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Università degli Studi di Genova - Via Dodecaneso 35, 16146 Genova, Italy.

4 Fachgruppe Mathematik
Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.

a marco.benini@pv.infn.it , b claudio.dappiaggi@unipv.it , c hack@dima.unige.it , d schenkel@math.uni-wuppertal.de

July 15, 2013

Abstract

The aim of this work is to complete our program on the quantization of connections on arbitrary
principal U(1)-bundles over globally hyperbolic Lorentzian manifolds. In particular, we show that one
can assign via a covariant functor to any such bundle an algebra of observables which separates gauge
equivalence classes of connections. The C∗-algebra we construct generalizes the usual CCR-algebras
since, contrary to the standard field-theoretic models, it is based on a presymplectic Abelian group instead
of a symplectic vector space. We prove a no-go theorem according to which neither this functor, nor any of
its quotients, satisfy the strict axioms of general local covariance. Yet, if we fix any principal U(1)-bundle,
there exists a suitable category of sub-bundles for which a quotient of our functor yields a quantum field
theory in the sense of Haag and Kastler. We shall provide a physical interpretation of this feature and we
obtain some new insights concerning electric charges in locally covariant quantum field theory.

Keywords: locally covariant quantum field theory, quantum field theory on curved spacetimes, gauge theory
on principal bundles

MSC 2010: 81T20, 81T05, 81T13, 53Cxx

1 Introduction

Although Maxwell’s field is the simplest example of a Yang-Mills gauge theory, it is known since [AS80]
that the construction and analysis of the associated algebra of observables and its representations can be
complicated due to a non-trivial topology of the spacetime manifold. This peculiar feature is extremely
relevant when one employs the algebraic framework in order to quantize such a theory on curved backgrounds.
The first investigations along these lines are due to Dimock [Dim92], but a thorough analysis of topological
effects started only recently, from both the perspective of the Faraday tensor [DL12] and, more generally, the
quantization of linear gauge theories [Pfe09, DS13, FH13, HS13, SDH12, FS13]. The bottom line of some
of these papers is the existence of a non-trivial center in the algebra of fields, provided certain topological,
or more precisely cohomological, properties of the underlying background hold true. In [SDH12], it has
been advocated that the elements of the center found in that paper could be interpreted in physical terms as
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being related to observables measuring electric charges. However, this leads unavoidably to a violation of
the locality property (injectivity of the induced morphisms between the field algebras) of locally covariant
quantum field theories, as formulated in [BFV03].

A complementary approach to the above ones has been introduced by some of us in [BDS12, BDS13]
starting from the observation that, in the spirit of a Yang-Mills gauge theory, electromagnetism should be best
described as a theory of connections on principal U(1)-bundles over globally hyperbolic Lorentzian manifolds.
More properly, one starts from the characterization of connections as sections of an affine bundle, dubbed
the bundle of connections [Ati57]. Subsequently the dynamics is implemented in terms of an affine equation
of motion, the Maxwell equation. The system can be quantized in the algebraic framework following the
prescription outlined in [BDS12]. This procedure is advantageous for three main reasons: First of all there is
no need to fix any reference connection, as it is done (implicitly) elsewhere [Pfe09, DS13, SDH12, FS13]. As
a useful consequence of this, we were able to construct in [BDS13] purely topological observables, resembling
topological quantum fields, which can measure the Chern class of the underlying principal U(1)-bundle.
Secondly, interactions between gauge and matter fields are modeled only in terms of connections, while an
approach based on the Faraday tensor, as in [DL12], cannot account for this aspect. Thirdly, contrary to
most of the previous approaches, the gauge group is completely determined geometrically by the underlying
principal bundle, since it is the collection of vertical automorphisms.

By following this perspective, the algebra of fields for Abelian Yang-Mills theories has been constructed
in [BDS13]. Yet, as explained in [BDS13, Remark 4.5], the latter fails to separate gauge equivalence classes
of connections. The source of this obstruction can be traced back to the existence of disconnected components
in the gauge group in the case of spacetimes with a non-trivial first de Rham cohomology group. From a
physical point of view, this entails that those observables which are measuring the configurations tied to the
Aharonov-Bohm effect, as discussed in [SDH12, FS13], are not contained in the algebra of observables.

The main goal of this paper is to fill this gap by elaborating on the proposal in [BDS13] to add Wilson-
loop observables to the algebra of fields, as these new elements would solve the problem of separating all
configurations. Following slavishly the original idea turned out to be rather cumbersome from a technical
point of view. Yet, we found that it is more convenient to consider exponentiated versions of the affine
observables constructed in [BDS13]. On the one hand, these observables resemble classical versions of Weyl
operators, while, on the other hand, the requirement of gauge invariance leads to a weaker constraint – the
exponent does not need to remain invariant under a gauge transformation, but it is allowed to change by any
integer multiple of 2πi.

After performing this construction, we shall prove that, contrary to what was shown in [BDS13, Section
7] for the non-exponentiated algebra of fields, in the complete framework it is not possible to restore general
local covariance in the strict sense by singling out a suitable ideal. This no-go theorem holds true only if
we consider all possible isometric embeddings allowed by the axioms of general local covariance devised
in [BFV03]. If we restrict our category of principal U(1)-bundles to a suitable subcategory possessing a
terminal object, a result similar to that of [BDS13, Section 7] can be shown to hold true. We will interpret this
feature as a proof that we can construct a separating algebra of observables fulfilling the axioms of Haag and
Kastler [HK63] generalized to an arbitrary but fixed globally hyperbolic spacetime. We shall further provide
a physical interpretation for the impossibility to restore general local covariance in the strict sense on our
category of all principal U(1)-bundles.

We present an outline of the paper: In Section 2 we fix the notations and preliminaries which should
allow a reader with some experience in differential geometry to follow the rest of the article. For more
details, explanations and proofs we refer to [BDS12, BDS13]. In Section 3 we provide a detailed study of
the exponential observables mentioned above. We characterize explicitly the gauge invariant observables
of exponential type and prove that they separate gauge equivalence classes of connections. This solves the
problem explained in [BDS13, Remark 4.5] and captures the essence of what is called Aharonov-Bohm
observables in [SDH12]. As a rather unexpected result, we find that the set of gauge invariant observables
of exponential type can be labeled by a presymplectic Abelian group, which is not a vector space due to
the disconnected components of the gauge group. We call this presymplectic Abelian group the phasespace
of the theory and prove in Section 4 that those phasespaces naturally arise from a covariant functor from
a category of principal U(1)-bundles over globally hyperbolic spacetimes to a category of presymplectic
Abelian groups. The properties of this functor are carefully investigated and it is found that, in agreement

2



with earlier results [SDH12, BDS13], the locality property is violated. Subsequently we study whether the
phasespace functor allows for a quotient by ‘electric charges’ in order to overcome the failure of the locality
property as it was done in [BDS13, Section 7]. We prove a no-go theorem: There exists no quotient such
that the theory satisfies the locality property and we trace this feature back to Aharonov-Bohm observables,
which were not present in [BDS13]. We end Section 4 by quantizing the phasespace functor in terms of
the CCR-functor for presymplectic Abelian groups, which we develop in the Appendix A by applying and
extending results of [M+73]. The resulting quantum field theory functor satisfies the quantum causality
property and the time-slice axiom, and thus all axioms of locally covariant quantum field theory [BFV03] but
the locality property. In Section 5 we consider suitable subcategories (possessing a terminal object) of the
category of principal U(1)-bundles and prove that there exists a quotient which restores the locality property.
The resulting theory is not a locally covariant quantum field theory in the strict definition of [BFV03], but
rather a theory in the sense of Haag and Kastler [HK63] where a global spacetime manifold (not necessarily
the Minkowski spacetime) is fixed at the very beginning and one takes into account only causally compatible
open sub-regions. A physical interpretation of our results is given in Section 6.

2 Preliminaries and notation

Let us fix once and for all the Abelian Lie group G = U(1). We denote its Lie algebra by g and notice that
g = iR. The vector space dual of the Lie algebra g is denoted by g∗ and we note that g∗ ' iR. For later
convenience we introduce the Abelian subgroup gZ := 2π iZ ⊂ g.

In [BDS13, Definition 2.4] we have defined a suitable category G−PrBuGlobHyp of principal G-bundles
over globally hyperbolic spacetimes. An object is a tuple Ξ = ((M, o, g, t), (P, r)), where (M, o, g, t) is a
globally hyperbolic spacetime (with M of finite type) and (P, r) is a principal G-bundle over M . A morphism
f : Ξ1 → Ξ2 is a principal G-bundle map f : P1 → P2, such that the induced map f : M1 → M2 is an
orientation and time-orientation preserving isometric embedding with f [M1] ⊆M2 causally compatible and
open.

