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It is well known that the correlation between financial products, financial institutions, e.g., plays
an essential role in pricing and evaluation of financial derivatives. Using simply a constant or deter-
ministic correlation may lead to correlation risk, since market observations give evidence that the
correlation is not a deterministic quantity.

In this work, we propose a new approach to model the correlation as a hyperbolic function of a
stochastic process. Our general approach provides a stochastic correlation which is much more realistic
to model real world phenomena and could be used in many financial application fields. Furthermore,
it is very flexible: any mean reverting process (with positive and negative value) can be regarded
and no additional parameter restrictions appear which simplifies the calibration procedure. As an
example, we compute the price of a quanto applying our new approach. Using our numerical results
we discuss concisely the effect of considering stochastic correlation on pricing the quanto.

Keywords: Correlation Risk, Stochastic Correlation, Hyperbolic Functions, Stochastic Process,
Ornstein-Uhlenbeck process, Quanto, Fokker-Planck equation, Stochastic Correlation Process.
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1. Introduction

Correlation is a well established concept for quantifying the relationship between financial
products or financial institutions. It plays an essential role in several financial modelling
approaches, e.g. the arbitrage pricing model [3] is based on correlation as a measure for
the dependence of assets. Also in portfolio credit models, the default correlation is one
fundamental factor of risk evaluation, see [2].
A widely used method is to use correlated stochastic processes where the correlation

ρ ∈ [−1, 1] is used as a measure of dependence. Two Brownian motions (BMs)W1 andW2

are correlated by the symbolic notion

dW1,tdW2,t = ρdt. (1)

∗Corresponding author.
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Like in the multivariate Black-Scholes model, the correlation of the log-returns is used
as a measure of the dependence between assets. An example of coupled stochastic pro-
cesses is the quantity adjusting option (Quanto) pricing in the Black-Scholes model:

{
dSt = µSStdt+ σSStdW

S
t

dRt = µRRtdt+ σRRtdW
R
t ,

(2)

with positive constants µS , µR, σS and σR. The first stochastic differential equation
(SDE) describes the price of the traded asset in a currency A. The second SDE is used
to model the exchange rate between currency A and another currency B. Besides, the
Brownian motions are assumed to be correlated by a constant correlation ρ ∈ [−1, 1].
However, it is a well-known fact that the correlation is hardly a fixed constant, see e.g.

[13]. It is likely to change over a small time interval as the volatility. To illustrate this
statement, we use the following estimator (3) of linear correlation

ρT (S,R) ≈ ρ̂T =

∑

t∈T (Ŝ(t)− 1
nT

∑

t∈T Ŝ(t))(R̂(t)− 1
nT

∑

t∈T R̂(t))
√
∑

t∈T (Ŝ(t)− 1
nT

∑

t∈T Ŝ(t))2
∑

t∈T (R̂(t)− 1
nT

∑

t∈T R̂(t))2
, (3)

where Ŝ and R̂ denote the log-return samples, nT is the number of pairs
(Ŝ(t), R̂(t)) with t ∈ T, to compute the historical correlations between S&P 500 and
Euro/US-Dollar exchange rate on a daily basis which is displayed in Figure 1.
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Figure 1. Historical Correlation between S&P 500 and Euro/US-Dollar exchange rate1.

Figure 1 clearly shows that the correlation changes over time. Some approaches for
dynamic correlation have been suggested, like Engle [7] proposed dynamic conditional
correlation (DCC) which is the generalized autoregressive conditional heteroskedastic
(GARCH)-type model, see also [8]. A new approach of modelling correlation as a stochas-
tic process was provided by van Emmerich [4], [5] and Ma [10]. However, to ensure that
the boundaries −1 and 1 of the correlation process are not attractive and unattainable,
one has to restrict the parameter range. We emphasize that in our new approach any
mean-reverting process (with positive and negative value) can be considered without
facing any additional parameter restrictions.
Obviously, a correlation risk will indeed exist if the correlation is modelled as a con-

stant, which refers to the risk of financial loss due to the usage of wrong correlations. For
example in credit risky markets, the inexactly modelled default correlations can lead to

1Source of data: yahoo.com
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exposure. A reasonable and realistic description of the correlation is a growing need for
risk management.
In this work, we propose a new approach to model correlation as a hyperbolic function

of a stochastic process. Our approach provides a stochastic correlation which is simple and
much more realistic to model real word phenomena and could be used in many financial
application fields. The outline of the remaining part is as follows. In the next section
we present the stochastic correlation model including its construction and calibration.
Section 3 is devoted to the stochastic correlation with an Ornstein-Uhlenbeck process as
an example. Finally in Section 4 we compute the price of a particular financial derivative,
a quanto, apply our stochastic correlation model and analyze our numerical results.

