
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 13/11

Matthias Bolten, Marco Donatelli, Thomas Huckle, Christos
Kravvaritis

Generalized grid transfer operators for multigrid
methods applied on Toeplitz matrices

July 2013

http://www-ai.math.uni-wuppertal.de



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
BIT manuscript No.
(will be inserted by the editor)

Generalized grid transfer operators for multigrid methods
applied on Toeplitz matrices

Matthias Bolten · Marco Donatelli ·
Thomas Huckle · Christos Kravvaritis

Abstract In this paper we discuss classical sufficient conditions to be satisfied from
the grid transfer operators in order to obtain optimal two-grid and V-cycle multi-
grid methods utilizing the theory for Toeplitz matrices. We derive relaxed conditions
that allow for the construction of special grid transfer operators that are computa-
tionally less expensive while preserving optimality. Especially we allow to use rank
deficient grid transfer operators. In this case the use of an intermediate iteration as
a pre-smoother that is lacking the smoothing property is proposed. Such an interme-
diate iteration is necessary if the used smoother does not remove error components
relative to the nullspace of the grid transfer operator. Combining these new rank de-
ficient grid transfer operators with the intermediate iteration we obtain a substantial
reduction of the convergence rate compared with the classical choice for Toeplitz
matrices.

Using high-order polynomials as generating symbols for the system matrix and/or
the grid transfer operators usually destroys the Toeplitz structure on the coarser levels.
We discuss some effective and computational cheap coarsening strategies found in
the literature. For the case of Toeplitz matrices with a zero of order two (like the
Laplacian) we prove the optimality of the V-cycle for these strategies, while for the
high-order operators considered in the paper we present numerical results showing
near-optimal behavior while keeping the Toeplitz structure on the coarser levels.
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1 Introduction

Multigrid methods are well-known to be optimal methods for a variety of problems,
including, but not limited to the solution of partial differential equations. The con-
vergence of these methods has been studied from the very beginning by Fedorenko
[8] and Bakhvalov [3], and later by various authors including Hackbusch [11,12,13],
Ruge and McCormick [17], McCormick [16], and many others. Different tools ex-
ist for the analysis of multigrid methods, one of the most important being the local
Fourier analysis (LFA). In [25] a practical guide to the use of the LFA is presented. A
good overview over multigrid in general and the available theory is given in [23]. The
classical convergence theory is based on the smoothing property that has to be ful-
filled by the smoothing iteration and the approximation property that the coarse grid
correction has to satisfy. Based on this theory the convergence of a two-grid method
(TGM) and also of the W-cycle can be shown easily. In the case of variational prob-
lems where the coarse grid operator fulfills the Galerkin-condition, the coarse grid
correction has a minimization property and the convergence of the V-cycle can be
shown straightforwardly [17].

In this paper, we are dealing with multigrid methods for Toeplitz and circulant
matrices. The theory is based on the classical algebraic multigrid (AMG) theory that
is presented, e.g., in [19], and can be considered as a generalization of the classical lo-
cal Fourier analysis (see [7]). Multigrid for Toeplitz matrices goes back to Fiorentino
and Serra-Capizzano [9,10] and was investigated by many others [4,6,15,22]. The
convergence of the two-grid method for Toeplitz matrices has been studied in more
detail by Serra-Capizzano [21]. The optimality of the V-cycle for certain matrices
from matrix algebras was proved in [2] and extended in [1]. The class of Toeplitz ma-
trices is a useful framework that allows to deal also with constant coefficient PDEs,
cf. [7].

A classical request on the grid transfer operators is that they have to be full rank
when the Galerkin approach is applied (as positivity of the LF orders is required [26]).
In this paper we show that also rank deficient projectors can be considered if a proper
pre-smoother, or better an intermediate iteration [20], is added that has to remove
error components relative to the kernel of the projector. We discuss in detail practi-
cal conditions to design effective grid transfer operators. According to the proposed
analysis, we provide some examples of rank deficient projectors that reduce the com-
putational cost of classic projectors (e.g. interpolation operators) without spoiling the
convergence.

On the other hand, the classical optimality conditions guarantee a constant con-
vergence rate, which could be very large in practice if the projector is not chosen
properly. Hence, we add a further simple condition on the projector to ensure fast
convergence.

We show by numerical examples that our proposal, which combines a new rank
deficient grid transfer operator with an intermediate iteration, halves the convergence
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 3

rate with respect to the classical choices for Toeplitz matrices. Moreover, the com-
putational cost of each iteration is reduced because the projector is sparser than the
common choice. For the specific case of Toeplitz matrices, we prove that when the
symbol has a zero of order two (like the Laplacian) the V-cycle is optimal and all the
different proposals in the literature [2,4,15] are equivalent. For higher order projec-
tors the Galerkin strategy destroys the Toeplitz structure at the coarser levels, thus
we discuss some effective and computational cheap coarsening strategies that main-
tain the Toeplitz structure. The numerical experiments show that our proposal, the
new rank deficient grid transfer operator combined with an intermediate iteration, is
very effective for the strategy proposed in [2] for preserving the Toeplitz structure by
changing the cutting matrix.

The paper is organized as follows. In Section 2 we describe multilevel Toeplitz
and circulant matrices and multigrid methods for these classes of matrices. In Sec-
tion 3 we study the two-grid and V-cycle convergence obtaining new optimality con-
ditions that are discussed with a 1D example in Section 4. Using the new optimality
conditions in Section 5 we define new effective and computationally cheap projectors
for elliptic PDEs. In Section 6 we discuss different coarsening strategies for Toeplitz
matrices and Section 7 is devoted to concluding remarks.