To any object Ξ in G−PrBuGlobHyp we can associate (via a covariant functor) its bundle of connections
C(Ξ), that is an affine bundle over M modeled on the homomorphism bundle Hom(TM, ad(Ξ)). Notice
that the adjoint bundle is trivial, i.e. ad(Ξ) = M × g, since G is Abelian. The set of sections Γ∞(C(Ξ)) of
the bundle C(Ξ) is an (infinite-dimensional) affine space over Ω1(M, g). We denote the free and transitive
action of Ω1(M, g) on Γ∞(C(Ξ)) with the usual abuse of notation by λ + η, for all η ∈ Ω1(M, g) and
λ ∈ Γ∞(C(Ξ)). Let us denote by Γ∞0 (C(Ξ)†) the vector space of compactly supported sections of the vector
dual bundle C(Ξ)†. Every ϕ ∈ Γ∞0 (C(Ξ)†) defines a functional on the configuration space Γ∞(C(Ξ)) by

Oϕ : Γ∞(C(Ξ))→ R , λ 7→ Oϕ(λ) =

∫
M

volϕ(λ) . (2.1)

For any λ ∈ Γ∞(C(Ξ)) and η ∈ Ω1(M, g) we obtain the affine property Oϕ(λ + η) = Oϕ(λ) + 〈ϕV , η〉,
where

〈ϕV , η〉 :=

∫
M
ϕV ∧ ∗(η) . (2.2)

We have denoted the Hodge operator by ∗ and the linear part of ϕ by ϕV ∈ Ω1
0(M, g∗). The duality pairing

between g∗ and g is suppressed here and in the following. Let us define the vector subspace

Triv :=
{
a1 : a ∈ C∞0 (M) satisfies

∫
M

vol a = 0
}
⊆ Γ∞0 (C(Ξ)†) , (2.3)

where 1 ∈ Γ∞(C(Ξ)†) denotes the canonical section which associates to any x ∈M the constant affine map
a ∈ C(Ξ)|x 7→ 1. Notice that any ϕ ∈ Triv defines the trivial functional Oϕ ≡ 0 and, vice versa, that for any
trivial functional Oϕ ≡ 0 we have ϕ ∈ Triv. Hence, we consider the quotient Γ∞0 (C(Ξ)†)/Triv. Elements in
this quotient are equivalence classes that we simply denote by ϕ (suppressing square brackets).
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The gauge group Gau(P ), i.e. the group of vertical principal G-bundle automorphisms, is isomorphic to
the group C∞(M,G), which acts on Γ∞(C(Ξ)) via

Γ∞(C(Ξ))× C∞(M,G)→ Γ∞(C(Ξ)) , (λ, f̂) 7→ λ+ f̂∗(µG) , (2.4)

where µG ∈ Ω1(G, g) is the Maurer-Cartan form. Let us define the Abelian subgroup of Ω1(M, g) which is
generated by gauge transformations,

BG :=
{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
⊆ Ω1

d(M, g) . (2.5)

The Abelian group BG can be characterized by using cohomology: Let us denote by H1(M, gZ) the first
sheaf cohomology group of the locally constant sheaf with values in gZ = 2πiZ. An explicit realization of
this group is via Čech cohomology with values in gZ. Notice that the Abelian group H1(M, gZ) is a free
Z-module, which is finitely generated because M is assumed to be of finite type. Furthermore, due to the
embedding Z ↪→ R and the Čech-de Rham isomorphism there exists a monomorphism of Abelian groups
H1(M, gZ)→ H1

dR(M, g), whose image we denote by H1
dR(M, gZ). The Abelian subgroup H1

dR(M, gZ) is
a lattice in H1

dR(M, g), i.e. any Z-module basis of H1
dR(M, gZ) provides a vector space basis of H1

dR(M, g).
As a consequence of [BDS13, Proposition 4.2] we obtain

BG =
{
η ∈ Ω1

d(M, g) : [η] ∈ H1
dR(M, gZ)

}
, (2.6)

where [η] ∈ H1
dR(M, g) is the element of the first de Rham cohomology group defined by η ∈ Ω1

d(M, g).
The gauge invariant functionals of affine type (2.1) have been characterized in [BDS13, Theorem 4.4]. It

is found that these functionals are labeled by those ϕ ∈ Γ∞0 (C(Ξ)†)/Triv which satisfy ϕV ∈ δΩ2
0(M, g∗),

where δ is the codifferential. As a consequence of [BDS13, Remark 4.5], these functionals in general do not
separate gauge equivalence classes of connections. The goal of the present article is to resolve this issue by
studying a set of observables different from (2.1).

3 Gauge invariant functionals of exponential type

Instead of (2.1), let us consider the functionals of exponential type, for all ϕ ∈ Γ∞0 (C(Ξ)†),

Wϕ : Γ∞(C(Ξ))→ C , λ 7→ Wϕ(λ) = e2πiOϕ(λ) . (3.1)

The affine property of Oϕ implies that, for all λ ∈ Γ∞(C(Ξ)) and η ∈ Ω1(M, g),

Wϕ(λ+ η) =Wϕ(λ) e2πi 〈ϕV ,η〉 . (3.2)

We notice that the functionalWϕ is trivial, i.e.Wϕ ≡ 1, if and only if ϕ is an element in the Abelian subgroup

TrivZ :=
{
a1 : a ∈ C∞0 (M) satisfies

∫
M

vol a ∈ Z
}
⊆ Γ∞0 (C(Ξ)†) . (3.3)

Hence, we consider the quotient Ekin := Γ∞0 (C(Ξ)†)/TrivZ. Elements in this quotient are equivalence classes
that we simply denote by ϕ (suppressing square brackets). We say that a functionalWϕ, ϕ ∈ Ekin, is gauge
invariant, ifWϕ(λ + η) = Wϕ(λ), for all λ ∈ Γ∞(C(Ξ)) and η ∈ BG. Due to (3.2) this is equivalent to
〈ϕV , BG〉 ⊆ Z. A necessary condition forWϕ to be gauge invariant is that δϕV = 0, i.e. ϕV ∈ Ω1

0,δ(M, g∗).
This can be seen by demanding invariance of Wϕ under the gauge transformations λ 7→ λ + dχ, χ ∈
C∞(M, g), which are obtained by choosing f̂ = exp ◦χ ∈ C∞(M,G) in (2.4). We can associate to such ϕV
an element [ϕV ] in the dual de Rham cohomology group H1

0 dR∗(M, g∗) := Ω1
0,δ(M, g∗)/δΩ2

0(M, g∗). Since
any η ∈ BG is closed, the pairing in (3.2) depends only on the cohomology classes, i.e. 〈ϕV , η〉 = 〈[ϕV ], [η]〉.
Notice that the pairing 〈 , 〉 : H1

0 dR∗(M, g∗)×H1
dR(M, g)→ R is non-degenerate due to Poincaré duality,

i.e. H1
0 dR∗(M, g∗) ' H1

dR(M, g)∗ := HomR(H1
dR(M, g),R).

Let us denote the dual Z-module of H1
dR(M, gZ) by H1

dR(M, gZ)∗ := HomZ(H1
dR(M, gZ),Z). Since

H1
dR(M, gZ) is a lattice in H1

dR(M, g) any element in H1
dR(M, gZ)∗ defines a unique element in H1

dR(M, g)∗
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by R-linear extension. Thus, there is a monomorphism of Abelian groups H1
dR(M, gZ)∗ → H1

dR(M, g)∗

which we shall suppress in the following. Composing this map with the isomorphism H1
0 dR∗(M, g∗) '

H1
dR(M, g)∗ given by the pairing 〈 , 〉 we can regardH1

dR(M, gZ)∗ as an Abelian subgroup ofH1
0 dR∗(M, g∗),

which we shall denote by H1
0 dR∗(M, g∗)Z ⊆ H1

0 dR∗(M, g∗). With these preparations we can now provide a
characterization of the gauge invariant functionals.

Proposition 3.1. Let ϕ ∈ Ekin be such that δϕV = 0, i.e. ϕ satisfies the necessary condition forWϕ being
gauge invariant. ThenWϕ is a gauge invariant functional if and only if [ϕV ] ∈ H1

0 dR∗(M, g∗)Z.

Proof. The functional (3.1) is gauge invariant if and only if 〈ϕV , BG〉 = 〈[ϕV ], [BG]〉 ⊆ Z. By (2.6)
this is equivalent to the condition

〈
[ϕV ], H1

dR(M, gZ)
〉
⊆ Z, which is satisfied if and only if [ϕV ] ∈

H1
0 dR∗(M, g∗)Z.

Let us define the Abelian subgroup

E inv :=
{
ϕ ∈ Ekin : δϕV = 0 and [ϕV ] ∈ H1

0 dR∗(M, g∗)Z
}
⊆ Ekin , (3.4)

which labels the gauge invariant functionalsWϕ.

Theorem 3.2. The set {Wϕ : ϕ ∈ E inv} of gauge invariant functionals of exponential type is separating on
gauge equivalence classes of configurations. This means that, for any two λ, λ′ ∈ Γ∞(C(Ξ)) which are not
gauge equivalent via (2.4), there exists ϕ ∈ E inv, such thatWϕ(λ′) 6=Wϕ(λ).

Proof. Let λ, λ′ ∈ Γ∞(C(Ξ)) be not gauge equivalent, i.e. λ′ = λ+ η with η ∈ Ω1(M, g) \BG.
Let us first assume that η is not closed, dη 6= 0. For all ζ ∈ Ω2

0(M, g∗) let us considerF∗(ζ) ∈ Ekin, where
F∗ : Ω2

0(M, g∗)→ Ekin is the formal adjoint of the curvature affine differential operator F : Γ∞(C(Ξ))→
Ω2(M, g) (cf. [BDS13, Lemma 2.14]). Notice that F∗(ζ)V = −δζ, hence F∗(ζ) ∈ E inv. We obtain for the
corresponding functional

WF∗(ζ)(λ′) =WF∗(ζ)(λ) e−2πi 〈ζ,dη〉 . (3.5)

Since dη 6= 0 there exists ζ ∈ Ω2
0(M, g∗) such thatWF∗(ζ)(λ′) 6=WF∗(ζ)(λ).