2. Stochastic Correlation Model

We assume that the usual assumptions about filtration hold throughout this paper, see
for example [11].

2.1 Model Construction

From Figure 1 we realize that the correlation changes over time. To define further prop-
erties of this historical correlation, we draw its empirical density functions in Figure 2
and Figure 3, using different bandwidths. We refer to [1] for the detailed information
about the estimation of density function from historical data.
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Historical Correlation:
Euro/US−Dollar exchange
rate und S&P 500 Index

Figure 2. Empirical Density function of the historical correlation between S&P 500 and Euro/US-Dollar exchange
rate with bandwidth 1/20.

From studying the empirical density functions we request that the modelled correlation
should satisfy the properties as follows:

(i) only takes values in the interval (−1, 1),
(ii) vary around a mean value,
(iii) the probability mass tends to zero at the boundaries −1,+1.

For such reasons, based on a mean-reverting stochastic process Xt, like the Ornstein-
Uhlenbeck process [14] or the square root diffusion processes (with positive and negative
value)

dXt = a(t,Xt)dt+ b(t,Xt)dWt, t ≥ 0, X0 = x0, (4)

3
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Figure 3. Empirical Density function of the historical correlation between S&P 500 and Euro/US-Dollar exchange
rate with bandwidth 1/80.

we propose the correlation to be modelled as the tangens hyperbolicus function of Xt

ρt = tanh(Xt), ρ0 = tanh(x0) ∈ (−1, 1). (5)

Obviously, the generated correlation (5) satisfies the desired properties (i)-(iii). Besides,
the function tanh is symmetrical and measurable.
Applying Itô’s Lemma with (5)

dρt = d tanh(Xt) =
∂ tanh(Xt)

∂x
dXt +

1

2

∂2 tanh(Xt)

∂x2
(dXt)

2 (6)

we obtain the stochastic correlation process (SCP)

dρt = (1− ρ2t )
(

(ã− ρtb̃
2)dt+ b̃dWt

)

, t ≥ 0, (7)

where ρ0 ∈ (−1, 1), ã = a(t, artanh(ρt)) and b̃ = b(t, artanh(ρt)). From (7) we see that
there is a suitable number of free parameters to calibrate the model to market data.
The free parameters are hidden in the functions a and b, see the example with Orstein-
Uhlenbeck process in Section 3.
Although we could intuitively observe that the function tanh(x) is eminently suitable

for correlation modelling, one can still ask whether other functions having values inside
the interval (−1, 1), like trigonometric functions or 2

π arctan(π2x), x ∈ R can also be
applied for this purpose? In theory, such functions could be used for the SCP model above.
However, the trigonometric function is a periodic function, the arising complex number
will complicate further calculations. For the function 2

π arctan(π2x), its Itô’s formula for
(4) is given by

dρt = d
2

π
arctan(

π

2
Xt) =

(

ã

(1 + tan2(ρtπ
2 ))

− πb̃2 tan(ρtπ
2 )

2(1 + tan2(ρtπ
2 ))2

)

dt

+
b̃

(1 + tan2(ρtπ
2 ))

dWt, (8)
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which is rather complicated so that the further computation will be tedious. Besides,
we take the function 2

π arctan(π2x) which is, like tanh(x) close to the identity in the
neighborhood of x = 0, see Figure 4. However, compared with tanh(x) the function
2
π arctan(π2x) grows much slower up to 1 and down to −1, the estimation of the correlation
will thus be worsened, similar to the estimation for the heavy tailed distributions.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

tanh(x)
2

π
arctan(π

2
x)

Figure 4. Comparison of tanh(x) and 2

π
arctan(π

2
x) : the later is less steep having larger tails

2.2 Model Calibration

We can estimate the free parameters of (7) using the density function. If we choose for
(4) a process which has the known density function, the density function of (5) thus
can be derived and used for calibration purpose, see Section 3. Otherwise, we need to
determine the transition density with the aid of the Fokker-Planck equation [12].