2 Multigrid methods for Toeplitz matrices

Let f : Rd → R be a continuous function and suppose that f has period 2π with
respect to each variable. Let 〈 · | · 〉 denote the usual scalar product. The Fourier coef-
ficients of f are

a j =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈 j|x〉 dx, i2 =−1, j ∈ Zd ,

and they enjoy the relation a− j = ā j for every j ∈ Zd . From the coefficients a j one
can build [24] the sequence {Tn( f )}, n ∈ Nd , of multilevel Toeplitz matrices of size
N = N(n) = ∏d

r=1 nr. Every matrix Tn( f ) is explicitly written as

Tn( f ) = ∑
| j1|6n1−1

. . . ∑
| jd |6nd−1

a jJ
[ j1]
n1 ⊗·· ·⊗ J[ jd ]nd ,

where ⊗ denotes the usual tensor product. If n, j ∈ Z then J[ j]n ∈ Rn×n is the matrix
whose entry (s, t) equals 1 if s− t = j and is 0 elsewhere. From the identity a− j = ā j
for every j, it follows that the matrices Tn( f ) are Hermitian for every n. Moreover, if
f ≥ 0 then Tn( f ) is positive definite. In the following, we assume that f ≥ 0 with at
least one zero of finite order.

Multilevel circulant matrices are a subset of multilevel Toeplitz matrices that
are simultaneously diagonalized by the multidimensional discrete Fourier transform.
For n ∈ N, the Fourier matrix of order n is Fn = [exp(−i jy(n)k )]k, j/

√
n, where y(n)k =

2πk/n, k = 0, . . . ,n−1. The d-dimensional Fourier matrix is defined by tensor prod-
uct as Fn = Fn1 ⊗·· ·⊗Fnd . Let Dn( f ) = diag( f (y[n])) be the diagonal matrix where
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4 Matthias Bolten et al.

y[n] = y(n1)×·· ·× y(nd). The multilevel circulant matrix generated by f is

Cn( f ) = FnDn( f )FH
n .

It is immediate to see that Cn( f ) is ill-conditioned if f has zeros in [−π,π]d and is
singular if the zeros contain a grid point of y[n].

In the following, we consider circulant matrices for the theoretical analysis im-
plied by the algebra structure and we consider Toeplitz matrices for practical appli-
cations.

Multigrid methods for circulant and Toeplitz matrices are usually based on the
Galerkin approach. The grid transfer operator is defined by combining a down-sam-
pling operator with a circulant or Toeplitz matrix that selects the subspace on which
the error equation is projected. We set n = n(0) > n(1) > · · ·> n(m) > 0, m ∈ N, such
that n(i+1) = (n(i)− (n(i) mod2))/2 where the operations and relations are intended
componentwise. In the one-dimensional case, we define the down-sampling matrix
Kn(i) ∈ Rn(i+1)×n(i) as

[Kn(i) ] j,k =

{
1 if j = 2k− (n(i)+1)mod2,
0 otherwise,

k = 1, . . . ,n(i).

In the d-dimensional case the down-sampling matrix is defined by the tensor product
Kn(i) = K

n(i)1
⊗K

n(i)2
⊗ ·· ·⊗K

n(i)d
. For circulant matrices we fix n = 2α , α ∈ Nd , and

the restriction/projection operators are defined as

Pn(i)(pi) = Kn(i)Cn(i)(pi), i = 0, . . . ,m−1

where pi is a trigonometric polynomial that will be chosen later. For the Galerkin
approach the prolongations are Pn(i)(pi)

H and the coarse matrices are

An(i+1) = Pn(i)(pi)Cn(i)( fi)Pn(i)(pi)
H ,

for i= 0, . . . ,m−1. For Toeplitz matrices a natural choice is n= 2α−1 and Pn(i)(pi)=
Kn(i)Tn(i)(pi). Other coarsening strategies will be discussed in Section 6.

To compute the coarse matrices and to give theoretical convergence results, it is
usefull to define the set of all corners of x ∈ Rd as

Ω(x) = {y |y j ∈ {x j, π + x j}, j = 1, . . . ,d},
this is the set of all frequencies on the fine grid that correspond to the same frequency
on the coarse grid. Moreover, we define the set of the mirror points of x as M (x) =
Ω(x) \ {x}. Now, let An = Cn( f ) and f0 = f . For i = 0, . . . ,m− 1 the coarse matrix
satisfies

An(i+1) = Pn(i)(pi)Cn(i)( fi)Pn(i)(pi)
H =Cn(i+1)( fi+1),

where
fi+1(x) =

1
2d ∑

y∈Ω(x/2)
|pi|2 fi(y), x ∈ [−π,π]d . (2.1)

Here, the pi should be chosen according to the following theorem for obtaining op-
timal two-grid or V-cycle methods. By optimality we refer to the property that the
spectral radius of the iteration matrix is bounded by a constant independent of n and
each iteration has computational cost proportional to the matrix-vector product.
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 5

Theorem 2.1 Let the coefficient matrix be An = Cn( f ) with f having a unique zero
at x0. Further assume that one step of a post-smoother with iteration matrix

Spost
n(i)

= I−ωpost
i An(i) , ωpost

i ∈
(

0,
2
‖ fi‖∞

)
,

is applied, where the optimal choice, which gives the smallest convergence rate, is
ωpost

i = 1/‖ fi‖∞.
Define for i = 0, . . . ,m− 1 the restriction Pn(i)(pi) = Kn(i)Cn(i)(pi), where pi is

a trigonometric polynomial not vanishing identically and such that for each x ∈
[−π,π]d

limsup
x→x0,y∈M (x)

|pi(y)|γ
fi(x)

= c <+∞, (2.2a)

where

∑
y∈Ω(x)

pi(y)2 > 0, (2.2b)

and An(i+1) = Pn(i)(pi)An(i)Pn(i)(pi)
H . Then

(i) the TGM (m = 1) is optimal if γ = 2,
(ii) the V-cycle is optimal if γ = 1.