Let us now assume that dη = 0. By hypothesis, the corresponding cohomology class [η] ∈ H1
dR(M, g) is

not included in the Abelian subgroup H1
dR(M, gZ) ⊆ H1

dR(M, g), since otherwise η would be an element
in BG. We prove the statement by contradiction: Assume thatWϕ(λ′) = Wϕ(λ), for all ϕ ∈ E inv. As a
consequence,

〈
H1

0 dR∗(M, g∗)Z, [η]
〉
⊆ Z, which implies that [η] defines a homomorphism of Abelian groups

H1
0 dR∗(M, g∗)Z → Z. Notice that this is an element in the double dual Z-module of H1

dR(M, gZ), which is
isomorphic to H1

dR(M, gZ) since the latter is finitely generated and free. This is a contradiction and hence
there exists ϕ ∈ E inv, such thatWϕ(λ′) 6=Wϕ(λ).

Remark 3.3. There is the following relation to the usual Wilson loop observables: Given a smooth loop
γ : S1 → M we can construct the pull-back bundle γ∗(P ), which is a principal U(1)-bundle over S1. By
construction, we have the commuting diagram

γ∗(P )

π′

��

γ
// P

π

��

S1 γ
//M

(3.6)

Notice that γ∗(P ) is necessarily a trivial bundle and hence there exists a global section σ : S1 → γ∗(P )
of π′. Given any λ ∈ Γ∞(C(Ξ)), its associated connection form ωλ ∈ Ω1(P, g) pulls back to a connection
form γ∗(ωλ) ∈ Ω1(γ∗(P ), g), which can be further pulled back via the section to a g-valued one-form on S1,
σ∗(γ∗(ωλ)) ∈ Ω1(S1, g). We call the functional

wγ : Γ∞(C(Ξ))→ C , λ 7→ wγ(λ) = e
∫
S1 σ
∗(γ∗(ωλ)) (3.7)
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a Wilson loop observable and notice that wγ does not depend on the choice of trivialization σ. Wilson loop
observables satisfy, for all λ ∈ Γ∞(C(Ξ)) and η ∈ Ω1(M, g),

wγ(λ+ η) = wγ(λ) e
∫
S1 γ
∗(η) , (3.8)

which the reader should compare with (3.2). Hence, if we allow also for distributional sections of the vector
dual bundle C(Ξ)†, the usual Wilson loop observables (3.7) are contained in the class of functionals of
exponential type (3.1). Notice, however, that the set of gauge invariant observables {Wϕ : ϕ ∈ E inv} is
sufficiently large to separate gauge equivalence classes of connections, cf. Theorem 3.2. Thus, we do not need
to enlarge this set of observables by distributional ones, which upon quantization would lead to singularities.

Let us denote by G(k) : Ωk
0(M, g∗) → Ωk(M, g∗) the causal propagator of the Hodge-d’Alembert

operator �(k) := δ ◦ d + d ◦ δ : Ωk(M, g∗) → Ωk(M, g∗), where k = 0, . . . ,dim(M). Given further a
bi-invariant pseudo-Riemannian metric h on the structure group G, we can define a presymplectic structure
τ : E inv × E inv → R on the Abelian group E inv by, for all ϕ,ψ ∈ E inv,

τ(ϕ,ψ) :=
〈
ϕV , G(1)(ψV )

〉
h

:=

∫
M
ϕV ∧ ∗

(
h−1

(
G(1)(ψV )

))
, (3.9)

where h−1 : g∗ → g is the inverse of h. This presymplectic structure can be derived from the Lagrangian
density L[λ] = −1

2 h(F(λ)) ∧ ∗(F(λ)) by slightly adapting Peierls’ method [BDS13, Remark 3.5]. The
metric h plays the role of an electric charge constant and it will be fixed throughout this work.

Before we take the quotient of E inv by an Abelian subgroup containing the equation of motion, let us
study the elements ψ ∈ E inv which lead to central Weyl symbols in the quantum field theory. The Weyl
relations (A.1) read W (ϕ)W (ψ) = e−i τ(ϕ,ψ)/2W (ϕ+ ψ). W (ψ) commutes with all other Weyl symbols
if and only if τ(E inv, ψ) ⊆ 2π Z. We denote by N ⊆ E inv the Abelian subgroup of all elements ψ ∈ E inv

satisfying this condition.

Proposition 3.4. N =
{
ψ ∈ E inv : ψV ∈ δΩ2

0,d(M, g∗) and
[
h−1

(
G(1)(ψV )

)]
∈ 2πH1

dR(M, gZ)
}

.

Proof. We first prove the inclusion ⊇. Assume that ψ ∈ E inv satisfies the first condition of the Abelian group
specified on the right hand side above, i.e. ψV = δζ for some ζ ∈ Ω2

0,d(M, g∗). Then d(h−1(G(1)(ψV ))) =

h−1(G(2)(dδζ)) = h−1(G(2)(�(2)(ζ))) = 0, thus the second condition is well-posed. Using Proposition 3.1
the following holds true,

τ(E inv, ψ) =
〈
H1

0 dR∗(M, g∗)Z,
[
h−1

(
G(1)(ψV )

)]〉
⊆ 2π Z . (3.10)

To prove the inclusion ⊆, suppose that ψ ∈ E inv is such that τ(E inv, ψ) ⊆ 2π Z. Since E inv contains
the Abelian subgroup {ϕ ∈ Ekin : ϕV ∈ δΩ2

0(M, g∗)}, we obtain that d(h−1(G(1)(ψV ))) = 0. As
a consequence of global hyperbolicity and �(2) being normally hyperbolic, dψV = �(2)(ζ) for some
ζ ∈ Ω2

0(M, g∗). Applying d to this equation shows that ζ ∈ Ω2
0,d(M, g∗). Applying δ and using that

δψV = 0 we find ψV = δζ. The condition τ(E inv, ψ) ⊆ 2π Z then reads as in (3.10), which implies that
[h−1(G(1)(ψV ))] ∈ 2πH1

dR(M, gZ).

With this characterization it is easy to see that the equation of motion is contained in N .

Lemma 3.5. MW∗
[
Ω1

0(M, g∗)
]
⊆ N , where MW∗ = F∗ ◦ d : Ω1

0(M, g∗) → Ekin is the formal adjoint of
Maxwell’s affine differential operator MW := δ ◦ F : Γ∞(C(Ξ))→ Ω1(M, g).

Proof. For any ζ ∈ Ω1
0(M, g∗), MW∗(ζ)V = −δdζ. As a consequence, G(1)(MW∗(ζ)V ) = −G(1)(δdζ) =

−G(1)((�(1) − dδ)(ζ)) = dδG(1)(ζ) and thus [h−1(G(1)(MW∗(ζ)V ))] = 0.

The characterization of N given in Proposition 3.4 is still rather abstract. In particular, it is pretty hard to
control the second condition since it involves the causal propagator and hence the equation of motion together
with its solution theory. Fortunately, it will be sufficient for us to characterize explicitly only the Abelian
subgroup of N given by

N 0 :=
{
ψ ∈ E inv : ψV ∈ δΩ2

0,d(M, g∗) and
[
h−1

(
G(1)(ψV )

)]
= 0
}
⊆ N . (3.11)

Notice that N 0 can be defined as the set of all ψ ∈ E inv satisfying τ(E inv, ψ) = {0}.
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Proposition 3.6. N 0 =
{
ψ ∈ E inv : ψV ∈ δ

(
Ω2

0(M, g∗)∩ dΩ1
tc(M, g∗)

)}
, where the subscript tc stands for

forms with timelike compact support.

Proof. We first show the inclusion ⊆: Let ψV = δζ, ζ ∈ Ω2
0,d(M, g∗), be the linear part of ψ ∈ N 0. The

second condition in (3.11) implies that there exists a χ′ ∈ C∞(M, g), such that h−1(G(1)(ψV )) = dχ′.
Absorbing h−1 into χ′ we obtain the equivalent equation G(1)(ψV ) = dχ, for some χ ∈ C∞(M, g∗).
Applying δ to both sides leads to �(0)(χ) = 0, hence there exists an α ∈ C∞tc (M, g∗) such that χ = G(0)(α).
The original equation implies that ψV = dα+�(1)(β) for some β ∈ Ω1

tc(M, g∗). Applying δ gives α = −δβ
and the equation simplifies to δζ = ψV = δdβ. Applying d shows that ζ = dβ and hence ψV = δdβ,
β ∈ Ω1

tc(M, g∗). The other inclusion ⊇ is easily shown, for all dβ ∈ Ω2
0(M, g∗) ∩ dΩ1

tc(M, g∗),

G(1)(δdβ) = δdG(1)(β) = (�(1) − dδ)
(
G(1)(β)

)
= −dδG(1)(β) (3.12)

and hence [h−1(G(1)(δdβ))] = 0.

Corollary 3.7. MW∗[Ω1
0(M, g∗)] ⊆ N 0.

Proof. Follows immediately from the proof of Lemma 3.5.

