n−1(V a) = 0,
LX2n(V i) = ϑ′(z)T i2n V

3 and LX2n(V 3) = 0. We then obtain

∇?i = z∂i +
γi3
2
, ∇?3 = z∂z +

iλ

2
z ϑ′(z) T , (45)

where T := T ij∂i∂j :=
∑N

n=1 T
i
2n T

j
2n−1∂i∂j . Since the twist is semi-Killing and the noncom-

mutative Dirac operators are therefore equivalent, we once again choose the technically most
convenient one for the explicit evaluation. Choosing (15) we find

/D?ψ = iγa∇?aψ = /D(0)ψ +
λ

2
z ϑ′(z) γ3T ψ , (46)

where /D(0) is the commutative Dirac operator. Notice that /D? thus is a second-order differential
operator. It is the equation of motion operator stemming from the action

S? = 〈ψ, /D?ψ〉 =

∫
M
ψ /D?ψ vol , (47)

where in the last equality we have used that for the present model the inner product (8) coincides
with the undeformed one.

A crucial point for the construction of quantum fields on AdS is the existence of a finite inner
product, which is closely related to the choice of boundary conditions, see e.g. [18] for an early
reference. This issue is conveniently analyzed in terms of the hypersurface inner product on the
space of solutions of the noncommutative Dirac equation, which we compute in the following.
The resulting inner product space can be quantized by following the CAR-construction outlined
in Section 5. Following the strategy developed in [19] we consider variations of the action
functional (47) and derive a conserved current. Explicitly, we obtain for the current density of
two solutions ψ1 and ψ2

i Jµ = i ψ1γ̂
µψ2

√
|g|+ δµi T

ij λ

2
z ϑ′(z)

√
|g|
(
ψ1γ3∂jψ2 − ∂jψ1γ3ψ2

)
, (48)

where
√
|g| = z−4 is the square root of the metric determinant. Notice that ∇µJµ = ∂µJ

µ = 0
whenever /D?ψ1 = 0 and /D?ψ2 = 0, i.e. Jµ is a conserved density. We integrate the current
density Jµ over a fixed-time hypersurface Σ with normal vector field nµ = (1, 0, 0, 0)µ and
obtain the hypersurface inner product

(ψ1, ψ2) =

∫
Σ

(
ψ†1ψ2 + iT 0j λ

2
z ϑ′(z)

(
∂jψ1γ3ψ2 − ψ1γ3∂jψ2

))
volΣ . (49)

That inner product is conserved only up to boundary terms, which can not be assumed to vanish
on AdS. Demanding actual conservation then yields the admissible boundary conditions. A well-
motivated restriction on the deformation is to demand T 0i = 0, in which case the deformation is
purely in the spatial part and no higher-order time derivatives are introduced. In that case the
hypersurface inner product (49) coincides with the undeformed one, i.e. (ψ1, ψ2) =

∫
Σ ψ
†
1 ψ2 volΣ.

We would like to stress that the solutions of the noncommutative Dirac equation are of course
still affected by the deformation, and it would hence be of interest to study the effect of different
choices of T iα and ϑ(z). A natural choice would for example be such that T = 4 is the spatial
Laplacian on the hypersurfaces of constant z, as discussed in [11].
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A D = 4 Clifford algebra conventions

ηab = diag(1,−1,−1,−1)ab , {γa, γb} = 2ηab , γab :=
1

2
[γa, γb] , (50a)

γ5 := iγ0γ1γ2γ3 , γ2
5 = 1 , ε0123 = −ε0123 = 1 , (50b)

γ†a = γ0γaγ0 , γ†5 = γ5 . (50c)
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