Only for simplicity, we rewrite (7) with the redefined parameters â and b̂ as

dρt = (1− ρ2t )(ã− ρtb̃
2)

︸ ︷︷ ︸

:=â(t,ρt)

dt+ (1− ρ2t )b̃
︸ ︷︷ ︸

:=b̂(t,ρt)

dWt, t ≥ 0, (9)

where ρ0 ∈ (−1, 1).
We assume that it possesses a transition density p(t, ρ̃|ρ0) which satisfies the Fokker-

Planck equation

∂

∂t
p(t, ρ̃) +

∂

∂ρ̃
(â(t, ρ̃)p(t, ρ̃))− 1

2

∂2

∂ρ̃2
(b̂(t, ρ̃)2p(t, ρ̃)) = 0. (10)

For the calibration purpose we consider the stationary density (for t → ∞)

p(ρ̃) := lim
t→∞

p(t, ρ̃|ρ0). (11)

With the above construction (7) is also a mean-reverting process, thus one can show
that every two solutions of (10) are the same for t → ∞, this is to say that a unique
stationary solution p(ρ̃) exists, c.f. [12].
Besides, the following two standard conditions for a density function should be fulfilled

by p(ρ̃)

5
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∫ 1

−1
p(ρ̃)dρ̃ = 1, (12)

∫ 1

−1
ρ̃ · p(ρ̃)dρ̃ −−−→

t→∞
mean value. (13)

Up to now, we have just shown our structural idea of SCP. An exact example with
the detailed stochastic calculus will be presented in Section 3, the SCP using Ornstein-
Uhlenbeck process as basis process.

2.3 Fully Stochastically correlated BMs

In this Section we investigate the fully stochastically correlated Brownian motions. Based
on two independent Brownian motions W2,t and W3,t we define a new BM by

W1,t =

∫ t

0
ρsdW2,s +

∫ t

0

√

1− ρ2sdW3,s, (14)

where ρt is one SCP of type (7), and Wt in (7) is independent of Wi,t, for i = 2, 3. We
can easily calculate that W1,t and W2,t satisfies

E [W1,t ·W2,t] = E

[∫ t

0
ρsds

]

. (15)

Thus, we could say that the BMs W1,t and W2,t are correlated by the SCP ρt.
One can straightly see that (15) agrees for

E [W1,t ·W2,t] = ρt, (16)

where W1,t and W2,t are correlated by the constant ρ.

3. Stochastic Correlation with Ornstein-Uhlenbeck process

In this section, we specify our SCP model using the Ornstein-Uhlenbeck process. For the
basis process (4) we choose the Ornstein-Uhlenbeck process

dXt = κ(µ−Xt)dt+ σdWt, (17)

where κ, σ > 0 and X0, µ ∈ R.
Applying Itô’s Lemma with ρt = tanh(Xt)

dρt =
∂ tanh(Xt)

∂x
dXt +

1

2

∂2 tanh(Xt)

∂x2
σ2dt (18)

gives the SCP as

6
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dρt = (1− ρ2t )
(
κ(µ− artanh(ρt))− ρtσ

2
)
dt+ (1− ρ2t )σdWt, (19)

where t ≥ 0, ρ0 ∈ (−1, 1), κ, σ > 0 and µ ∈ R.

Proof.

(18) = sech2(Xt)κ(µ−Xt)dt− sech3(Xt) sinh(Xt)σ
2dt+ sech2(Xt)σdWt

= sech2(Xt)κ(µ−Xt)dt− sech2(Xt)
sinh(Xt)

cosh(Xt)
σdt+ sech2(Xt)σdWt

= (1− ρ2t )κ(µ−Xt)dt− (1− ρ2t )ρtσ
2dt+ (1− ρ2t )σdWt

= (19).