There is another interesting Abelian subgroup of N . It is specified by

N c :=
{
ψ ∈ E inv : ψV = 0

}
⊆ N 0 ⊆ N . (3.13)

Elements ψ ∈ N c can be identified with those (non-trivial) functionals that give the same result on any two
configurations, for all λ, λ′ ∈ Γ∞(C(Ξ)),Wψ(λ′) = Wψ(λ). Similar to [BDS13, Section 6] one can show
that N c contains the Abelian subgroup F∗[Ω2

0,δ(M, g∗)], which defines via (3.1) functionals that measure the
Chern class of the underlying principal G-bundle, cf. Remark 4.11.

4 The phasespace functor and its quotients

We associate a phasespace, i.e. a presymplectic Abelian group, to any object Ξ in G−PrBuGlobHyp and study
how morphisms in G−PrBuGlobHyp induce morphisms between phasespaces. Our strategy is to construct
first an off-shell phasespace functor, i.e. a functor which does not encode the equation of motion operator
MW, and then to characterize consistent quotients of the off-shell phasespaces which contain at least the
equation of motion. For the definition of the category PAG of presymplectic Abelian groups we refer to the
Appendix, Definition A.1.

Proposition 4.1. There exists a covariant functor PhSpOff : G−PrBuGlobHyp → PAG. It associates to
any object Ξ the presymplectic Abelian group PhSpOff(Ξ) = (E inv, τ), where E inv is given in (3.4) and τ
in (3.9). To any morphism f : Ξ1 → Ξ2 the functor associates a morphism in PAG via

PhSpOff(f) : PhSpOff(Ξ1)→ PhSpOff(Ξ2) , ϕ 7→ f∗(ϕ) , (4.1)

where f∗ is the push-forward given in [BDS13, Definition 5.4].

Proof. The proof can be obtained by following the same steps as in the proof of [BDS13, Theorem 5.5].

This covariant functor is not yet the one required in physics since it does not encode the equation of
motion. We will address the question of taking quotients of the objects PhSpOff(Ξ) by Abelian subgroups
Q(Ξ) ⊆ PhSpOff(Ξ) from a more abstract point of view. This is required to understand if we can take
in our present model a quotient by the equation of motion and also certain “electric charges”, cf. [BDS13,
Section 7]. Eventually, this will decide whether the covariant functor resulting from taking quotients satisfies
the locality property (i.e. injectivity of the induced morphisms in PAG) or not.

There are the following restrictions on the choice of the collection Q(Ξ) ⊆ PhSpOff(Ξ) of Abelian
subgroups. First, for PhSpOff(Ξ)/Q(Ξ) to be an object in PAG (with the induced presymplectic structure)
it is necessary and sufficient that Q(Ξ) is an Abelian subgroup of N 0 ⊆ PhSpOff(Ξ). Second, for
PhSpOff(f) : PhSpOff(Ξ1)→ PhSpOff(Ξ2) to induce a morphism on the quotients it is necessary and
sufficient that it maps Q(Ξ1) to Q(Ξ2). These conditions can be abstractly phrased as follows.
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Definition 4.2. Let C be any category. A quotient of a covariant functor F : C → PAG is a pair (Q, ι),
where Q : C → PAG is a covariant functor and ι : Q ⇒ F is a natural transformation, such that for any
object A in C the morphism ιA : Q(A)→ F(A) is injective and its image is contained in the radical of the
presymplectic structure in F(A).

Remark 4.3. Notice that if the category C is G−PrBuGlobHyp and the functor F is PhSpOff we recover
exactly the situation explained before Definition 4.2. We have formulated the definition in this generality,
since in Section 5 we encounter also the case of a category C different from G−PrBuGlobHyp.

Remark 4.4. Let (Q, ι) be any quotient of a covariant functor F : C → PAG. Then the presymplectic
structure in Q(A) is trivial for all objects A in C. For any morphism f : A1 → A2 in C the morphism Q(f)
is uniquely determined by F(f), since ι is a natural transformation with all ιA injective. We will suppress in
the following the injections ιA and consider Q(A) as a presymplectic Abelian subgroup of F(A), for all A.

Proposition 4.5. Let (Q, ι) be a quotient of a covariant functor F : C→ PAG. Then there exists a covariant
functor F/Q : C→ PAG. It associates to any object A in C the object F(A)/Q(A) in PAG. To any morphism
f : A1 → A2 in C the functor associates the morphism F(A1)/Q(A1) → F(A2)/Q(A2) in PAG that is
canonically induced by F(f).

Proof. For any object A in C the quotient F(A)/Q(A) is an object in PAG, since Q(A) is a presymplectic
Abelian subgroup of the radical of the presymplectic structure in F(A) (remember that we suppress the
injections ιA). For any morphism f : A1 → A2 in C the morphism F(f) : F(A1) → F(A2) induces a
well-defined morphism between the quotients, since by hypothesis (i.e. the natural transformation is injective)
Q(A1) is mapped to Q(A2).

It remains to provide explicit examples of quotients of PhSpOff : G−PrBuGlobHyp → PAG. The
following example is standard, since it describes within the terminology developed above the quotient by the
equation of motion.

Proposition 4.6. Let MW : G−PrBuGlobHyp→ PAG be the covariant functor defined as follows: To any
object Ξ in G−PrBuGlobHyp it associates the object MW(Ξ) = (MW∗[Ω1

0(M, g∗)], 0) in PAG, where the
presymplectic structure is trivial. To any morphism f : Ξ1 → Ξ2 in G−PrBuGlobHyp the functor associates
the morphism in PAG defined by

MW(f) : MW(Ξ1)→MW(Ξ2) , MW∗1(η) 7→ f∗
(
MW∗1(η)

)
. (4.2)

Let ι = {ιΞ} be the canonical injections ιΞ : MW(Ξ) → PhSpOff(Ξ). Then (MW, ι) is a quotient of
PhSpOff : G−PrBuGlobHyp→ PAG.

Proof. The morphism (4.2) is well-defined, since f∗[MW∗1[Ω1
0(M1, g

∗)]] ⊆ MW∗2[Ω1
0(M2, g

∗)], cf. the proof
of [BDS13, Theorem 5.5]. The canonical injections ιΞ are injective and they are morphisms in PAG, since
MW∗[Ω1

0(M, g∗)] lies in N 0 ⊆ PhSpOff(Ξ), cf. Corollary 3.7.

Using Proposition 4.5 we construct a covariant functor PhSp := PhSpOff/MW : G−PrBuGlobHyp→
PAG. This functor describes exactly the usual gauge invariant on-shell phasespaces, i.e. for any object Ξ in
G−PrBuGlobHyp we have PhSp(Ξ) = (E inv/MW∗[Ω1

0(M, g∗)], τ) with E inv given in (3.4) and τ in (3.9).
As we will comment below, the functor PhSp has many desired properties of a locally covariant field theory
(the causality property and the time-slice axiom), however it does not satisfy the locality property.

Definition 4.7. Let C be any category. A covariant functor F : C → PAG is said to satisfy the locality
property, if it is a functor to the subcategory PAGinj where all morphisms are injective, cf. Definition A.1.

Proposition 4.8. The covariant functor PhSp := PhSpOff/MW : G−PrBuGlobHyp → PAG does not
satisfy the locality property.
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Proof. We design a suitable counterexample following [BDS13, Remark 5.6]: Let us take any object Ξ2 in
G−PrBuGlobHyp such that (M2, o2, g2, t2) is the Minkowski spacetime of dimension m = dim(M2) ≥ 4.
Let us denote by Ξ1 the object in G−PrBuGlobHyp obtained by restricting all geometric data to the causally
compatible and globally hyperbolic open subsetM1 := M2\JM2({0}), where {0} is the set consisting of some
point 0 in M2. The canonical embedding provides us with a morphism f : Ξ1 → Ξ2 in G−PrBuGlobHyp.

We will now construct an element ζ = dβ ∈ Ω2
0(M1, g

∗) ∩ dΩ1
tc(M1, g

∗) that is not contained
in dΩ1

0(M1, g
∗). This element is used later to show that PhSp(f) is not injective. Notice that M1

is diffeomorphic to R2 × Sm−2. This allows us to introduce a time coordinate t and a space coordi-
nate x on the R2 factor of M1. Let 0 6= [α] ∈ H1

0 dR(R) and α ∈ Ω1
0,d(R) any representative. We

pull α back via t and x and define an element ζ := i αt ∧ αx ∈ Ω2
0,d(M1, g

∗), where the complex
unit i is used to make ζ valued in g∗ ' iR. Since H1

dR(M1) = {0} and dαx = 0 there exists a
γ ∈ C∞(M1), such that αx = −dγ. Then ζ = d(iγ αt) =: dβ, where β := iγ αt ∈ Ω1

tc(M1, g
∗) is

the desired element. Indeed, ζ = dβ 6∈ dΩ1
0(M1, g

∗) since
∫
M ζ ∧ pr∗(νSm−2) = i(

∫
R α)2 6= 0, where

pr : M1 → Sm−2 is the projection to the sphere factor and νSm−2 is the normalized volume form on
Sm−2. Notice further that H2

0 dR(M1, g
∗) ' Hm−2

dR (M1, g
∗) ' g∗ ' iR is one-dimensional and hence

Ω2
0(M1, g

∗) ∩ dΩ1
tc(M1, g

∗) = Ω2
0,d(M1, g

∗) for our choice of M1.
Let us consider F∗1(ζ), which is an element in N 0

1 ⊆ E inv
1 since F∗1(ζ)V = −δdβ, cf. Proposition 3.6.

