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Abstract

We study the numerical solution of a system of a quadratic form second order
Boundary Value Problem which arises in the numerical prediction of meteoro-
logical parameters. In the present work, we use finite differences and focus on
the numerical solution of the resulting nonlinear system. More precisely, we
apply classical Newton’s and Quasi-Newton methods paying attention to the
special sparse form of the Jacobian matrix and modify appropriately the LU
factorization in order to reduce significantly the required floating point opera-
tions. Furthermore, we implement and study in depth the behavior of all the
proposed procedures in respect of their accuracy, stability and complexity using
data from South East Mediterranean sea. All the methods are tested with a
variety of initial values and their performance is presented and discussed leading
to interesting results on the sensitivity of the selected starting point.

Keywords: Newton method, Quasi Newton methods, Information Geometry,
Boundary Value Problem, Finite differences, Numerical solution of nonlinear
systems, sparse matrix

1. The Physical Problem and Information Geometry

In the recent years, the need of accurate local predictions of environmental
parameters has increased significantly as a result of the large number of related
social and commercial activities e.g. climate change, renewable energy produc-
tion, transportation, marine pollution, ship safety. This has led to the activation
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of numerous research and operational centers that develop high quality scientific
tools able to provide reliable environmental predictions.

In the study of such problems one may use in site or remote sensing (e.g.
satellite) observations or numerical prediction models that solve the basic equa-
tions governing the atmospheric and wave evolution based on a numerical analy-
sis approach. Numerical weather and wave forecasting models have been proved
successful for the simulation of the general environmental conditions on global
or intermediate scale. However, when focusing on local conditions usually sys-
tematic errors appear [1, 2, 3, 4, 5]. Such problems are multi-parametric and
several different issues are involved such as the strong dependence on the ini-
tial and lateral conditions, the inability to capture sub-scale phenomena, the
parametrization of certain atmospheric or wave procedures.

To deal with these difficulties one may increase the model resolution, but
it is still an open question if this leads to a considerable improvement of the
forecast quality. Even if this is true, it also results to an considerable increase
of the computational costs.

Alternatively, we can improve the initial conditions based on assimilation
systems. Corrected analysis fields are provided to the numerical models based on
available observations from meteorological stations, satellites or other sources.
Post process algorithms are used for the improvement of the final results based
on statistical models (MOS methods, Neural networks, Kalman filters). The
latter implements techniques from the non-Euclidean Geometry in Statistics,
targeting to the optimization of the solution of nonlinear problems. One of the
key issues is the appropriate estimation of the ”distance” between two distri-
butions or data sets. The classical treatment of such problems is usually based
on regression techniques - least squares methods. However, such an approach
carries the assumption that the data processed belongs to an Euclidian - finite
dimensional space.

For example, in the case of Kalman filters, the evolution in time of an un-
known process xt is described by the system equation:

xt = Ft · xt−1 + wt.

Here a known process yt is coupled to xt by the observation equation

yt = Ht · xt + vt.

The best unbiased linear estimate of the unknown process at time t is a linear
combination of the known process and the previous time step values

xt = Lt · xt−1 +Ktyt

The filter is based on the minimization of the covariance matrix E(xtx
⊤
t ) of xt.

However, the following question need to be addressed: is the distance/cost-
function correctly estimated by means of classical Euclidean Geometry tools?

Recently, optimization techniques, in the framework of a relatively new
branch of mathematics, the Information Geometry (IG) [6, 7, 8], are employed.

2



Methods and techniques of non-Euclidean geometry to stochastic processes pro-
vide the tools to define a notion of distance between two probability distribu-
tions or two data sets. This affects crucially the cost function estimation. IG
shows that the use of Eucledian/flat geometry techniques is false in general,
and provides a theoretical recipe to avoid such simplifications. Families of prob-
ability distributions are recognized as manifolds on which geometrical entities
such as Riemannian metrics, distances, curvature and affine connections can be
naturally introduced.

More precisely, a n-dimensional statistical manifold is a family of probability
distributions