As mentioned in Section 2.2, we do not really need the transition density of (19) in this

case, since the Ornstein-Uhlenbeck process Xt ∼ N (x0e
−κt + µ(1 − e−κt), σ

2

2κ(1 − e−κt))

is normal distributed, if the initial value x0 is given. As t → ∞, then Xt ∼ N (µ, σ
2

2κ).
Therefore, one can derive the density function for (19) as t → ∞ like

f(ρ̃) =
1

1− ρ̃2
·
√
κ

σ
√
π
· e−κ(artanh(ρ̃)−µ)2

σ2 , (20)

which can be used to cablibrate the model.
In the following, we still derive the transition density of (19) to show how this approach

works. Besides, we want to compare the transition density of (19) to (20). As pointed
out in Section 2.2, we assume that (19) possesses a transition density p(t, ρ̃|ρ0) which
satisfies the following Fokker-Planck equation

∂

∂t
p(t, ρ̃) +

∂

∂ρ̃
(â(t, ρ̃)p(t, ρ̃))− 1

2

∂2

∂ρ̃2
(b̂(t, ρ̃)2p(t, ρ̃)) = 0 (21)

with

â(t, ρ̃) = (1− ρ̃2)
(
κ(µ− artanh(ρ̃))− ρ̃σ2

)
, (22)

b̂(t, ρ̃) = (1− ρ̃2)σ. (23)

For t → ∞, the stationary density p(ρ̃) can be obtained by solving

∂

∂ρ̃
((1− ρ̃2)

(
κ(µ− artanh(ρ̃))− ρ̃σ2

)
p(ρ̃)) =

1

2

∂2

∂ρ̃2
(((1− ρ̃2)σ)2p(ρ̃)) (24)

as

p(ρ̃) =

(

m+ n erf
(√

−κ(artanh(ρ̃)−µ)
σ

))

e−
κartanh(ρ̃)

σ2 (artanh(ρ̃)−2µ)

ρ̃2 − 1
(25)

with the constants m, n ∈ R.

7
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Now we try to simplify (25). Firstly we can easily observe, n must be zero, so that the
condition (13) can be satisfied by (25). We can check this straightly by setting µ = 0.
Thus, (25) can be further written as

p(ρ̃) =
m

ρ̃2 − 1
· e−κartanh(ρ̃)

σ2 (artanh(ρ̃)−2µ). (26)

In theory we can compute m by solving the condition (12) with (25), but the integration
of (25) will be tedious. However, due to the uniqueness of the asymptotic distribution,
m can be specified by identifying (20) and (26) as

m = −
√
κ

σ
√
π
e

−µ2κ

σ2 . (27)

By substituting (27) for m in (26) we can obtain the transition density function which
is the same to (20).
As mentioned before, (20) can be used to estimate the parameters of (19). In our case

of using Ornstein-Uhlenbeck process Xt ∼ N (x0e
−κt + µ(1 − e−κt), σ

2

2κ(1 − e−κt)) with
the (conditional) probability density

fx(xs+∆t|xs, κ, µ, σ) =
√

κ

πσ2(1− e−2κ∆t)
· e

−κ(xs+∆t−xse−κ∆t
−µ(1−e−κ∆t))2

σ2(1−e−2κ∆t) (28)

from which we derive the density of ρt = tanh(Xt) directly as

fρ(ρ̃s+∆t|ρ̃s, κ, µ, σ) =
√

a

b
· 1

1− ρ̃2s+∆t

· e
−κ(artanh(ρ̃s+∆t)−artanh(ρ̃s)e−κ∆t

−µc)2

σ2b (29)

with

a =
k

πσ2
, b = (1− e−2κ∆t) and c = (1− e−κ∆t). (30)

Therefore, we prefer to employ the maximum-likelihood estimation for the historical
correlation, see [6]. We use θ to denote the collection of the parameters κ, µ and σ, for
the n+1 given observed correlations (ρ̃0, ρ̃1, · · · , ρ̃t). We derive its log-likelihood function

L(θ|ρ̃0, ρ̃1, · · · , ρ̃t) =
n∑

i=1

log

(√
κ

πσ2(1− e−2κ(ti−ti−1))

)

+
n∑

i=1

log

(
1

1− ρ̃2ti

)

+
n∑

i=1

−κ(artanh(ρ̃ti)− artanh(ρ̃ti−1
)e−κ(ti+1−ti) − µ(1− e−κ(ti+1−ti)))2

σ2(1− e−2κ(ti+1−ti))
.