Proof See [1,2,22].

For elliptic PDEs, in [7] the conditions (2.2) were compared with the classical
LFA showing that the TGM condition (2.2a) with γ = 2 is equivalent to the well-
known condition on the order of the grid transfer operator as formulated in [14].
Condition (2.2b) was not present in [14] because this paper used a rediscretization
approach at the coarse levels. Nevertheless condition (2.2b) is equivalent to a condi-
tion stated in [26] when the Galerkin approach is used. The V-cycle conditions are
analogous to the conditions obtained in [18].

3 New optimality conditions

In this section we discuss the conditions (2.2) and we show how they can be relaxed
preserving the optimality. Furthermore, we show that a pre-smoother, called also in-
termediate iteration according to [20], which should depend on the projection can be
useful to accelerate the convergence. Since the theoretical optimality could be nu-
merically obtained only for a huge number of iterations, we add a further condition
on the projector in order to ensure fast convergence. In conclusion, at the end of the
analysis in the present section, we replace the conditions (2.2) with new conditions
to derive an effective and efficient multigrid method.

For the sake of notational simplicity, in the following analysis we omit the sub-
script i from pi, fi etc. and we add the subscript c for the next coarser level, e.g., fc
for the symbol fi+1 of the coarse grid operator, since we work only with a fixed level
i. We refer by N (M) to the null space of a matrix M.
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6 Matthias Bolten et al.

We use the Galerkin approach and so we discuss in detail the condition (2.2b). If
it is not satisfied then Pn(p) is not full-rank and so Ac is not invertible. This implies
that at the coarsest level, where the system is solved directly, we have to use a solver
for a singular linear system, e.g. the minimum norm least squares solution. But note
that the rank deficient projection is also applied on the right hand side and therefore
the singular linear system is solvable. Moreover, the smoother has to be especially
effective in N (Pn(p)) because the coarse grid correction does not reduce the error in
such a subspace.

From the two-grid analysis, the two quantities
∣∣∣∣∣

p(yr)p(ys)√
f (yr) f (ys)∑y∈Ω(x) p2(y)

∣∣∣∣∣ for r 6= s (3.1)

and ∣∣∣∣∣
∑y∈M (ys) p2(y)

f (ys)∑y∈Ω(x) p2(y)

∣∣∣∣∣ for r = s (3.2)

have to be bounded for all x ∈ Rd , where yr,ys ∈ Ω(x) (see [21]). Therefore, (2.2b)
should be satisfied in order to avoid additional zeros in the denominator. Now we
relax this condition allowing additional zeros. Given f : Rd → R and x0 ∈ Rd such
that f (x0) = 0, we define δ ( f (x0)) = r where

limsup
x→x0

f (x0)

(x− x0)r = c, 0 < c <+∞.

If the condition (2.2b) is violated for some x1 6∈Ω(x0), i.e., p(y)= 0 for all y∈Ω(x1),
we fix δmin = miny∈Ω(x1) δ (p(y)). Since x1 6∈ Ω(x0), we have that f (yr) 6= 0 and
f (ys) 6= 0 for yr,ys ∈ Ω(x1), otherwise the condition (2.2a) is violated. Moreover,
δ (∑y∈Ω(x1) p2(y)) = δ 2

min while δ (p(yr)p(ys)) = δ (p(yr))δ (p(ys))≥ δ 2
min and hence

(3.1) is bounded. Similarly, also (3.2) is bounded because M (ys) = Ω(x1) \ {ys}
for ys ∈ Ω(x1). On the other hand, the condition (2.2b) can not be violated for a
x1 ∈ Ω(x0), because ys = x0 belongs to Ω(x1) thus f (ys) = 0 and hence the two
quantities in (3.1) and (3.2) could be unbounded.

Nevertheless, the projector does not have full rank and the null space of the pro-
jector N (Pn(p)) is spanned by the eigenvectors associated to the points in Ω(x1),
where x1 is the point violating (2.2b). For these vectors the coarse grid correction
can not be effective at all, so the smoother has to reduce the corresponding error
components.

For the V-cycle optimality, in (3.1) the function p has to be replaced with p f 1/2

(see Proposition 4 in [1]), but the same arguments as above hold true. Further, because
of the rank deficient projection the coarse grid operator has an additional zero that has
to be taken care of in the recursive application of the multigrid cycle.

For both, the two-grid method and the multigrid methods, it is therefore feasible
to nullify the error components collinear to N (Pn(p)). This can be done, e.g., by
applying a special smoothing procedure as outlined below. We can summarize the
previous discussion as follows:
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 7

Remark 3.1 The condition (2.2b) has to be satisfied only at x = x0 and if it is violated
at x1 6= x0 then fc has a further zero with respect to f and the smoother has to nullify
the error, or at least to be very effective, in the subspace generated by the eigenvectors
associated to the eigenvalues f (y) for y ∈ Ω(x1), i.e., in the subspace generated by
the corresponding Fourier frequencies. However, if the smoother nullifies the error in
the corresponding subspace, at the coarser level we do not have to take care of the
ill-conditioned subspace related to the new zero because in this subspace the error
has already been removed by the smoother on the finer level. This will be discussed
in detail in the Example 5.1 in Section 5.2.