S = {p = p (x; ξ) | ξ = [ξ1, ξ2, . . . ,ξn] ∈ Ξ} ,

where each element may be parameterized using n real valued variables in an
open subset Ξ of Rn while the mapping ξ → pξ is injective and smooth. The geo-
metrical framework in a statistical manifold is characterized by the information
matrix which at a point ξ is a n× n matrix G (ξ) = [gij (ξ)] , with elements

gij (ξ) = Ex|ξ [∂iℓ (x; ξ) ∂jℓ (x; ξ)] =

∫
∂iℓ (x; ξ) ∂jℓ (x; ξ) p (x; ξ) dx,

where ℓ (x; ξ) = log [p(x; ξ)] and

Ex|ξ[f ] =

∫
f(x)p(x; ξ)dx

denotes the expectation with respect to the distribution p.
The matrix G (ξ), called the Fisher information matrix , (see [6, 7, 8])

is symmetric and positive semi-definite. If G (ξ) is positive definite, then a
Riemannian metric can be defined on the statistical manifold corresponding to
the inner product induced on the natural basis of the coordinate system [ξi]:

gij = 〈∂i | ∂j〉

This Riemannian metric is called the ”Fisher metric” or the ”information met-
ric”. The corresponding geometric properties are characterized by the Christof-

fel symbols
(
Γi
jk

)
of the Levi-Civita connection with respect to the Fisher met-

ric, which are defined solving :

2∑

i=1

ghiΓ
i
jk = Γjk,h, (h = 1, 2),

where

Γjk,h (ξ) = Eξ

[(
∂j∂kℓξ +

1

2
∂jℓξ∂kℓξ

)
(∂hℓξ)

]
, j, k = 1, 2, . . . , n.
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The minimum distance between two elements f1 and f2 of a statistical mani-
fold S is defined by the corresponding geodesic ω which is the minimum length
curve that connects them. Such a curve

ω = (ωi) : R → S (1)

satisfies the following system of 2nd order differential equations:

ω
′′

i (t) +

n∑

j,k=1

Γi
jk (t)ω

′

j (t)ω
′

k (t) = 0, i = 1, 2, . . . , n. (2)

under the conditions ω (0) = f1, ω (1) = f2 .
In particular, it has been proved (see e.g. [9, 10]) that the two parameter

Weibull distributions is a good choice for fitting wind and wave data. These
distributions form a 2-dimensional statistical manifold with ξ = [α, β], Ξ =
{[α, β] α and β > 0} (where α is the shape and β the scale parameter) and

p (x) =
α

β

(
x

β

)α−1

e−(
x
β )

α

, α, β > 0. (3)

The Fisher information matrix in this case becomes

G (α, β) =

[
α2β2 β(1− γ)

β(1− γ) 6(γ−1)2+π2

6α2

]
,

where γ is the Euler gamma.
Let ξ0=[α0,β0] and ξ1=[α1,β1] be two members of the Weibull statistical

manifold. Substituting the values of the Christoffel Γi
jk the previous system

becomes:

ω
′′

1 (t) +
6
(
γα0 − α0 −

π2

6

)

π2β0

(
ω

′

1 (t)
)2

+
12

(
γ2 − 2γ + π2

6 + 1
)

π2α0
ω

′

1 (t)ω
′

2 (t) −

6 (1− γ)β0

(
γ2 − 2γ + π2

6 + 1
)

π2a3

(
ω

′

2 (t)
)2

= 0

ω
′′

2 (t)−
α3
0

π2β2
0

(
ω

′

1 (t)
)2

+
12α0 (1− γ)

π2β0
ω

′

1 (t)ω
′

2 (t) −

6
(
γ2 − 2γ + π2

6 + 1
)

π2α0

(
ω

′

2 (t)
)2

= 0

with ω (0) =

[
α0

β0

]
, ω (1) =

[
α1

β1

]
where ω (t) =

[
ω1(t)
ω2(t)

]
.

Our intention is to study the numerical solution of the above problem for a
choice of its parameters obtained from environmental data sets within the South
East Mediterranean territory.
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It is worth noticing that IG techniques have been, directly or not, tested
on different applications. Iguzquiza and Olmo [11] utilized some of these ideas
for geostatistical simulations for restricted samples. On the other hand, Cai
et al. [12] applied information theoretic analysis on self-clustering of amino
acids along protein chains. Finally, Resconi [13] based a risk analysis study
on non-Euclidean geometric tools. However, up to the authors ”knowledge”,
applications of this framework on meteorology/oceanography is still very rare.

2. The Numerical Solution of the BVP

In this section, we study the numerical solution of the BVP problem

ω
′′

1 + a11(ω
′

1)
2 + a12ω

′

1ω
′

2 + a22(ω
′

2)
2 = 0

ω
′′

2 + b11(ω
′

1)
2 + b12ω

′

1ω
′

2 + b22(ω
′

2)
2 = 0 (4)

supplied with boundary conditions

ω1 (0) = ω0
1 , ω2 (0) = ω0

2 , ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 .

This second order BVP can be written as

ω̃
′′

= F (ω̃, ω̃
′

),

where

ω̃ =

[
ω1

ω2

]

is defined on the interval [0, 1].