(31)

Furthermore, the parameter estimators θ̂ = (κ̂, µ̂, σ̂) can be obtained by maximizing
(31). This can be done for example by some numerical optimization methods. Besides,
we remark that the derivatives of (31) with respect to µ and σ can be found analytically
and only tedious with respect to κ. The expressions for µ̂ and σ̂ can thus be obtained by
solving

∂L(θ|ρ̃0, ρ̃1, · · · , ρ̃t)
∂σ

= 0 and
∂L(θ|ρ̃0, ρ̃1, · · · , ρ̃t)

∂µ
= 0. (32)

8
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We write the results as

µ̂ =

n∑

i=1

artanh(ρ̃ti)− artanh(ρ̃ti−1
)e−κ(ti−ti−1)

1 + e−κ(ti−ti−1)
/

n∑

i=1

1− e−κ(ti−ti−1)

1 + e−κ(ti−ti−1)
(33)

and

σ̂ =

(
n∑

i=1

2κ(artanh(ρ̃ti)− artanh(ρ̃ti−1
)e−κ(ti−ti−1) − µ(1− e−κ(ti−ti−1)))2

1− e−κ(ti−ti−1)

) 1

2

. (34)

We see that µ̂ has the expression only with respect to κ, as well as σ̂ by substituting µ
in (34) by (33). Hence, we substitute µ̂ and σ̂ in (31) to gain the log-likelihood function
only with the parameter κ, which can be computed by maximizing this function. Finally,
we can substitute the value of κ̂ back to (33) and (34) to get values of µ̂ and σ̂.
As an example we estimated the SCP parameters using the historical correlation in

Figure 3. Then, we compared (20) using the estimated parameters and the empirical
density function of historical correlation, see Figure 5.
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Figure 5. The estimated parameters: κ̂ = 32.11, µ̂ = 0.012 and σ̂ = 2.96

4. Pricing Quantos with Stochastic Correlation

In global markets, many financial products e.g. stock index options and futures are traded
in the different counteries with different currencies. Hence, trader may have to face the
risk due to the uncertainty of exchange rate between trading currency and domestic
currency. A Quanto option is one of the financial instruments to manage this risk.

4.1 Pricing

As pointed out in the introduction, the correlation between the currency exchange rate
and the price of underlying asset in a Quanto option must be considered. In the following,
we utilize the extended Black-Scholes formula by using our stochastic correlation model
to evaluate the fair price of the quanto options.

9
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As an example we think of a Put-Option on the S&P 500 with payoff in USD

(Strike
︸ ︷︷ ︸

:=K

− S&P500T
︸ ︷︷ ︸

:=ST

)+, (35)

where (·)+ = max (0, ·). Then the payoff of a currency-protected Quanto Put-option in
Euro can be written as

exchangeRate0
︸ ︷︷ ︸

:=R0

·(Strike− S&P500T )
+ (36)

where R0 is the Euro/USD (number of Euro per USD) exchange rate agreed upon at the
inception of the contract.
We assume that St and Rt follows (2) by

{
dSt = µSStdt+ σSStdW

S
t

dRt = µRRtdt+ σRRtdW
R
t ,

(37)

where WS
t and WR

t are correlated using the SCP (19) as:

dρt = (1− ρ2t )
(
κ(µ− artanh(ρt))− ρtσ

2
)
dt+ (1− ρ2t )σdWt. (38)

Furthermore, we assume nonzero relationships between the SCP and the price, the ex-
change rate process, say

dWtdW
S
t = ρ1dt and dWtdW

R
t = ρ2dt. (39)

In fact, we are trying to incorporate the SCP (38) in the model (37) exogenously. For
this reason we could assume that ρ1 = 0 and ρ2 = 0.
We denote the risk-free interest rate of Euro and US-Dollar respectively by re and rd.