We study explicitly the 1D case. Assume that the condition (2.2b) is not satisfied
at a point x̂ j =

2π j
n , assume j < n/2 without loss of generality, then

p(x̂ j) = p(x̂ j+n/2) = 0. (3.3)

Since KnFn =
1√
2

[
Fn/2 | Fn/2

]
, the restriction is

Pn(p) = KnFnDn(p)FH
n

=
1√
2

[
Fn/2 | Fn/2

][D1
D2

]
FH

n

=
1√
2

[
Fn/2D1 | Fn/2D2

]
FH

n

where D1 = diag[p( 2π j
n )]

n
2−1
j=0 and D2 = diag[p( 2π j

n )]n−1
j= n

2
. The equation (3.3) implies

that the jth columns of D1 and D2 are zero and thus the jth and the ( j + n/2)th
columns of [Fn/2D1 |Fn/2D2] are zero, as well. Therefore, Pn(p)Fne j =Pn(p)Fne j+n/2 =
0 and thus the jth and the ( j + n/2)th columns of Fn, i.e., the frequencies corre-
sponding to Ω(x̂ j) where x̂ j is the point that violates the condition (2.2b), belong to
N (Pn(p)).

In the previous discussion and Remark 3.1, we have shown that the condition
(2.2b) can be relaxed. In the opposite direction, in the following we show that to
define an effective multigrid method the value of p at x0 is crucial.

Remark 3.2 Condition (2.2a) requires that p vanishes at M (x0), while condition
(2.2b), also in the form of Remark 3.1, requires that p(x0) > 0. From a practical
point of view, the value of p at x0 is important like its value at the mirror points
M (x0). Indeed, if p(x0) = 0 the coarser symbol fc has a zero of higher order at 2x0

and the multigrid method can not be optimal; while if p(x0) 6= 0 the conditioning of
the coarse problems depends on f (r)c (2x0), where r is the order of x0 and the condi-
tioning is proportional to 1/ f (r)c (2x0). Therefore, maximizing f (r)c (2x0) according to
(2.1), we should choose p such that it holds

|p(x0)|= max
x∈[−π,π]d

|p(x)|, (3.4)

thus the ill-conditioning of fc does not increase compared to f . This is confirmed
also by the numerical experiments in Section 4. The condition (3.4) implies that the
condition (2.2b) is automatically satisfied for x = x0, otherwise p is the zero function.
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8 Matthias Bolten et al.

In conclusion, we suggest to replace the conditions (2.2) with the following:

NEW CONDITIONS:

limsup
x→x0,y∈M (x)

|pi(y)|γ
fi(x)

= c <+∞, γ =

{
2 for TGM
1 for V-cycle (3.5a)

|pi(x0)|= max
x∈[−π,π]d

|pi(x)|, (3.5b)

If ∃x ∈ [0,π]d , s.t. ∑y∈Ω(x) pi(y)2 = 0, then add a pre-smoother Spre
n(i)

s.t.

(
d⊗

k=1

Fnk

)(
d⊗

k=1

eIk

)
∈N (Spre

n(i)
), where Ik = argmin

j=0,...,n(i)k −1

∥∥∥∥∥xk−
2π j

n(i)k

∥∥∥∥∥
∞

. (3.5c)

In practice, the condition (3.5c) is not necessary for obtaining an optimal method,
because the new condition (3.5b) states that the frequencies from the null space of
the prolongation do not belong to the near null space of the system matrix. However,
the addition of a pre-smoother that satisfies the condition (3.5c) could greatly speed
up the convergence (cf. Example 5.1). Such a pre-smoother iteration does not work
exactly as smoother, but according to the terminology of the multi-iterative methods
in [20], it is an intermediate (or residual) iteration that allows to ignore the newly
introduced zero on the coarse grid. Of course such a pre-smoother has to preserve
the convergence of the whole iteration, even if it is not necessary that it is convergent
when applied alone (like it happens for the coarse grid correction), even a divergent
method can be used, cf. Example 5.1.

4 A set of 1D projectors

In this section we give an analytic and numerical evidence of the importance of the
new conditions (3.5), in particular (3.5b), with respect to the classical conditions
(2.2). To do that we consider the 1D Laplacian with the symbol f (x) = 2−2cos(x).
It is well-known that the full-weighting and the linear interpolation give an optimal
V-cycle. According to condition (2.2a) p must have a zero at π in order to derive
an efficient coarse grid correction. On the other side p could have additional zeros.
Here, we want to discuss how additional zeros and the shape of p, in particular the
new condition (3.5b), affect the convergence of the multigrid algorithm.

We consider the set of projectors

pz(x) = 1+ zcos(x)+(z−1)cos(2x), z ∈ R, (4.1)

that have a zero at π of order at least 2 independent of z. Some special cases are:

1. p1 has only one zero of order two at π and it generates the full weighting projec-
tion which defines an optimal V-cycle as it is well-known. It satisfies the condi-
tions (3.5).
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Fig. 4.1 (a) pz(x) for x ∈ [0,π] and some values of z. (b) κ( fc) = ‖ fc‖∞/ f ′′c (0) varying z ∈ [−8,8] (note
that κ(0) = +∞).

2. p0 has two zeros at 0 and π , and so it violates the condition (2.2b) at the origin
and according to Remark 3.1 it does not define an optimal TGM. It violates also
the condition (3.5b).

3. p4/3 has a zero at π of order four and satisfies the conditions (3.5).
4. p2 vanishes at π and π

2 , thus the coarse function fc has an additional zero at π and
p2 violates the condition (2.2b) for x= π

2 , but this does not hinder the convergence
since the condition (3.5b) is satisfied.

We study pz varying z ∈ R and x ∈ [0,π]. Figure 4.1 (a) shows the graph of pz(x)
for x ∈ [0,π] and some choices of z. It holds that pz(x0) = 0 with x0 = arccos((z−
2)/(2z− 2)) for z < 0 or z > 4/3, while pz has only one zero at π of order two for
z ∈ (0,4/3). To estimate the maximum modulus of pz in [0,π] we compute

∂
∂x

pz(x) =−zsin(x)−2(z−1)sin(2x)

and we obtain that |pz(y0)|= maxx∈[0,π] |pz(x)| for

y0 =

{
arccos

(
z

4(1−z)

)
, z < 4

5 ,

0, otherwise.