2.1. Finite Differences

We divide [0, 1] into N + 1 equal subintervals whose endpoints are at ti =
0+ih, for i = 0, 1, . . . , N,N+1. Assuming that the exact solution has a bounded
fourth derivative we discretize and replace ω

′′

1 (ti), ω
′′

2 (ti), ω
′

1(ti), ω
′

2(ti) using
the following standard finite differences (FD) :

ω
′′

1 (ti) =
ω1(ti+1)− 2ω1(ti) + ω1(ti−1)

h2
−

h2

12
ω
(4)
2 (ξi)

ω
′′

2 (ti) =
ω2(ti+1)− 2ω2(ti) + ω2(ti−1)

h2
−

h2

12
ω
(4)
2 (ξi)

ω
′

1(ti) =
ω1(ti+1)− ω1(ti−1)

2h
−

h2

6
ω
(3)
1 (ηi)

ω
′

2(ti) =
ω2(ti+1)− ω2(ti−1)

2h
−

h2

6
ω
(3)
2 (ηi)

for some ξi, ηi in the interval (ti−1, ti+1).
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The numerical difference method results from substituting the above FD to
the differential equation, neglecting the error terms and employ the boundary
conditions:

ω1 (0) = ω0
1 , ω2 (0) = ω0

2 , ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 ,

with ωi
1 ≈ ω1(ti), ωi

2 ≈ ω2(ti) for i = 1, . . . , N .
The result is a nonlinear system of 2N equations with 2N unknowns of the

form
F̂ (ω̂) = 0

where 0 = [0, . . . , 0]
⊤

and ω̂ =
[
ω1
1 , . . . , ω

N
1 , ω1

2 , . . . , ω
N
2

]⊤
.

This system can be solved using the Newton’s iteration

ω̂(k) = ω̂(k−1) − J(ω̂(k−1))−1 · F̂ (ω̂(k−1)), k = 1, 2, . . . . (5)

where ω̂(0) is given.
To apply this method we usually transform our problem

ω̂(k) = ω̂(k−1) − J−1(ω̂(k−1))F̂ (ω̂(k−1)) ⇔

ω̂(k−1) − ω̂(k) = J−1(ω̂(k−1))F̂ (ω̂(k−1)) ⇔

J(ω̂(k−1))(ω̂(k−1) − ω̂(k)) = F̂ (ω̂(k−1)) ⇔

J(ω̂(k−1))X = F̂ (ω̂(k−1))

where
X = (ω̂(k−1) − ω̂(k)).

In each step it is more efficient to solve a linear system of the form:

J(ω̂(k−1)) ·X = F̂ (ω̂(k−1)).

We apply the LU decomposition method to solve the system in each step as
follows:
⊲ We factorise

J(ω̂(k−1)) = L · U

and solve the system
L · U ·X = F̂ (ω̂(k−1)).

⊲ We set
Y = U ·X,

solve the lower triangular system

L · Y = F̂ (ω̂(k−1)),

and then the upper triangular system

U ·X = Y.

⊲ Finally at each step we update the solution

ω̂(k) = ω̂(k−1) −X.
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2.2. The proposal of the LU modification

In order to take advantage of the special sparse form of the Jacobian matrix
J , we interchange its rows as follows.

J∗ =




−8 4 − a1 0 0 . . . 0 0 0 −b1 0 0 . . . 0 0
4 + d2 −8 4 − a2 0 . . . 0 0 b2 0 −b2 0 . . . 0 0

c2 0 −c2 0 . . . 0 0 4 + d2 −8 4 − d2 0 . . . 0 0
0 4 + a3 −8 4 − a3 . . . 0 0 0 b3 0 −b3 . . . 0 0
0 −c1 0 0 . . . 0 0 −8 4 − d1 0 0 . . . 0 0
0 c3 0 −c3 . . . 0 0 0 4 + d3 −8 4 − d3 . . . 0 0
0 0 4 + a4 −8 . . . 0 0 0 0 b4 0 . . . 0 0
0 0 c4 0 . . . 0 0 0 0 4 + d4 −8 . . . 0 0
0 0 0 4 + a5 . . . 0 0 0 0 0 b5 . . . 0 0
0 0 0 c5 . . . 0 0 0 0 0 4 + d5 . . . 0 0
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 0 0 0 . . . 0 0 0 0 0 0 . . . . .
0 0 0 0 . . . 4 + an −8 0 0 0 . . . 0 bN 0
0 0 0 0 . . . cn 0 0 0 0 . . . 0 4 + dN −8




Then we can apply a Modified LU factorization reducing significantly the com-
putational cost.

The Modified LU factorization.

1st Step: Make zero only two elements under the main diagonal.
Update only 5 elements in rows 2 and 3 (the 2nd, 3rd, (N + 1)-th, (N + 2)-th,
(N + 3)-th).
Right here we have a significant reduction of floating point operations as the
classical LU updates the entries of an (2N − 1)× (2N − 1) submatrix.