If WS
t and WR

t are correlated with a constant correlation, we know that the price of a
Quanto Put-Option in the Black-Scholes (BS) model with continuous dividend yield is
[15]:

PQuanto(S0,K, re, rd, D, σS , σR, T ) = R0

(
Ke−rdTN (−d2)− S0e

−DTN (−d1)
)

(40)

with

d1 =
log(S0

K ) + ((re −D) +
σ2
S

2 )/T

σS
√
T

, d2 = d1 − σS
√
T (41)

and

D = re − rd + ρσSσR. (42)

To incorporate the stochasticity of the correlation exogenously in the BS model, we
consider the following strategy to obtain the no-arbitrage price: First we think that the
expected return of one unit of US-Dollar, exchanged to Euro, risk-free invested in the
Euro countries and re-exchanged to US-Dollar must equal the risk-free return on one

10
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unit of US-Dollar in US-Dollar countries, which reads

1

R0
exp(reT )E[RT ] = exp(rdT ). (43)

The exchange rate Rt follows a geometric Brownian motion and thus E[RT ] =
R0 exp(µRT ), which can be substitued into (43) to get

µR = re − rd. (44)

Besides, the expected value of an investment of one Euro unit into the underlying with
price S must be equal to risk-free return on one unit of US-Dollar in US-Dollar counteries,
which gives

1

R0

1

S0
E[STRT ] = exp(rdT ). (45)

For calculating of E[STRT ], we apply first Itô’s lemma to the function u(t, St, Et) =
ln(StRt)

du(t, St, Et) = d ln(StRt) = (µS + µR − 1

2
(σ2

S + σ2
R))dt+ σSdW

S
t + σRdW

R
t . (46)

Furthermore, the last equation can be rewritten as

ln(STRT )− ln(S0R0) = (µS + µR − 1

2
(σ2

S + σ2
R))T + σSW

S
T + σRW

R
T (47)

which implies

E[STRT ] = S0R0 exp

(

(µS + µR − 1

2
(σ2

S + σ2
R))T

)

E[exp(σSW
S
T + σRW

R
T )]. (48)

Now, we set dXS = σSdW
S
t and dXR = σRdW

R
t . A further application of Itô’s lemma

to the function f(t,XS , XR) = exp(XS +XR) leads to

E[exp(σSW
S
T + σRW

R
T )] = E

[

exp(
T

2
(σ2

S + σ2
R) + σSσR

∫ T

0
ρt)dt

]

. (49)

We substitue the last equation into (48) to obtain

E[STRT ] = S0R0E

[

exp(µS + µR)T + σSσR

∫ T

0
ρddt)

]

. (50)

Thus, we can choose

µS = re − µR − σSσR
1

T

∫ T

0
ρtdt. (51)

so that the no-arbitrage condition (45) can be fulfilled. Besides, in the BS model, we
interpret (51) as a return minus the continuous dividend, the dividend can thus be

11
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obtained as

D(ρt) := µR + σSσR
1

T

∫ T

0
ρtdt. (52)

Together with (44) we have

D(ρt) = re − rd + σSσR
1

T

∫ T

0
ρtdt. (53)

The integral of the stochastic correlation ρt can be computed numerically using e.g. the
Milstein scheme [9].
Finally, we denote the price of a Quanto Put-Option in the extended Black-Scholes

model conditional on the ρt path by PQuanto :

PQuanto(S0,K, re, rd, D(ρt), σS , σR, T ) = R0

(

Ke−rdTN (−d2)− S0e
−D(ρt)TN (−d1)

)

(54)
with

d1 =
log(S0

K ) + ((re −D(ρt)) +
σ2
S

2 )/T

σS
√
T

, d2 = d1 − σS
√
T . (55)

The price of a Quanto Call-Option can be derived easily from the put-call parity.
To keep the stochasticity we use a conditional Monte-Carlo approach. The idea is, we

first simulate all the paths of ρit, for i ∈ {1, 2, ...,M}, with each path we can obtain a
price P i

Quanto by (54). Then the fair price P0 is the mean value over all prices as

P0 = E [E [PQuanto|Ft]] ≈
∑M

i=1 P
i
Quanto

M
, (56)

where Ft was generated by the SCP. Obviously, the unique BS price with continuous
dividend exists always. Now using a conditional Monte-Carlo method to compute the
price for each simulated path there exists a unique price, so that (56) is unique.