It follows that for z≥ 4/5 the function pz has a maximum at the origin and a zero
at π of order at least 2. Therefore, pz with z ≥ 4/5 satisfies the new conditions (3.5)
and it defines an optimal V-cycle. For z > 4

3 the function pz is also negative and it
has a further zero at x0 = arccos((z−2)/(2(z−1)))> π/3, hence the pre-smoother
should be chosen according to condition (3.5c) .

It remains to study the multigrid optimality for z < 4/5. As discussed in the spe-
cial case 2. there is no convergence for z = 0. Then, the same also holds for z ≈ 0.
The effectiveness of the projector pz can be deduced from the ill-conditioning of the
coarse problem around the origin. Indeed, in such subspace the smoother at the finer
level can not nullify the error because also the finer problem is ill-conditioned in the
same subspace, i.e., the function f is close to zero. Note that fc vanishes at the origin
with order 2, except for z = 0 where the zero has order 4. Therefore, the coarse prob-
lem can be considered more ill-conditioned as fc is more flat around the origin and
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Fig. 4.2 (a) Two-cycle residual error after k = 1, ...,10 steps (∗) for different values of z. (b) Two-cycle
iterations for different values of z to reach residual error less than 10−10. Here, the values for z are chosen
as 0.8, 0.9, 1, 1.1, 1.2, 4/3, 1.4, 1.5, 2, 2.5.

the quantity
κ( fc) = ‖ fc‖∞/ f ′′c (0), z 6= 0 (4.2)

gives a measure of such ill-conditioning. For z = 0, it holds f ′′c (0) = 0 since the zero
has order four, giving an unbounded conditioning that agrees with the previous dis-
cussion for special case 2. Figure 4.1 (b) shows that for z < 0 the ill-conditioning
κ( fc) decreases with z. For z > 0 the ill-conditioning initially decreases with z and
around 2 it slowly increases with κ( fc)< 2 for z > 2 according to the previous anal-
ysis.

Example 4.1 We give now a numerical evidence of the previous discussion. Two
steps of damped Jacobi pre-and postsmoother were used for matrix size n = 210−1
and random right hand side. Figure 4.2 (a) shows the residual error after k = 1, ...,10
TGM steps for different values of z. We note that the behavior of the residual error
agrees with the previous analysis and in particular with the conditioning (4.2) plotted
in Figure 4.1 (b). Figure 4.2 (b) gives the number of iterations to reach residual er-
ror ≤ 10−10. Optimal convergence is obtained for z near 4/3, which gives the more
powerful projector according to the previous discussion and special case 3.

5 High order projectors for 2D elliptic PDEs

In this section we use the new conditions (3.5) to construct effective and compu-
tational cheap projectors for symbols with a zero at the origin. However, a similar
analysis can be performed for a generic zero in [0,π]d . The new projectors do not
satisfy the condition (2.2b), but they satisfy the new condition (3.5b). Moreover, Ex-
ample 5.1 will show that the addition of a pre-smoother according to the further
condition (3.5c) can noticeably accelerate the convergence.

Let us consider standard finite differences discretization for the following d-
dimensional problem

{
(−1)q ∑d

i=1
d2q

dx2q
i

u(x) = g(x), x ∈Ω = (0,1)d , q≥ 1,

boundary conditions on ∂Ω ,
(5.1)
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 11

where x = (x1, . . . ,xd). For q = 1 equation (5.1) is the Poisson equation, while for
q = 2 it is the biharmonic equation. Using centered finite differences of precision
two and minimal bandwidth, in the case of Dirichlet boundary conditions we obtain
a linear system with coefficient matrix An = Tn( f (q)) where

f (q)(x) =
d

∑
j=1

(2−2cos(xi))
q.

The functions f (q) are nonnegative and increasing in [0,π]d and they vanish at the
origin with order 2q. We discuss in detail the case d = 2, even if the same analysis
can be straightforwardly extended to d > 2.

5.1 B-spline projectors

Starting from the refinement equation of B-splines, in [7] the following choice for the
symbol of the projector has been proposed:

φm(x) =
2

∏
j=1

(
1+ e−ix j

2

)m

eix jbm
2 c. (5.2)

We note that φm vanishes at M (0) and it has minimum support among the func-
tions that vanish in such set with order at least m. This implies that Pn(φm) and the
coarse matrices with the Galerkin approach have minimum bandwidth. Furthermore,
|φm(0)|= maxx∈[−π,π]2 |φm(x)| and so φm satisfies the condition (3.5b).

For m = 1 we have explicitly

φ1(x) =
1
4

(
1+ e−ix1 + e−ix2 + e−i(x1+x2)

)
,

which is zero if and only if x1 = π or x2 = π . Hence it satisfies (2.2b). Let us consider
f (1) and the condition (2.2a). We have that

limsup
x→0

|φ1(x1,x2 +π)|
f (1)(x)

= limsup
x→0

|1+ e−ix1 − e−ix2 − e−i(x1+x2)|
4−2cos(x1)−2cos(x2)

= limsup
x→0

|2ix2 +O(x1 + x2)
2|

O(x2
1)+O(x2

2)
= +∞.

Similarly

limsup
x→0

|φ1(x1 +π,x2)|
f (1)(x)

= +∞.

On the other hand

limsup
x→0

|φ1(x1 +π,x2 +π)|
f (1)(x)

= limsup
x→0

|1− e−ix1 − e−ix2 + e−i(x1+x2)|
4−2cos(x1)−2cos(x2)

= limsup
x→0

|O(x1 + x2)
2|

O(x2
1)+O(x2

2)
= c, 0 < c <+∞.
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12 Matthias Bolten et al.