2nd Step: Make zero only 4 elements under the main diagonal.
Update only 6 elements in rows 3 to 6 (the 3rd,4th, (N +1)-th, . . . , (N +4)-th).

3rd Step: Make zero only 5 elements under the main diagonal.
4rd-8th row: Update only 6 elements in rows 4 to 8 (the 5th,6th, (N+1)-th, . . . ,
(N + 6)-th).

Next Steps Continue similarly until the upper triangularization of J∗.

In every step the number of elements which must be zeroed is increased by 1
until the N − 2-th step and the number of elements in every row which must
be updated is increased by 1 until the (N-4)-th step. Then these numbers are
decreased by 1 in every step. The required floating point operations for tri-
angularizing the 2N × 2N Jacobian matrix through modified LU factorization

are O
(

2N3

3

)
whereas the classical one requires O

(
8N3

3

)
flops. So, the classi-

cal Newton’s method (5) demands O(k0 · 8N3

3 ) flops when using the classical

LU factorization and O(k0 ·
2N3

3 ) flops when applying the modified LU to the
modified Jacobian matrix, for k0 iterations.
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matrix dim. classical LU Modified LU % of gain

200 0.0176 0.0096 45.6654
500 0.3188 0.0753 76.3882
1000 3.8151 0.7283 80.9093
2000 35.2260 8.7771 75.0834

Table 1: LU vs modified LU factorization

The reduction is achieved in the first half of the factorization, when we
update specific entries and not whole submatrices. The second half of the pro-
cedure requires the same flops with classical LU. Eventually, the modified LU
is 4 times cheaper than the classical one, and the execution time is expected to
be even more faster due to the reduction of number of comparisons due to the
zero entries of the matrix J∗.

In the next section, we compare the two LU approaches for matrices which
have the form of the Jacobian J and random elements. We average the compu-
tational time needed for sets 50 matrices. The results are presented in Table 1.

3. Quasi Newton methods

A variety of modifications of the classical Newton method, substituting the
Jacobian matrix with other quantities, called Quasi Newton methods can be
found in literature [14, 15, 16, 17, 18, 19, 20]. Brezinski [14, 15] classified and
proposed theoretically new Quasi-Newton methods. We implemented numeri-
cally four of them. Since the Jacobian matrix J∗ of our system is of a special
form, we adapt these methods to J∗ in order to reduce the required floating
point operations.

The general scheme of a Quasi Newton method reads

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1)), k = 0, 1, . . . . (6)

where Λk ∈ R
2N×2N .

Brezinski [14] studied the cases that (Λk) is the identity matrix multiplied
by a scalar, (Λk) is a diagonal matrix and (Λk) is a full matrix.

3.1. Scalar matrix case (SMC)

In this case Λk = λk · I, where λk = − (J(ω̂(k))·F̂ (ω̂(k)),F̂ (ω̂(k)))

(J(ω̂(k))·F̂ (ω̂(k)),J(ω̂(k))·F̂ (ω̂(k))
[14] and

I the identity matrix.

Algorithm Scalar Matrix Case (SMC)

fd := J(ω̂(0)) · F̂ (ω̂(0))

λ0 = − (fd,F̂ (ω̂(0)))
(fd,fd)

Λ0 = λ0 · I
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ω̂(1) = ω̂(0) + Λ0 · F̂ (ω̂(0))t

k = 1
while ||ω̂(k) − ω̂(k−1)|| > TOL and k < nmax

k = k + 1

fd := J(ω̂(k−1)) · F̂ (ω̂(k−1))

λk−1 = − (fd,F̂ (ω̂(k−1)))
(fd,fd)

Λk−1 = λk−1 · I

ω̂(k) = ω̂(k−1) + Λk−1 · F̂ (ω̂(k−1))⊤

end while

In the previous and the following algorithms nmax is the maximum number
of iterations and TOL is a tolerance parameter.

We consider the required time for the computation of one addition and one
multiplication as one flop [21]. In case that the computation includes a sin-
gle addition or only a single multiplication only a 1

2 flop will be added to the
complexity.

Our problem demands O(k1 · 18N) flops for k1 iterations plus the computa-

tion of F̂ and J at the point ω̂(k) at every iteration. In general, SMC requires
O(k1 · (4N

2)) flops for solving an 2N × 2N system of nonlinear equations. The
reduction in complexity is due to the special structure of the matrix J∗.