Notice that the class [F∗1(ζ)] ∈ PhSp(Ξ1) is not trivial: If there would exist an η ∈ Ω1
0(M1, g

∗) such
that F∗1(ζ) = MW∗1(η), then taking the linear part gives δdβ = δdη. Applying d implies dβ = dη which
is a contradiction since by construction [ζ] = [dβ] 6= 0 in H2

0 dR(M1, g
∗). Applying the morphism (4.1)

corresponding to f : Ξ1 → Ξ2 we obtain

f∗
(
F∗1(ζ)

)
= F∗2

(
f∗(ζ)

)
= F∗2(dη) = MW∗2(η) . (4.3)

We have used that the cohomology group H2
0 dR(M2, g

∗) is trivial and hence for f∗(ζ) ∈ Ω2
0,d(M2, g

∗) there
exists an η ∈ Ω1

0(M2, g
∗) such that dη = f∗(ζ). As a consequence, PhSp(f)([F∗1(ζ)]) = 0 and PhSp(f)

is not injective.

This proposition shows that the usual on-shell phasespace functor PhSp : G−PrBuGlobHyp→ PAG is
not locally covariant in the sense of [BFV03], since it violates the locality property. We have traced back this
failure to the existence of non-trivial elements in N 0

1 /MW∗1[Ω1
0(M1, g

∗)] ⊆ E inv
1 /MW∗1[Ω1

0(M1, g
∗)] which

map via a suitably designed morphism PhSp(f) to the trivial class in E inv
2 /MW∗2[Ω1

0(M2, g
∗)]. This result

might suggest that we can restore injectivity by taking quotients larger than (MW, ι), cf. [BDS13, Section 7]
for a similar strategy. Notice that any physically reasonable quotient (Q, ι) should be such that for any object
Ξ in G−PrBuGlobHyp we have MW(Ξ) ⊆ Q(Ξ), since otherwise the equation of motion is not encoded.
This turns out to be impossible due to the following

Theorem 4.9. There exists no quotient (Q, ι) of PhSpOff : G−PrBuGlobHyp→ PAG, such that

1.) For any object Ξ in G−PrBuGlobHyp we have MW(Ξ) ⊆ Q(Ξ),

2.) PhSpOff/Q : G−PrBuGlobHyp→ PAG satisfies the locality property.

Proof. The strategy for the proof is as follows: We will construct three objects Ξi, i = 1, 2, 3, and two
morphisms fj : Ξ3 → Ξj , j = 1, 2, in G−PrBuGlobHyp, such that injectivity of PhSpOff(f2) on the
quotients requires Q(Ξ3) in such a way that PhSpOff(f1) is not well-defined on the quotients.

To this avail, we consider M1 := R× S1 × Sm−2 with m ≥ 4 and g1 := −dt⊗ dt+ dφ⊗ dφ+ gSm−2 ,
where t is a (time) coordinate on R, φ ∈ (0, 2π) is an angle coordinate on S1 and gSm−2 is the canonical metric
on the unit Sm−2-sphere. Let us further considerM2 := R×Rm−1 with g2 := −dt⊗dt+α(r2)

∑m−1
i=1 dxi⊗

dxi + β(r2) dr ⊗ dr, where xi are Cartesian coordinates, r =
√∑m−1

i=1 xi xi is the radius, α : R → R
is a strictly positive smooth function, such that α(ξ) = 1 for ξ < 1 and α(ξ) = ξ−1 for ξ > 2, and
β : R → R is a positive smooth function, such that β(ξ) = 0 for ξ < 1 and β(ξ) = 1 − ξ−1 for ξ > 2.
Notice that, for r2 < 1, g2 = −dt ⊗ dt +

∑m−1
i=1 dxi ⊗ dxi is the Minkowski metric and that, for r2 > 2,

g2 = −dt⊗ dt+ dr ⊗ dr + gSm−2 formally looks like g1.
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Let us define M3 as the Cauchy development of {0} × I × Sm−2 in (M1, g1), where I is some open
interval in (0, 2π). Notice that (M3, g3 := g1|M3) is a causally compatible and globally hyperbolic open
subset of (M1, g1). We denote by f1 : (M3, g3) → (M1, g1) the isometric embedding. Furthermore, there
exists an isometric embedding f2 : (M3, g3) → (M2, g2) into the region of M2 specified by r2 > 2, such
that the image is causally compatible and open. We can equip Mi, i = 1, 2, 3, with orientations and time-
orientations, such that the isometric embeddings preserve those. Furthermore, taking the trivial principal
G-bundles Pi = Mi × G, i = 1, 2, 3, we can construct three objects Ξi, i = 1, 2, 3, and two morphisms
fj := (fj , id) : M3 ×G→Mj ×G, j = 1, 2, in G−PrBuGlobHyp.

The arguments in the proof of Proposition 4.8 show that for PhSpOff(f2) to be injective on the quotients
(with MW(Ξ2) ⊆ Q(Ξ2)) it is necessary that F∗3[Ω2

0,d(M3, g
∗)] ⊆ Q(Ξ3). We finish the proof by showing

that F∗3[Ω2
0,d(M3, g

∗)] is not mapped to N1 (and in particular not to N 0
1 ) via PhSpOff(f1). Remember

that dΩ1
0(M3, g

∗) 6= Ω2
0,d(M3, g

∗) = Ω2
0(M3, g

∗) ∩ dΩ1
tc(M3, g

∗) on our specific choice of M3, cf. proof of
Proposition 4.8.

Let ζ ∈ Ω2
0,d(M3, g

∗) be any representative of a non-trivial class [ζ] ∈ H2
0 dR(M3, g

∗). Under the
morphism PhSpOff(f1) the element F∗3(ζ) is mapped to F∗1(ζ̃), where ζ̃ := f1∗(ζ) ∈ Ω2

0,d(M1, g
∗). If we

could show that ζ̃ 6∈ dΩ1
tc(M1, g

∗) = dΩ1
0(M1, g

∗) (the last equality holds since M1 has compact Cauchy
surfaces), then [h−1(G(1) 1(δζ̃))] 6= 0 would be non-trivial. Using the possibility to rescale ζ by any element
in R this would show that the discrete condition in Proposition 3.4 is violated and hence that PhSpOff(f1)
does not map F∗3[Ω2

0,d(M3, g
∗)] to N1.

Thus, it remains to show that ζ̃ 6∈ dΩ1
0(M1, g

∗). Let us consider the closed form pr∗1(νSm−2) ∈
Ωm−2

d (M1), where pr1 : M1 → Sm−2 denotes the projection on the sphere factor and νSm−2 is the nor-
malized volume form on the sphere. Introducing also the projection pr3 : M3 → Sm−2 we obtain∫

M1

ζ̃ ∧ pr∗1(νSm−2) =

∫
M3

ζ ∧ pr∗3(νSm−2) 6= 0 , (4.4)

since ζ has been constructed in the proof of Proposition 4.8 such that it has a non-trivial integral with
pr∗3(νSm−2).

We consider for the remaining part of this section the usual on-shell phasespace functor PhSp =
PhSpOff/MW : G−PrBuGlobHyp → PAG, with the quotient (MW, ι) given in Proposition 4.6. Analo-
gously to [BDS13, Theorem 5.7], the fact that the presymplectic structure τ is given by the causal propagator
(cf. (3.9)) implies that the covariant functor PhSp satisfies the classical causality property. Following the
steps in the proof of [BDS13, Theorem 5.8] one also obtains that PhSp satisfies the classical time-slice
axiom.

Let us finally comment on the quantization of the phasespace functor PhSp. Due to Theorem A.5 we can
construct a covariant functor A : G−PrBuGlobHyp→ C∗Alg by composing the covariant functors PhSp
and CCR, i.e. A := CCR ◦PhSp. The functor A describes the association of C∗-algebras of observables
A(Ξ) to objects Ξ in G−PrBuGlobHyp. The validity of the classical causality property and of the classical
time-slice axiom for the phasespace functor PhSp implies the quantum causality property and the quantum
time-slice axiom due to the construction of the functor CCR. We can summarize this construction as follows:

Theorem 4.10. There exists a covariant functor A := CCR◦PhSp : G−PrBuGlobHyp→ C∗Alg describing
the C∗-algebras of observables for quantized principal G-connections. The covariant functor A satisfies
the quantum causality property and the quantum time-slice axiom. Furthermore, for each object Ξ in
G−PrBuGlobHyp the C∗-algebra A(Ξ) is a quantization of an algebra of functionals on Γ∞(C(Ξ)) that
separates gauge equivalence classes of connections (cf. Theorem 3.2). However, A does not satisfy the locality
property, i.e. A is not a covariant functor to the subcategory C∗Alginj.