Therefore φ1 is very effective at (π,π), but it is not enough to obtain on optimal V-
cycle because the same does not hold at (0,π) and (π,0). However, φ1(x) is enough
to obtain the TGM optimality since

limsup
x→0

|φ1(y)|2
f (1)(x)

= c, y ∈ {(x1,x2 +π), (x1 +π,x2)}, 0 < c <+∞.

For m = 2 we have

φ2(x) =
1
2
(1+ cos(x1))(1+ cos(x2)),

which is the bilinear interpolation. The function φ2 is the square of φ1 up to a shift
factor and it is zero if and only if x1 = π or x2 = π . For f (1) the projector φ2 satisfies
the conditions (2.2) with γ = 1 and so it defines an optimal V-cycle as it is well-
known. On the other hand, if we apply φ2 to the biharmonic f (2), we have a similar
behavior as observed before when φ1 is applied to the Laplacian. Indeed, it holds

limsup
x→0

|φ2(y)|2
f (2)(x)

= c1 <+∞, y ∈ {(x1,x2 +π), (x1 +π,x2)},

limsup
x→0

|φ2(x1 +π,x2 +π)|
f (2)(x)

= c2 <+∞.

In general, for m = j, with j = 1,2, . . . , we have that

limsup
x→0

|φ j(y)|
x j

1 + x j
2

= c1 <+∞, y ∈ {(x1,x2 +π), (x1 +π,x2)},

limsup
x→0

|φ j(x1 +π,x2 +π)|
x2 j

1 + x2 j
2

= c2 +∞.

Roughly speaking, the function φ j has a zero at (π,π) of order 2 j and two zeros of
order j at (0,π) and (π,0). Geometrically, this follows from the fact that (π,π) is at
the intersection of two zero lines x1 = π and x2 = π .

To obtain higher order projectors it is possible to choose a larger m like proposed
in [7]. However, the previous analysis shows that the projector φ j needs to be im-
proved only at the mirror points (0,π) and (π,0), because the point (π,π) already
has a zero of double order.

5.2 Projectors with two zeros at (0,π) and (π,0)

According to the analysis in the previous subsection we look for a projector that
vanishes at (0,π) and (π,0) and not at (π,π), such that it can be combined (by mul-
tiplication) with φ j.



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 13

A first choice is the function q̃(x) = (2+ cos(x)− cos(y))(2− cos(x)+ cos(y)),
but we do not consider it in the following because it has the stencil

1
4




0 0 −1 0 0
0 2 0 2 0
−1 0 12 0 −1

0 2 0 2 0
0 0 −1 0 0



,

which is too large and therefore increases the number of the nonzero diagonals at the
coarse levels when combined with a Galerkin strategy.

Instead, we propose to use

q(x) = cos(x1)+ cos(x2),

which has a 3× 3 stencil. It holds q(x) = 0 if and only if x1 = π − x2, so it van-
ishes at (0,π) and (π,0). Since q(x) vanishes along the whole curve x1 = π − x2,
it does not satisfy the condition (2.2b) at the point (π

2 ,
π
2 ). Nevertheless, accord-

ing to Remark 3.1, we obtain again an optimal V-cycle convergence since f (1)(x)
and f (2)(x) do not vanish at (π

2 ,
π
2 ) and the condition (3.5b) holds. Moreover, we

can define a pre-smoothing iteration that is very effective in the middle frequencies
around (π

2 ,
π
2 ) such that the condition (3.5c) holds true. This can be done with a

proper choice of the Jacobi or Richardson relaxation parameter. The Richardson it-
eration matrix Sn(i) = I−ωiCn(i)( fi) has eigenvalues 1−ωi fi(2π j1/n(i),2π j2/n(i)),
j1, j2 = 0, . . . ,n(i)− 1. Hence, for ωi ∈ [0,2/‖ f‖∞] the method converges and satis-
fies the smoothing condition necessary for the optimality as shown in Theorem 2.1.
If we want to nullify the error at the frequency (Fn⊗Fn)(en/4⊗ en/4) to satisfy the
condition (3.5c), we can apply Richardson with ωpre

i = 1/ fi(
π
2 ,

π
2 ) as pre-smoother.

Example 5.1 Let us introduce an example to better clarify the previous discussion.
We consider the biharmonic operator having symbol f (2). As it is well-known and
according to the previous discussion, the bilinear interpolator φ2 is not enough to
obtain the V-cycle optimality. We consider the projector

p(x) = q(x)φ2(x), (5.3)

which satisfies the condition (2.2a) but not the condition (2.2b). Let fi be the symbol
at the level i = 0,1, . . . ,m, according to Theorem 2.1, we use Richardson as post-
smoother with ωpost

i = 1/‖ fi‖∞. Moreover, we add a pre-smoothing step of Richard-
son with ωpre

i = 1/ fi(
π
2 ,

π
2 ) in order to have an intermediate iteration that satisfies the

condition (3.5c) according to the previous analysis.
We note that at the finest level where f0 = f (2), it holds ‖ f (2)‖∞ = f (2)(π,π)

and f (2)(π
2 ,

π
2 ) = ‖ f (2)‖∞/4, so the pre-smoother alone does not give convergence.

Nevertheless, the whole smoothing iteration is convergent because it holds
∣∣∣∣∣∣


1−

4 f (2)
(

2π j1
n , 2π j2

n

)

‖ f (2)‖∞




1−

f (2)
(

2π j1
n , 2π j2

n

)

‖ f (2)‖∞



∣∣∣∣∣∣
< 1, ∀ j1, j2.
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Fig. 5.1 Symbols at the coarser levels in the half plane [0,π]× [0,π], where f0(x) = f (2)(x) and pi(x) =
p(x) in (5.3).