3.2. Diagonal Matrix Case 1 (DMC1)

In this case Λk is diagonal [14]. The initial scheme can be written in the

form ω̂(k) = ω̂(k−1) − F̃ (ω̂(k−1)) · Λ̃k−1, where

F̃ (ω̂(k)) = diag(F̃1(ω̂
(k)), F̃2(ω̂

(k)), . . . , F̃2N (ω̂(k))),

Λ̃k = (λ1
k, λ

2
k, . . . , λ

2N
k )⊤ and diag(x) is a diagonal matrix with diagonal en-

tries the elements of vector x. Thus, this formula can be considered as Newton
method with a diagonal preconditioner (see [14] for more details).

Algorithm Diagonal Matrix Case(DMC1)

λ1 = −diag( 1

F̃1(ω̂(0))
, 1

F̃2(ω̂(0))
, . . . , 1

F̃2N (ω̂(0))
) · J(ω̂(0))−1 · F̂ (ω̂(0))

Λ1 = diag(λ1)

ω̂(1) = ω̂(0) + Λ0 · (F̂ (ω̂(0)))⊤

while ||ω̂(k+1) − ω̂(k)|| > TOL and k < nmax

k = k + 1

λk−1 = −diag( 1

F̃1(ω̂(k−1))
, 1

F̃2(ω̂(k−1))
, . . . , 1

F̃2N (ω̂(k−1))
) · J(ω̂(k−1))−1 · F̂ (ω̂(k−1))

Λk−1 = diag(λk−1)

ω̂(k) = ω̂(k−1) + Λk−1 · F̂ (ω̂(k−1))⊤

end while
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We use the modified LU factorization in order to compute J(ω̂(k−1))−1 ·

F̂ (ω̂(k−1)) reducing significantly the required flops. The required flops are

O(k2 · 2N3

3 ) flops for k2 iterations plus the computation of F̂ and J at the

point ω̂(k) at every iteration. In general, the complexity for solving an 2N ×2N

system is of order O(k2 · (
8N3

3 )).

3.3. Diagonal Matrix Case 2 (DMC2)

This is a modification of the previous case,

ω̂(k) = ω̂(k−1) − F̃ (ω̂(k−1)) · Λ̃k−1,

where Λ̃k is computed using forward differences. Thus, Λ̃k = ∆F̃ (ω̂(k−1))−1 ·
∆ω̂(k−1).

The DMC2 algorithm requires significant less flops than DMC1. More pre-
cisely, DMC2 demands O(k2 · 8N) flops for k2 iterations plus the computation

of F̂ and J at the point ω̂(k) at every iteration.

3.4. Full matrix case (FMC)

Now, the matrix Λk is a full matrix with Λk = − F̂ (ω̂(k)·(F̂ (ω̂(k))⊤·(J(ω̂(k))⊤

(J(ω̂(k))·F̂ (ω̂(k)),J(ω̂(k))·F̂ (ω̂(k))
.

It follows the FMC algorithm.

Algorithm Full Matrix Case(FMC)

fd := J(ω̂(0)) · F̂ (ω̂(0))

Λ0 = −F̂ (ω̂(0))·fd⊤

(fd,fd)

ω̂(1) = ω̂(0) + Λ0 · (F̂ (ω̂(0)))⊤

while ||ω̂(k+1) − ω̂(k)|| > TOL and k < nmax

k = k + 1

fd := J(ω̂(k−1))−1 · F̂ (ω̂(k−1))

Λk−1 = −F̂ (ω̂(k−1))·fd⊤

(fd,fd)

ω̂(k) = ω̂(k−1) + Λk−1 · F̂ (ω̂(k−1))⊤

end while

The FMC algorithm demands O(k3 · 9N2) flops at every iteration for k3

iterations plus the computation of F̂ and J at the point ω̂(k) at every iteration.
In general, FMC requires O(k3 · (13N

2)) flops for solving an 2N × 2N system
of nonlinear equations.

4. Numerical Tests and Observations

For our numerical tests we choose data from the area of Levantive in the
eastern Mediterranean Sea. For every month of a year we have modeled wind
speed and wave height data following two approaches. The former includes in
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model data model data satellite
no current with current data

Weibull shape α0 scale β0 shape α0 scale β0 shape α1 scale β1
Jan 1.600 1.010 1.726 1.095 2.523 1.441