4.2 Hedging

Based on the formula on (40) and (54) we derive the Delta as an example to discuss the
effect of stochastic correlation on hedging strategy. For using a constant correlation, the
delta is given by

∆c = Φ(d1)− 1, (57)

where Φ is standard normal distribution function and d1 is defined in (41). Similarly, we
have the Delta under stochastic correlation as

∆s = Φ(d1)− 1, (58)

where d1 is (55). However, we see that D(ρt) in (55) is a stochastic process. Thus, we
need first a conditional Monte-Carlo approach to compute D(ρt) and also ∆s. Using the
same parameters in Figure 8 and taking the maturity T = 2 we display ∆c and ∆s in

12
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Figure 6. Since the value of µ is closed to the constant correlation, the difference between
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Figure 6. BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.03, re = 0.05, σS = 0.2, σR = 0.4, Correlation
process parameters: κ = 32.11, µ = 0.012, σ = 2.96 and ρ0 = 0.025

∆c and ∆s is not apparent. Therefore, in Figure 7, we plot the difference ∆s − ∆c in
Figure 6 and observe that delta values under stochastic correlation are larger than the
delta values using constant correlation.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−4

Spot price

Figure 7. The difference of delta values between using constant and stochastic correlation in Figure 6.

4.3 Numerical Results

In Figure 8, 9 and 10, we show our numerical results for pricing a quanto Put-Option
and analyze the results centering around correlation risk.
First In Figure 8, we set the parameter for the Black-Scholes model und use the esti-

mated parameter for the SCP model (see Figure 5). Besides, we use the whole historical
data (Jan 2003 - Mar 2013) of S&P 500 and Euro/US-Dollar exchange rate but only to
estimate the constant correlation which is 0.025. At the same time, we can let the SCP
ρt starting from this value, ρ0 = 0.025. It is clearly to see, the prices of Put-Option with
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Figure 8. BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.03, re = 0.05, σS = 0.2, σR = 0.4, Correlation
process parameters: κ = 31.11, µ = 0.012, σ = 2.96 and ρ0 = 0.025
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Constant correlation with ρ = −0.025

Stochastic correlation with ρ0 = 0.025

Figure 9. BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.03, re = 0.05, σS = 0.2, σR = 0.4, Correlation
process parameters: κ = 32.11, µ = 0.012, σ = 2.96 and ρ0 = 0.025

constant correlation are higher than the prices using the stochastic correlations. The
difference is even getting larger with increasing maturity. We consider this difference as
the correlation risk using the wrong (constant) correlation.
In Figure 9, we change the constant correlation to −0.025 und keep the other parameter

the same as in Figure 8. We observe that the prices with constant correlation could be also
lower than the prices applying stochastic correlation. The sign of the price of correlation
risk in this case is opposite of that sign in Figure 8.
It is very interesting to see the results in Figure 10, the prices using constant correlation

and stochastic correlation are very close, even almost the same for the longer time. We
explain the reason for this phenomena as follows. In this case the parameter of Black-
Scholes model remain unchanged as the last two examples, but we set here κ = 10, µ =
0.2 and σ = 1. Thus, we can compute numerically the mean value of (38) for these
assumed parameter which is 0.1887. We then price the Quanto Put-Option with constant
correlation ρ = 0.1887 and using stochastic correlation with ρ0 = 0. Because the value
of the mean-reverting factor κ is large and the value of σ is small, so that the stochastic
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Constant correlation with ρ = 0.1887
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Figure 10. BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.03, re = 0.05, σS = 0.2, σR = 0.4, Correlation
process parameters: κ = 10, µ = 0.2, σ = 1 and ρ0 = 0 ⇒ Mean value of the SCP model : 0.1887

correlation process concentrate strongly on its mean value, this is why there is no obvious
difference between the prices using constant correlation and stochastic correlation in this
special case.

5. Conclusion

We proposed a new approach to model the correlation as the hyperbolic function tanh of
a mean-reverting process, so that the correlation can be modelled stochastically which is
more realistic to model real world phenomena. The detailed construction and calibration
of the SCP model using Ornstein-Uhlenbeck process as basis process has been illustrated
by an example.
Without any additional parameter restrictions, our new approach can provide the

stochastic correlation, which satisfies all the essential properties, that the (observed)
estimated correlation in the real market must fulfill. This is a favourable property when
estimating model parameters from real market data.
Besides, as an example we compute the price of a Quanto Put-Option with stochastic

correlation applying our new approach. Analyzing the numerical results, we find that the
correlation risk caused by using wrong (constant) correlation could be priced through
applying our new SCP model, which can not be neglected.
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