This does not limit the type of post-smoother to Richardson, but other smoothers
(like Gauss-Seidel) could be used, because the subspace where the pre-smoother does
diverge is generated by the frequencies (Fn⊗Fn)(e j1 ⊗ e j2) such that

f (2)
(

2π j1
n

,
2π j2

n

)
≥ 2 f (2)

(π
2
,

π
2

)
,

which are high frequencies and hence damped by every smoother.
Computing the coarse symbol by (2.1), we note that it has an additional zero at

(π,π) (see Figure 5.1). However the error components around such point were al-
ready reduced by the intermediate iteration at the finer level and so the next projector
has to take care only of the zero at (0,0). Continuing with the coarsening strategy, the
ill-conditioned subspace at (π,π) enlarges, according to (2.1), see also Figure 5.1, but
the error components were already reduced from the previous pre-smoothers. There-
fore, the same symbol of the projector, defined for only a zero at the origin, can be
used at each level.

We give the numerical evidence of such behavior. We consider the Toeplitz linear
system An = Tn( f (2)) and we compare the projector p(x) in (5.3) with φ4(x). More-
over, we compare the previous choice of ωpre

i with ωpre
i = 1.5/‖ fi‖∞, which is the

optimal damping parameter for the pre-smoother without post-smoothing (see Sec-
tion 5.2 in [1]), and with ωpre

i = 2/‖ fi‖∞ that is the largest value of ωpre
i that ensures

the convergence of the pre-smoother. Using the Galerkin strategy the coarse matrices
are not exactly block-Toeplitz-Toeplitz-block but they have a low rank correction, so
Jacobi seems to be much more robust and it is used instead of Richardson. The relax-
ation parameters are multiplied by the Fourier coefficient of index (0,0) (denoted by
αi at the i-th level) to take into account the diagonal scaling. At each level one step
of the pre- and post-smoother are applied. The linear system is solved directly on a
grid of size 7×7 and the tolerance is 10−6. The true solution is the smooth function
sin(x1)+ x1 cos(x2)/(2π).

Table 5.1 shows the number of iterations required for the V-cycle convergence.
We note that the intermediate iteration with ωpre

i = 1/ fi(
π
2 ,

π
2 ) is more effective than

the pre-smoothing with ωpre
i = 1.5/‖ fi‖∞ or ωpre

i = 2/‖ fi‖∞. Indeed, even if also the
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 15

p(x) φ4(x)
n×n\ ωpre

αi
fi(

π
2 ,

π
2 )
−1 1.5

‖ fi‖∞
2
‖ fi‖∞ fi(

π
2 ,

π
2 )
−1 1.5

‖ fi‖∞
2
‖ fi‖∞

15×15 20 34 27 21 34 27
31×31 19 35 28 20 35 28
63×63 19 36 29 19 36 29
127×127 21 36 29 21 36 29

Table 5.1 Number of iterations vs grid size for the V-cycle with one step of damped Jacobi as pre- and
post-smoother.

prolongation p(x) φ4(x)
smoother Jacobi w. ωpre

i = αi/ fi(
π
2 ,

π
2 ) Gauss-Seidel Gauss-Seidel

n×n iterations time iterations time iterations time
15×15 20 0.053 s 12 0.035 s 11 0.029 s
31×31 19 0.072 s 12 0.054 s 11 0.057 s
63×63 19 0.137 s 13 0.143 s 13 0.161 s

127×127 21 0.419 s 16 0.931 s 16 0.995 s
255×255 27 2.059 s 19 4.363 s 20 5.251 s
511×511 32 9.515 s 22 20.916 s 23 23.317 s

Table 5.2 Number of iterations and timings vs grid size for the V-cycle.

latter two choices ensure an optimal convergence (i.e., conditions (3.5a) and (3.5b)
are enough for obtaining the optimality), they require a number of iterations that is
about one third more than our proposed ωpre

i = 1/ fi(
π
2 ,

π
2 ) for converging to the de-

sired accuracy (i.e., the condition (3.5c) greatly speed up the convergence). Further-
more, we observe that the choice ωpre

i = 2/‖ fi‖∞ is more effective than the “optimal”
choice ωpre

i = 1.5/‖ fi‖∞. This is due to the fact that the pre-smoother is here com-
bined with the post-smoother and the pre-smoother with ωpre

i = 2/‖ fi‖∞ is effective
at the middle frequencies anyway similarly to an intermediate iteration; especially at
the coarser levels, as can be seen in Figure 5.1, where fi(

π
2 ,

π
2 )≈ ‖ fi‖∞/2.

Finally, Table 5.2 shows a comparison of our proposed prolongation operator
with symbol p(x) with the traditional choice with symbol φ4(x) using Gauss-Seidel
as pre-smoother and – in the case of p(x) – Jacobi with the choice ωpre

i = αi/ fi(
π
2 ,

π
2 )

as suggested by the previous tests and ωpost
i = αi/‖ fi‖∞. Besides the pure iteration

count we also measured the time to reduce the relative residual below the tolerance
10−6. Timings were obtained in MATLAB R2012a running on a dual core Intel Core
i5 at 1.6 GHz. As before we were using one pre- and one post-smoothing step and
a coarsest grid of size 7× 7. The proposed prolongation works as good as the tra-
ditional choice with timings that are better. This is due to the fact that the operator
complexity is slightly lower for our proposed prolongation. Further, while the iter-
ation count is much worse when the Jacobi iteration as smoother plus intermediate
iteration is chosen, the timings are actually much better. This can be explained by the
fact that Jacobi is using a diagonal scaling plus vector addition, only, while in Gauss-
Seidel the components depend on the previously updated ones. We like to note that
while an intermediate iteration can be combined with Gauss-Seidel, the combination
of ones step of Jacobi with ωpre

i = αi/ fi(
π
2 ,

π
2 ) as intermediate iteration and one step

of Gauss-Seidel as a smoother does not lead to a converging multigrid method, in-
creasing the number of Gauss-Seidel steps again works. For a converging multigrid
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16 Matthias Bolten et al.

method we require the combination of intermediate iteration plus smoother to con-
verge, as noted before. The analysis of the combination of intermediate iteration and
smoother can be carried out by local Fourier analysis [25].