Feb 1.500 1.400 1.571 1.464 2.450 1.762

Mar 1.462 1.132 1.578 1.225 2.560 1.509

Apr 1.564 0.695 1.719 0.754 2.140 1.012

May 1.533 0.608 1.608 0.661 1.576 0.780

Jun 2.333 0.633 2.542 0.680 3.759 0.759

Jul 2.557 0.837 2.688 0.876 3.515 0.960

Aug 3.099 0.716 3.341 0.759 4.938 0.889

Sep 2.418 0.754 2.580 0.800 3.491 0.968

Oct 1.629 0.551 1.850 0.609 2.204 0.665

Nov 1.446 0.892 1.499 0.919 1.911 1.224

Dec 1.435 1.216 1.512 1.283 2.208 1.442

Table 2: Levantine problems parameters

the simulation the first includes in the simulation the impact of see currents,
while the second does not. Second source of data is the available corresponding
sattelite data. The data are fitted by a 2-parameter Weibull distribution and
their Weibull parameters are given in Table 2. When we consider the minimum
length curve which connects the each modeled and its corresponding satellite
data we conclude in 24 BVP problems. For instance for month January we have
two problems, one for the curve connecting the modeled data with the presence
of current and the satellite data, which we call “problem Jan with current”, and
one for the modeled data without current and the satellite data, which we call
“problem Jan with no current”.

To get reference solutions we use NDSolve of Mathematica to solve the 24 test
problems. Mathematica uses the shooting method and one can set appropriate
accuracy options (Working Precision, Accuracy Goal, Accuracy Goal) to get an
considerably accurate solution which is in a “continuous” interpolating form.
The computed solution can be substituted in the test differential equations for
an abscissae on [0, 1] of a desired width (e.g. 10−5) and record the maximum
residual error, the maximum defect as it is usually called. The size of the defect
gives a different measure of the suitability of the approximate solution; it is the
amount by which the computed solution fails to satisfy the system of differential
equations. It has been suggested that monitoring the defect may be appropriate
in situations where difficulties arise in estimating the global error [22].

Such solutions can be used as highly accurate reference solutions for the
comparison to the other numerical methods which attain a significantly lower
precision. In Figure 1, the reference solution of the problem Jun with current
is presented and in Figure 2, the defect for the reference solution of the same
problem which attains maximum value 1.11 × 10−15. Moreover in Figure 3,
the reference solution of the problem Aug with current is shown and in Figure
4, the defect for the reference solution of the same problem which attains a
maximum value 6.25 × 10−13. For this problem (along with a few other) the
numerical integrator suggests elements of stiffness in the solution.

For our numerical tests we calculate and program the analytical form of F
and Jacobian J . We choose N = 100 and get a system of 200 equations. For
the 24 problems we produce a reference solution and for an initial guess we
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Figure 1: The reference solution ω̂1 and ω̂2 for the problem Jun with current.
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Figure 2: The defect for the reference solution ω̂1 and ω̂2 for the problem Jun with current.
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Figure 3: The reference solution ω̂1 and ω̂2 for the problem Aug with current.
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Figure 4: The defect for the reference solution ω̂1 and ω̂2 for the problem Aug with current.
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use a perturbation of the initial data with random numbers. Then, we solve
numerically the 24 test problems using the proposed methods for tolerances
10−3, 10−4, . . . , 10−13 to compare efficiency and computational costs. We use
two error measures at the grid points. The first one is ‖F̂ (ω̂sol)‖∞ the maximum
absolute value that the numerical solution fails to satisfy the nonlinear problem
resulting from the finite difference method. The second one is the ‖ω̂so−ω̂ref‖∞
maximum absolute value of the difference of the numerical solution and the
reference solution. We investigate the sensitivity in the choice of the initial
guess for tolerances 10−3, 10−4, . . . , 10−13 with respect to its distance from the
reference solution, in order to evaluate the range of convergence for each method.

We first solve the 24 problems using Newton’s Method with both the classical
implementation of the LU factorization and the proposed modification and av-
erage the various measures. In Table 3, it is shown that both Newton’s method
with classical LU and Newton’s method with modified LU have the same itera-
tions and similar error measures at the grid points for all 24 problems. In some
problems the iteration diverges for both approaches (e.g. problem Aug with
Current). The superiority of the proposed modified LU algorithm is obvious in
Table 4, where we compare the average time to solve each of the 24 problem for
50 different choices of initial conditions using Newton’s method with classical
LU and Newton’s method with modified LU.

Average

no of iter. time in secs ‖F̂ (ω̂sol)‖∞ ‖ω̂sol − ω̂ref‖∞
TOL clas. mod. clas. mod. clas. mod. clas. mod.

10−8 8.33 8.04 0.1529 0.099 0.355e-10 0.176e-10 0.605e-5 0.605e-5

10−10 8.7 8.67 0.1731 0.1196 0.080e-12 0.173e-12 0.123e-4 0.123e-4

Table 3: Comparing the Classical LU and the proposed modified LU factorization.