Remark 4.11. In analogy to [BDS13, Section 6] we can construct a natural transformation Ψmag from
the singular homology functor H2 to the functor A. The interpretation of this natural transformation is
that of a topological quantum field measuring the Chern class of the principal G-bundle. To be precise,
let us denote by H2 : G−PrBuGlobHyp → Monoid the covariant functor associating to any object Ξ in
G−PrBuGlobHyp the singular homology group H2(M, g∗) (considered as a monoid with respect to +) of the

10



base space. To any morphism f : Ξ1 → Ξ2 in G−PrBuGlobHyp the functor associates the usual morphism
of singular homology groups, considered as a morphism in the category Monoid. We further use the forgetful
functor C∗Alg→ Monoid, which forgets all structures of C∗-algebras (but the multiplication) and turns the
multiplication into a monoid structure. With a slight abuse of notation we use the same symbol A to denote the
covariant functor A : G−PrBuGlobHyp → Monoid. With K : H2(M, g∗) → H2

0 dR∗(M, g∗) denoting the
natural isomorphism described in [BDS13, Section 6] we can define for each object Ξ in G−PrBuGlobHyp a
map

Ψmag
Ξ : H2(Ξ)→ A(Ξ) , σ 7→W

([
F∗
(
K(σ)

)])
. (4.5)

Notice that Ψmag
Ξ is a morphism of monoids, since, for all σ, σ′ ∈ H2(Ξ),

W
([
F∗
(
K(σ + σ′)

)])
= W

([
F∗
(
K(σ)

)]
+
[
F∗
(
K(σ′)

)])
= W

([
F∗
(
K(σ)

)])
W
([
F∗
(
K(σ′)

)])
, (4.6)

where in the last equality we have used the Weyl relation (A.1) and the fact that τ([F∗(K(σ))], [F∗(K(σ′))]) =
0, which follows from F∗(K(σ))V = 0. The collection Ψmag = {Ψmag

Ξ } is then a natural transformation
from H2 to A that associates to elements in the second singular homology group observables that can measure
the Chern class of the principal G-bundle.

5 The locality property in Haag-Kastler-type quantum field theories

We have shown in Theorem 4.9 that there exists no quotient (Q, ι) (containing Maxwell’s equations) of
the off-shell phasespace functor PhSpOff : G−PrBuGlobHyp → PAG, such that the covariant functor
PhSpOff/Q satisfies the locality property. In this section we shall prove that if we fix any object Ξ̂ =

((M̂, ô, ĝ, t̂), (P̂ , r̂)) of the category G−PrBuGlobHyp and consider a suitable category of subsets of M̂ , then
there exists a quotient such that the corresponding phasespace functor satisfies the locality property. This
setting does of course not cover the full generality of locally covariant quantum field theory, however, it
provides us with a quantum field theory in the sense of Haag and Kastler (generalized to curved spacetimes),
where the focus is on associating algebras to suitable subsets of a fixed spacetime in a coherent way.

Let us fix any object Ξ̂ = ((M̂, ô, ĝ, t̂), (P̂ , r̂)) of the category G−PrBuGlobHyp. We denote by Sub
Ξ̂

the following category: The objects in Sub
Ξ̂

are causally compatible and globally hyperbolic open subsets
of M̂ . The morphisms in Sub

Ξ̂
are given by the subset relation ⊆, i.e. for any two objects M1,M2 in

Sub
Ξ̂

there is a unique morphism M1 → M2 if and only if M1 ⊆ M2. Notice that by definition there
exists for any object M in Sub

Ξ̂
a unique morphism M → M̂ , i.e. M̂ is a terminal object in Sub

Ξ̂
. We

interpret M̂ physically as the whole spacetime (the universe). There exists further a covariant functor
Pull

Ξ̂
: Sub

Ξ̂
→ G−PrBuGlobHyp: To any object M in Sub

Ξ̂
the functor associates the object Pull

Ξ̂
(M) in

G−PrBuGlobHyp obtained by pulling back all the geometric data of Ξ̂ to M . To any morphism M1 →M2

in Sub
Ξ̂

the functor associates the canonical embedding Pull
Ξ̂

(M1) → Pull
Ξ̂

(M2), which is a morphism
in G−PrBuGlobHyp. We can compose the covariant functor Pull

Ξ̂
: Sub

Ξ̂
→ G−PrBuGlobHyp with the

on-shell phasespace functor PhSp := PhSpOff/MW : G−PrBuGlobHyp→ PAG and obtain a covariant
functor PhSp

Ξ̂
:= PhSp ◦Pull

Ξ̂
: Sub

Ξ̂
→ PAG. Physically, PhSp

Ξ̂
associates the on-shell phasespace

to any causally compatible and globally hyperbolic open subset M of the terminal object M̂ .
We shall make heavy use of the following fact: Let M1 → M2 be any morphism in Sub

Ξ̂
, then by

definition of the category Sub
Ξ̂

there exists a commutative diagram:

M̂

M1

>>

//M2

`` (5.1)
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Due to functoriality this induces the commutative diagram:

PhSp
Ξ̂

(M̂)

PhSp
Ξ̂

(M1)

77

// PhSp
Ξ̂

(M2)

gg
(5.2)

Lemma 5.1. For any object M in Sub
Ξ̂

define Ker
Ξ̂

(M) to be the object in PAG given by the kernel
of the canonical map PhSp

Ξ̂
(M) → PhSp

Ξ̂
(M̂). For any morphism M1 → M2 in Sub

Ξ̂
define the

morphism Ker
Ξ̂

(M1) → Ker
Ξ̂

(M2) in PAG by restriction of PhSp
Ξ̂

(M1) → PhSp
Ξ̂

(M2) to Ker
Ξ̂

(M1).
Then Ker

Ξ̂
: Sub

Ξ̂
→ PAG is a covariant functor. Let further ι = {ιM} be the canonical injections

ιM : Ker
Ξ̂

(M)→ PhSp
Ξ̂

(M), then (Ker
Ξ̂
, ι) is a quotient of PhSp

Ξ̂
: Sub

Ξ̂
→ PAG.

Proof. For any object M in Sub
Ξ̂

, the kernel Ker
Ξ̂

(M) of the canonical map PhSp
Ξ̂

(M)→ PhSp
Ξ̂

(M̂) is
an object in PAG with the presymplectic structure induced from PhSp

Ξ̂
(M), that becomes trivial in Ker

Ξ̂
(M).

Furthermore, due to the commutative diagram (5.2), the restriction of any morphism PhSp
Ξ̂

(M1) →
PhSp

Ξ̂
(M2) to Ker

Ξ̂
(M1) induces a morphism Ker

Ξ̂
(M1)→ Ker

Ξ̂
(M2) in PAG. The composition property

of PhSp
Ξ̂

is preserved and hence Ker
Ξ̂

: Sub
Ξ̂
→ PAG is a covariant functor. The family ι = {ιM} is

obviously a natural transformation, such that ιM is injective and maps to the radical N 0 ⊆ PhSp
Ξ̂

(M).
Hence, (Ker

Ξ̂
, ι) is a quotient of PhSp

Ξ̂
: Sub

Ξ̂
→ PAG.

We can now prove the main statement of this section.

Theorem 5.2. The covariant functor PhSp0
Ξ̂

:= PhSp
Ξ̂
/Ker

Ξ̂
: Sub

Ξ̂
→ PAG satisfies the locality property,

the causality property and the time-slice axiom.

Proof. The causality property and the time-slice axiom are induced since PhSp : G−PrBuGlobHyp→ PAG
satisfies these properties. To prove the locality property we have to check if all morphism PhSp0

Ξ̂
(M1)→

PhSp0
Ξ̂

(M2) are injective. Since by definition PhSp0
Ξ̂

(Mi) = PhSp
Ξ̂

(Mi)/KerΞ̂(Mi), for i = 1, 2, and
due to the commutative diagram (5.2) we obtain the commutative diagram

PhSp0
Ξ̂

(M̂) = PhSp
Ξ̂

(M̂)

PhSp0
Ξ̂

(M1)

55

// PhSp0
Ξ̂

(M2)

ii
(5.3)

where both upwards going arrows are injective (by construction). As a consequence, the horizontal arrow has
to be injective too, which proves the locality property.

As a consequence of this theorem we can consider PhSp0
Ξ̂

as a covariant functor PhSp0
Ξ̂

: Sub
Ξ̂
→

PAGinj, where the latter category is defined in Definition A.1. Using further Theorem A.8 we obtain a
covariant functor A0 := CCR ◦PhSp0

Ξ̂
: Sub

Ξ̂
→ C∗Alginj.

Corollary 5.3. The covariant functor A0 : Sub
Ξ̂
→ C∗Alginj satisfies the causality property, the time-slice

axiom and the locality property.

Remark 5.4. Following the ideas presented in [BFV03, Proposition 2.3] we can construct a theory in the
sense of Haag and Kastler from the covariant functor A0 : Sub

Ξ̂
→ C∗Alginj: Let us consider the set

Obj(Sub
Ξ̂

) of objects in Sub
Ξ̂

, i.e. the set of causally compatible and globally hyperbolic open subsets of the
reference spacetime M̂ . The functor A0 associates to the terminal object M̂ a C∗-algebra A0(M̂), which we
shall interpret as the global algebra of observables. To any element M ∈ Obj(Sub

Ξ̂
) the functor associates a

C∗-algebra A0(M), which can be mapped with an injective unital C∗-algebra homomorphism into A0(M̂).