Average time in secs

TOL clas. mod. % of gain

10−8 0.199 0.135 32.70

10−9 0.209 0.143 31.53

10−10 0.217 0.147 32.05

10−11 0.224 0.151 32.57

10−12 0.362 0.169 40.44

10−13 0.952 0.088 56.41

Table 4: Time comparisons for the Classical LU and the proposed modified LU.

In the following some remarks for the comparison of mod-NR, SMC, DMC1,
DMC2, FMC are discussed. We solve for tolerances 10−3, . . . , 10−12 the 24
problems for a common initial condition each time and compare the average
values of the results. It seems that DMC1 fails as the preconditioning matrix
is singular. DMC2 succeeds only for TOL = 10−3, 10−4. For smaller tolerances
it fails as in Λ̃k = ∆F̃ (ω̂(k−1))−1 ·∆ω̂(k−1) the denominator becomes less than
than unit round of (machine accuracy ǫ). SMC and FMC algorithms work for
TOL = 10−3, . . . , 10−8. For smaller tolerances, even if the methods do not seem
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to diverge, the iteration stops as the denominator of

#

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))
(7)

becomes less than machine accuracy ǫ.
In Tables 5 and 6, the modified Newton, SMC and FMC methods are

compared for various tolerances in respect of the number of iterations and and
the required running time. No mater the theoretical complexity cost, the time
needed for the solution using Newton’s method is considerably smaller. SMC
takes the longer time over the three methods. In Tables 7 and 8 the average
recorded error measures for the modified Newton, SMC and FMC methods are
presented. Newtons method attains a better convergence (with respect to the
reference solution) and has a smaller defect for the nonlinear system compared
to its competitors.

average number of iterations

TOL Newton’s method SMC FMC

10−3 7.4 485 95

10−4 7.6 3460 835

10−5 8.4 6853 2959

10−6 8.6 10057 7363

10−7 9.2 13429 10596

10−8 9.6 16296 13632

Table 5: Mean number of iterations for problems with convergence.

average time in secs

TOL Newton’s method SMC FMC

10−3 0.098 0.166 0.443

10−4 0.098 4.062 1.070

10−5 0.112 14.684 8.063

10−6 0.117 35.450 24.140

10−7 0.126 56.277 44.580

10−8 0.123 85.410 71.087

Table 6: Mean time in secs for problems which converge.

Average ‖F̂ (ω̂sol)‖∞
TOL Newton’s method SMC FMC

10−3 1.55e-6 1.83e-3 9.92e-3

10−4 6.77e-8 1.45e-4 1.09e-3

10−5 7.29e-9 1.53e-5 1.13e-4

10−6 1.93e-9 1.48e-6 1.11e-5

10−7 8.24e-11 1.62e-7 1.19e-6

10−8 2.82e-11 1.71e-8 1.20e-7

Table 7: Mean ‖F̂ (ω̂sol)‖∞ for problems which converge.

An interesting remark is that Newton’s method with either classical and
modified LU factorization seem to be very sensitive in the choice of initial guess
and so they have shorter interval of convergence compare to both SMC, FMC.
This can be tested by solving the problems taking initial guesses further away
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from the reference solution (see Tables 9, 10, 11). It must be noted that
SMC and FMC do not diverge for TOL = 10−9 and smaller (see Tables , 12,
13). The algorithms stop as the denominator of (7) becomes less than machine
accuracy ǫ. Even though Newton’s method is more accurate, SMC and FMC
can be used as starting procedures. For problems such as Aug with current,
where Newtons method diverges, we can use either SMC or FMC to get an
initial point and then continue with Newton’s iteration (see Table 14).

5. Conclusions

In this paper we study the numerical solution of a special boundary value
problem, arising in meteorological parameters prediction. The construction and
study of the cost functions that estimate the discrepancies between modeled
and observed data is based on techniques developed within the framework of
Information Geometry. In this way, we adopt an approach that avoids simpli-
fications connected with the a priori acceptance of Euclidean distances for the
data under study as in the least square based methods. More precisely, Weibull
probability distribution functions are fitted to the data under study and treated
as elements of statistical manifolds on which Riemannian metrics are defined
and the distances between the different sets of data are measured by means of
the corresponding geodesics (i.e. minimum length curves).

These curves are obtained as numerical solutions of second order bound-
ary value problems using finite differences. For the numerical solution of the
resulting system of nonlinear equations, we apply Newton and Quasi Newton
methods in which we take into account the special form of the Jacobian matrix
and modify appropriately the LU algorithm in order to reduce the computa-
tional complexity.

More precisely, the Newton method using the modified LU factorization
demands the same iterations and has an absolute error of the same order with
the classical one but it requires significantly less floating point operations. The
error measures for Newton’s method (classical or modified) are considerable
smaller and the method converges for smaller tolerances compared to the SMC
and FMC.

The DMC methods are not proposed for our problem, since the precondi-
tioning matrix is almost singular.

The Newton’s method using either classical or modified LU factorization is
more sensitive in the selection of the initial point compared to SMC and FMC
since, for some problems, it demands the initial values to be closer to the final
solution than the other two methods.

The use of SMC or FMC as an initial procedure improves the behavior
of Newtons method in the cases that diverges. These methods can be used as
starting procedures that compute initial points for the Newton’s iteration within
the interval of convergence, while the modified LU factorization reduces signifi-
cantly the required floating point operations resulting to an effective algorithm
for solving efficiently the system of non linear equations.
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Average ‖ω̂sol − ω̂ref‖∞

TOL Newton’s method SMC FMC

10−3 2.87e-6 2.53e-1 4.17e-1

10−4 1.59e-5 3.77e-2 2.05e-1

10−5 3.49e-6 3.96e-3 2.96e-2

10−6 1.56e-5 3.94e-4 2.88e-3

10−7 2.53e-5 6.61e-5 3.29e-4

10−8 3.57e-6 7.14e-6 3.45e-5

Table 8: Mean ‖ω̂sol − ω̂ref‖∞ for problems which converge.

‖ω̂0 − ω̂ref‖∞ ≤

TOL 0.05 0.10 0.2 0.5

10−3 24 24 21 3

10−4 24 24 22 1

10−5 24 24 23 2

10−6 24 24 21 2

10−7 24 24 23 2

10−8 24 24 21 1

10−9 24 24 21 1

10−10 24 24 19 2

10−11 24 24 23 3

10−12 24 24 23 3

10−13 24 22 19 3

Table 9: Newton’s method sensitivity in initial condition choice. Number of convergent solu-
tion of problems (out of 24).

‖ω̂0 − ω̂ref‖∞ ≤

TOL 0.05 0.10 0.2 0.5

10−3 24 24 24 24

10−4 24 24 24 24

10−5 24 24 24 24

10−6 24 24 24 24

10−7 24 24 24 24

10−8 24 24 24 24

10−9 12 13 13 14

Table 10: SMC sensitivity in initial condition choice. Number of convergent solution of
problems (out of 24).

‖ω̂0 − ω̂ref‖∞ ≤

TOL 0.05 0.10 0.2 0.5

10−3 24 24 24 24

10−4 24 24 24 24

10−5 24 24 24 24

10−6 24 24 24 24

10−7 24 24 24 24

10−8 24 24 24 24

10−8 15 14 10 14

Table 11: FMC sensitivity in initial condition choice. Number of convergent solution of
problems (out of 24).
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‖ω̂0 − ω̂ref‖∞ ≤

TOL 0.05 0.10 0.2 0.5

10−3 1.78e-3 1.61e-3 1.32e-3 9.40e-3

10−4 1.00e-4 1.00e-4 1.08e-4 1.11e-4

10−5 1.10e-5 1.10e-5 1.10e-5 1.11e-5

10−6 1.20e-6 1.19e-6 1.22e-6 1.21e-6

10−7 1.27e-7 1.07e-7 1.27e-6 1.26e-7

10−8 1.40e-8 1.40e-8 1.41e-8 1.34e-8

10−9 1.32e-8 1.20e-8 1.30e-8 1.25e-8

Table 12: SMC average ‖F̂ (ω̂sol)‖∞ for all 24 problems.

‖ω̂0 − ω̂ref‖∞ ≤

TOL 0.05 0.10 0.2 0.5

10−3 7.14e-3 7.80e-3 8.16e-3 8.27e-3

10−4 8.46e-4 8.31e-4 8.46e-4 8.78e-4

10−5 8.99e-5 9.49e-5 9.62e-5 9.51e-5

10−6 1.02e-5 1.03e-5 1.04e-5 1.04e-5

10−7 1.08e-6 1.07e-6 1.09e-6 1.08e-6

10−8 1.09e-7 1.11e-7 1.56e-7 1.15e-7

10−9 1.30e-8 1.34e-8 1.42e-8 1.31e-8

Table 13: FMC average ‖F̂ (ω̂sol)‖∞ for all 24 problems.

TOL = 10−11

no of iter. ‖F̂ (ω̂sol)‖∞ ‖ω̂sol − ω̂ref‖∞

Newton’s methodR 182 4.38e+177 9.03e+88

SMC 9219 1.75e-6 7.51e-4
Newton’s methodR 7 4.78e-14 3.74e-4

FMC 5602 1.39e-5 3.40e-3
Newton’s methodR 7 5.59e-14 3.74e-4

Table 14: SMC and FMC as starting procedures.
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