12



With a slight abuse of notation we denote the image of A0(M) under this map by the same symbol. Hence,
we have an association

Obj(Sub
Ξ̂

) 3M 7→ A0(M) ⊆ A0(M̂) . (5.4)

Following the proof of [BFV03, Proposition 2.3] one can show that this association satisfies isotony, causality
and the time-slice axiom. Furthermore, if there is a group of orientation and time-orientation preserving
isometries acting on M̂ , the association (5.4) is covariant. Hence, it is a quantum field theory in the sense of
Haag and Kastler [HK63], generalized to an arbitrary but fixed spacetime M̂ .

The considerations in this section make heavy use of a terminal object in the category Sub
Ξ̂

. Indeed, the
existence of this object has provided us with commutative diagrams of the form (5.1), which are essential for
constructing a suitable quotient. With this quotient we could construct quantum field theories in the sense of
Haag and Kastler. Notice that the category G−PrBuGlobHyp has no terminal object, hence the techniques
developed in this section do not apply to this case. This is of course already clear from Theorem 4.9, where
it is shown that there exists no quotient which leads to a theory obeying the strict axioms of general local
covariance [BFV03].

6 Concluding physical remarks

The theory of electromagnetism contains several features which are connected to the topology of a region
M of an m-dimensional spacetime M̂ in an algebraic description – the Aharonov-Bohm effect, related
to H1

dR(M), as well as electric and magnetic charges, related to Hm−2
dR (M) and H2

dR(M), respectively.
Describing electromagnetism as a theory of principal U(1)-connections in its entirety, we have been able to
provide a quantum framework which describes all of these topological features in a coherent manner. In the
following we briefly comment on the relation of our constructions and results to these physical aspects of
electromagnetism.

To discuss the Aharonov-Bohm effect, we recall the main aspects of [SDH12, Example 3.1] (see also
[LRT78] for an early account of the Aharonov-Bohm effect in the algebraic framework): Consider as a
globally hyperbolic spacetime M the Cauchy development in 4-dimensional Minkowski spacetime of the
time-zero hypersurface {0} × R3 with the z-axis removed. The (necessarily trivial) principal U(1)-bundle
over M̂ pulls back to a trivial principal U(1)-bundle over M . One has H1

dR(M, g) 6= {0} and, choosing the
trivial connection as a reference, H1

dR(M, g) can be spanned by the on-shell vector potential idϕ ∈ Ω1(M, g),
with ϕ being the azimuthal angle around the z-axis in cylindrical coordinates (t, ρ, ϕ, z) on M . Here the
z-axis represents an infinitely thin coil whose magnetic flux Φ through the plane perpendicular to the coil can
be encoded in the vector potential i Φ

2πdϕ. The gauge invariant affine functionals (2.1) introduced in [BDS13]
can not distinguish connections with the different gauge potentials i Φ

2πdϕ, Φ ∈ R, and are thus not sufficient
to measure this flux, cf. [BDS13, Remark 4.5]. The exponential observables (3.1) solve this problem and
further shortcomings in previous treatments of the subject. On the one hand, they contain Aharonov-Bohm
observables which in contrast to the ones in [Dim92, Pfe09, SDH12, FS13] are fully gauge invariant and
measure the phase exp iΦ rather than the flux Φ itself. This is consistent with and, indeed, reproduces the
Aharonov-Bohm experiment. On the other hand, they are regular enough for quantization, in contrast to
Aharonov-Bohm observables of Wilson-loop type. In fact, they can be considered as regularized Wilson loops,
cf. Remark 3.3.

In [DL12] it has been found that the sensitivity of electromagnetism to H2
dR(M) (and Hm−2

dR (M)) leads
to a failure of the locality axiom in locally covariant quantum field theory as introduced in [BFV03]. This
has been confirmed in [SDH12, BDS13] and in Proposition 4.8 of this work and ascribed to the Gauss law in
[SDH12]. To understand this in view of our results, we introduce a few notions.

Definition 6.1. An electric charge observable is a gauge invariant functional of exponential typeWϕ, with
ϕ = F∗(ζ), ζ ∈ Ω2

0,d(M, g∗) and 0 6= [ζ] ∈ H2
0 dR(M, g∗). An electrically charged configuration is an

on-shell connection, i.e. λ ∈ Γ∞(C(Ξ)) and MW(λ) = 0, such that there exists an electric charge observable
with Wϕ(λ) 6= 1. In the notation of Section 5, for any object M in Sub

Ξ̂
a material electric charge

observable is an electric charge observable Wϕ, such that 0 6= [ϕ] ∈ Ker
Ξ̂

(M). A materially electric
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charged configuration is an on-shell connection λ, such that for some material electric charge observable
Wϕ(λ) 6= 1.

It is easy to prove that no materially electric charged configuration on M can be extended from M to M̂ .
Thus, all of these configurations are unphysical in pure electromagnetism and have to be discarded. In an
interacting theory including charged matter fields, these configurations can be interpreted as the connections
sourced by an electric current density located in M̂ \M , cf. [SDH12, Example 3.7]. Consequently, all material
electric charge observables have to be discarded by taking an appropriate quotient as in Theorem 5.2, since
they do not measure anything in pure electromagnetism. In view of Remark 5.4, one may say that this quotient
gives for each region M of an arbitrary but fixed spacetime M̂ the correct, full algebra of observables of
this region in pure electromagnetism. In this respect Theorem 4.9 can be interpreted as to imply that it is
mathematically impossible to construct the correct algebra of observables of a region of spacetime in pure
electromagnetism without knowing a priori the whole spacetime. In the counterexample constructed in the
proof of this theorem, considering three objects Ξi, i = 1, 2, 3, and two morphisms fj : Ξ3 → Ξj , j = 1, 2, in
G−PrBuGlobHyp, the electric charge observables on M3 are material with respect to M2 but not with respect
to M1. Thus, they might or might not belong to the correct algebra of observables depending on whether M2

or M3 is the whole spacetime. We expect that this problem disappears in an interacting theory containing
matter field currents, see also [SDH12, Remark 4.15].

By starting from a smaller algebra which does not contain Aharonov-Bohm observables, it is possible
to construct a quantum field theory functor on the full category G−PrBuGlobHyp that satisfies the locality
property, cf. [BDS13, Theorem 7.3]. In the context of the counterexample constructed in the proof of
Theorem 4.9, this implies to discard all electric charge observables on M3, even if they might be indispensable
observables in pure electromagnetism depending on the nature of the whole spacetime. Hence, the result in
[BDS13, Theorem 7.3] seems mathematically very pleasing, but it is not satisfactory from the physical point
of view.
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A CCR-representations of generic presymplectic Abelian groups

In this appendix we discuss the generalization of the theory of Weyl systems and CCR-representations from
symplectic vector spaces to generic presymplectic Abelian groups. For the case of symplectic vector spaces the
theory of CCR-representations is well understood and details can be found in the textbooks [BGP07, BR96].
The generalization to presymplectic vector spaces has been studied in [BHR04] and CCR-representations of
presymplectic Abelian groups appeared in [M+73]. We will first review the results of Manuceau et al. [M+73]
and afterwards provide some further constructions which are essential for locally covariant quantum field
theory.

Definition A.1. (i) A presymplectic Abelian group is a tuple (B, τ), where B is an Abelian group1 and
τ : B×B → R is an antisymmetric map, such that τ(b, · ) : B → R , b′ 7→ τ(b, b′) is a homomorphism
of Abelian groups, for all b ∈ B.

1 We denote the group operation by +, the identity element by 0 and the inverse of b ∈ B by −b
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(ii) The category PAG consists of the following objects and morphisms: An object is a presymplectic
Abelian group (B, τ). A morphism φ : (B1, τ1)→ (B2, τ2) is a group homomorphism (not necessarily
injective) that preserves the presymplectic structures, i.e. τ2 ◦ (φ× φ) = τ1.

(iii) The category PAGinj is the subcategory of PAG where all morphisms are injective.

To any object (B, τ) in PAG we can associate a unital ∗-algebra over C as follows: Consider the C-
vector space ∆(B, τ) that is spanned by a basis W (b), b ∈ B. Any element in ∆(B, τ) is of the form
a =

∑N
i=1 αiW (bi), where αi ∈ C and bi ∈ B, for all i = 1, . . . , N . We can assume without loss of

generality that all bi’s are different in expressions like this one. We define the structure of an associative unital
algebra on ∆(B, τ) by, for all b, c ∈ B,

W (b)W (c) := e−i τ(b,c)/2W (b+ c) . (A.1)

Notice that W (0) = 1 is the unit element. We further define a ∗-structure on ∆(B, τ) by W (b)∗ := W (−b),
for all b ∈ B, and we notice that this turns ∆(B, τ) into a unital ∗-algebra over C. All W (b) are unitary.

Given a morphism φ : (B1, τ1)→ (B2, τ2) in PAG we can construct a unital ∗-algebra homomorphism
between ∆(B1, τ1) and ∆(B2, τ2) as follows: Define for any element a =

∑N
i=1 αiW1(bi) ∈ ∆(B1, τ1),

∆(φ)(a) :=
∑N

i=1 αiW2(φ(bi)). Then ∆(φ) : ∆(B1, τ1)→ ∆(B2, τ2) is clearly a C-linear map and also a
unital ∗-algebra homomorphism, since φ is a group homomorphism preserving the presymplectic structures.
Notice that for the identity morphism id(B,τ) in PAG we have that ∆(id(B,τ)) = id∆(B,τ). Furthermore, given
two composable morphisms φ1 : (B1, τ1) → (B2, τ2) and φ2 : (B2, τ2) → (B3, τ3) in PAG it is easy to
check that ∆(φ2 ◦ φ1) = ∆(φ2) ◦∆(φ1). Hence, ∆ : PAG→ ∗Alg is a covariant functor, where the category
∗Alg consists of unital ∗-algebras over C as objects and unital ∗-algebra homomorphisms (not necessarily
injective) as morphisms. It is easy to see that ∆ restricts to a covariant functor ∆ : PAGinj → ∗Alginj, where
∗Alginj is the subcategory of ∗Alg where all morphisms are injective.

For constructing a suitable C∗-completion of ∆(B, τ) we follow the strategy of [M+73] and introduce as
an intermediate step a ∗-Banach algebra. Let us consider the ∗-norm ‖ · ‖Ban : ∆(B, τ)→ R+ defined by∥∥∥ N∑

i=1

αiW (bi)
∥∥∥Ban

:=
N∑
i=1

|αi| . (A.2)

We denote the completion of ∆(B, τ) by ∆Ban(B, τ) and notice that it is a unital ∗-Banach algebra. A
generic element in ∆Ban(B, τ) is of the form a =

∑∞
i=1 αiW (bi), with αi ∈ C and bi ∈ B, such that∑∞

i=1 |αi| <∞.
Given a morphism φ : (B1, τ1) → (B2, τ2) in PAG we note that ∆(φ) : ∆(B1, τ1) → ∆(B2, τ2)

is bounded by 1, i.e. ‖∆(φ)(a)‖Ban
2 ≤ ‖a‖Ban

1 , for all a ∈ ∆(B1, τ1). Hence, there exists a unique
continuous extension of ∆(φ) to the completions, which we denote by the symbol ∆Ban(φ) : ∆Ban(B1, τ1)→
∆Ban(B2, τ2). If the morphism φ is in PAGinj, then ∆(φ) is an isometry, i.e. ‖∆(φ)(a)‖Ban

2 = ‖a‖Ban
1 for

all a ∈ ∆(B1, τ1). In this case ∆Ban(φ) is an isometry and hence in particular injective. Furthermore,
given two composable morphisms φ1 : (B1, τ1) → (B2, τ2) and φ2 : (B2, τ2) → (B3, τ3) in PAG it is
easy to check that ∆Ban(φ2 ◦ φ1) = ∆Ban(φ2) ◦∆Ban(φ1). Hence, ∆Ban : PAG → B∗Alg is a covariant
functor, where the category B∗Alg consists of unital ∗-Banach algebras as objects and unital ∗-Banach algebra
homomorphisms (not necessarily injective) as morphisms. Notice that ∆Ban restricts to a covariant functor
∆Ban : PAGinj → B∗Alginj, where B∗Alginj is the subcategory of B∗Alg where all morphisms are injective.

In the following we shall require states on the ∗-Banach algebras ∆Ban(B, τ), i.e. continuous positive
linear functionals ω : ∆Ban(B, τ)→ C satisfying ω(1) = 1. The following proposition, which is proven in
[M+73, Proposition (2.17)], will be very helpful in constructing such states:

Proposition A.2. Any positive linear functional on ∆(B, τ) extends to a continuous positive linear functional
on ∆Ban(B, τ).

There exists a faithful state on ∆Ban(B, τ), which can be seen as follows: Let us define a positive linear
functional ω : ∆(B, τ)→ C by ω(W (b)) = 0, if b 6= 0, and ω(W (0)) = ω(1) = 1. By Proposition A.2 we
can extend ω to a continuous positive linear functional on ∆Ban(B, τ) (denoted by the same symbol), which
satisfies ω(1) = 1, hence it is a state. This state is faithful, i.e. ω(a∗a) > 0 for any a ∈ ∆Ban(B, τ), a 6= 0.
The existence of a faithful state allows us to define the following C∗-norm on ∆Ban(B, τ).
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Definition A.3. Let F be the set of states on ∆Ban(B, τ). The minimal regular norm on ∆Ban(B, τ) is
defined by, for all a ∈ ∆Ban(B, τ),

‖a‖ := sup
ω∈F

√
ω(a∗ a) . (A.3)

The completion of ∆Ban(B, τ) (or equivalently ∆(B, τ)) with respect to the minimal regular norm is denoted
by CCR(B, τ). Then CCR(B, τ) is a unital C∗-algebra (cf. [M+73]).

Proposition A.4. Let φ : (B1, τ2)→ (B2, τ2) be a morphism in PAG. Then there exists a unique continuous
extension CCR(φ) : CCR(B1, τ1)→ CCR(B2, τ2) of ∆Ban(φ) (and hence also of ∆(φ)).

Proof. We have to prove that there exists C ∈ R, such that ‖∆Ban(φ)(a)‖2 ≤ C ‖a‖1, for all a ∈
∆Ban(B1, τ1). The existence and uniqueness of a continuous extension then follows by standard exten-
sion theorems. We obtain by a straightforward calculation

‖∆Ban(φ)(a)‖2 = sup
ω∈F2

√
ω
(
∆Ban(φ)(a∗ a)

)
≤ sup

ω′∈F1

√
ω′(a∗ a) = ‖a‖1 , (A.4)

where in the second step we have used that ω ◦∆Ban(φ) ∈ F1. Hence, C = 1.

Let us denote byC∗Alg the category whose objects are unitalC∗-algebras and whose morphisms are unital
C∗-algebra homomorphisms (not necessarily injective). The first main result of this appendix is summarized
in the following

Theorem A.5. CCR : PAG→ C∗Alg is a covariant functor.

It remains to show that CCR restricts to a covariant functor CCR : PAGinj → C∗Alginj, where C∗Alginj

is the subcategory of C∗Alg where all morphisms are injective. Notice that for a morphism φ : (B1, τ1)→
(B2, τ2) in PAGinj the morphism CCR(φ) : CCR(B1, τ1)→ CCR(B2, τ2) would be an isometry (in particular
injective) if we could prove that for any ω′ ∈ F1 there exists a ω ∈ F2, such that ω ◦∆Ban(φ) = ω′. Due
to Lemma A.2 it is sufficient to prove that for any normalized positive linear functional ω′ on ∆(B1, τ1)
there exists a normalized positive linear functional ω on ∆(B2, τ2), such that ω ◦∆(φ) = ω′. On the image
∆(φ)[∆(B1, τ1)] ⊆ ∆(B2, τ2) we can invert ∆(φ) since it is injective and hence arrive at the following
extension problem: Does there exist a positive linear functional ω : ∆(B2, τ2)→ C extending ω′ ◦∆(φ)−1 :
∆(φ)[∆(B1, τ1)]→ C? Indeed, such an extension can be found by applying the positive-cone version of the
Hahn-Banach Theorem, see e.g. [Edw65, Theorem 2.6.2].

Proposition A.6. Let φ : (B1, τ1) → (B2, τ2) be a morphism in PAGinj. Then there exists for any positive
linear functional ω̃ : ∆(φ)[∆(B1, τ1)] → C an extension ω : ∆(B2, τ2) → C that is a positive linear
functional on ∆(B2, τ2).

Proof. Let us denote by H := {a ∈ ∆(B2, τ2) : a∗ = a} and H̃ := {a ∈ ∆(φ)[∆(B1, τ1)] : a∗ = a} the
R-vector spaces of hermitian elements. Notice that 1 ∈ H̃ ⊆ H . The given positive linear functional ω̃
restricts to a positive R-linear functional (denoted by the same symbol) ω̃ : H̃ → R. By [Edw65, Theorem
2.6.2] we can extend ω̃ to a positive linear functional ω : H → R, provided that for each element h ∈ H
there exists at least one h̃ ∈ H̃ , such that h̃ − h is in the positive cone K 2. This condition is satisfied
for the following reason: Any h ∈ H can be expressed as a finite sum of the basic hermitian elements
hα,b := αW2(b) + αW2(−b), with α ∈ C, b ∈ B2 and · denotes complex conjugation. Hence, it is sufficient
to prove that for any α ∈ C and b ∈ B there exists h̃ ∈ H̃ , such that h̃−hα,b ∈ K. Defining a := 1−αW2(b)
we find a∗a = (1 + αα)1− hα,b and thus h̃− hα,β ∈ K for h̃ = (1 + αα)1.

The positive linear functional ω : H → R which is obtained by this extension procedure is further extended
to ∆(B2, τ2) as follows: For any a ∈ ∆(B2, τ2) we define the real and imaginary part by aR := (a+ a∗)/2
and aI := (a − a∗)/2i. Notice that aR, aI ∈ H . We then extend ω to a C-linear map on all of ∆(B2, τ2)
by defining ω(a) := ω(aR) + i ω(aI). It is easy to see that this is an extension of ω̃, which completes the
proof.

2 The positive cone here is the subset K ⊂ H consisting of finite sums of elements β a∗a, with β > 0 and a ∈ ∆(B2, τ2).
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Corollary A.7. For any morphism φ : (B1, τ1) → (B2, τ2) in PAGinj the map CCR(φ) : CCR(B1, τ1) →
CCR(B2, τ2) of Proposition A.4 is an isometry. In particular, CCR(φ) is an injective unital C∗-algebra
homomorphism.

The second main result of this appendix is summarized in the following

Theorem A.8. CCR : PAGinj → C∗Alginj is a covariant functor.
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