Comparing the two projectors p and φ4, the previous example shows that they
have the same behavior in terms of number of iterations. Hence, we suggest to use p
because it is computationally cheaper than φ4. Indeed, each row of Pn(i)(p) has less
nonzero entries than that of Pn(i)(φ4), 21 instead of 25. This implies also less nonzero
diagonals in the coarse matrices. If we consider f0 = f (2) and φ4, then the coarse
matrices have 5×5 stencils with all nonzero entries except for the stencil of f1 which
has 4 zeros at the corners. If we use p instead of φ4, the coarse matrices have again a
5×5 stencil but the stencils of f1, f2, and fi, i = 3, . . . , have 12, 8, and 4 zero entries,
respectively.

For the 3D biharmonic problem one could use the projector ∑3
j=1(cos(x j))φ2(x)

instead of φ4, with a higher sparsity of the coarser matrices (for the definition of φm
in 3D the production in (5.2) as to be taken until 3 instead of 2). The reduction of the
nonzero entries and of the computational costs is also more relevant than in the 2D
case.

6 Coarsening strategies for Toeplitz matrices

In this section we discuss how the projector can affect the structure of the coarser
matrices when the Galerkin coarsening is applied to a Toeplitz matrix. This is usu-
ally the case when higher-order polynomials are needed for the representation of the
system matrix and the prolongation, like in the cases considered so far.

In the case of An =Tn( f ), using the natural projector Pn(p)=KnTn(p), the Galerkin
coarse grid matrix resulting, i.e., An(1) = Pn(p)Tn( f )Pn(p)H , will not be Toeplitz in
general due to low rank perturbation caused by the multiplication with the projection.
For analytic reasons the restriction and the prolongation are usually restricted to a re-
duced index set such that the low-rank perturbation at the boundary is removed and
the coarse system has again Toeplitz structure. Another advantage of this Toeplitzi-
sation is that every occurring matrix can be represented by the Fourier coefficients,
only.

Here, we want to analyze the effect of such Toeplitzisation on the convergence.
Therefore we consider three different variations:

1. the original non-Toeplitz coarse grid matrices on each level,
2. Toeplitzisation by modifying the original coarse grid matrix to Toeplitz form,
3. Toeplitzisation by cutting.

The coarse matrix for choice 1. is An(1) = Pn(p)Tn( f )Pn(p)H . The Toeplitzisation in
case 2. was introduced in [15] choosing as coarse matrix Tn(1)( fc) similar to a redis-
cretization. The Toeplitzisation by cutting in 3. was introduced in [21] and further
improved in [2].

In the following we prove that the proposal in [2] gives the minimum cut that
preserves the Toeplitz structure. Further, for a unique zero of order two all the pre-
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Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 17

vious strategies are equal if the projector is chosen with minimum bandwidth and
n = 2α −1, α ∈ N.

Let us discuss in detail the 1D case. We denote by δg the degree of an even
trigonometric polynomial g, which has a symmetric stencil of the Fourier coefficients
different from zero having length 2δg + 1 and central coefficient in position δg + 1.
We define the cutting matrix

Ki{t}=
[

0 t Kn(i)−2t 0 t
]
∈ Rn(i+1)×n(i) , (6.1)

where t will be chosen as t = δp− 1 when used for approach 3 and 0 t is the null
matrix of size n(i+1)× t. To apply the multigrid method recursively when the cutting
matrix (6.1) is used in approach 3, the size of the finer grid should be 2α − 1− 2t
(see [2]). The following proposition shows that the class of Toeplitz matrices has a
quasi-algebra structure.

Proposition 6.1 Let p and f be two even trigonometric polynomials, then

[0δp | In−2δp |0δp ]Tn(p)Tn( f )Tn(p)[0δp | In−2δp |0δp ]
H = Tn−2δp(p2 f ).

Proof First, we prove that

[0δp | In−2δp |0δp ]Tn(p)Tn( f ) = [0δp | In−2δp |0δp ]Tn(p f ). (6.2)

It is enough to observe that [0δp | In−2δp |0δp ]Tn(p) is the convolution matrix gener-
ated from p. We denote by the subscript i and the superscript j the ith row and the jth
column of a matrix, respectively. Let gk be the convolution of p and f centered at the
kth coefficient of f , i.e., the kth Fourier coefficient of g = p f , then by definition

[Tn(p)Tn( f )]i j = Tn(p)iTn( f ) j = gi− j = [Tn(p f )]i j, (6.3)

for i = δp + 1, . . . ,n− δp and j = 1, . . . ,n. We are not interested in the first and last
δp rows of Tn(p)Tn( f ) since they are removed by the product with [0δp | In−2δp |0δp ].

Similarly

Tn( f )Tn(p)[0δp | In−2δp |0δp ] = Tn(p f )[0δp | In−2δp |0δp ]. (6.4)

The assertion follows combining equation (6.2) with equation (6.4) and observing
that

[0δp | In−2δp |0δp ]Tn(p2 f )[0δp | In−2δp |0δp ] = Tn−2δp(p2 f ).

Corollary 6.1 Fix Pi = Ki{t}Tn(i)(pi), with Ki{t} defined in (6.1), pi and fi two even
trigonometric polynomials, t = δpi −1, and n(i) = 2α −1−2t, then

PiTn(i)( fi)PH
i = Ki{t}Tn(i)(p2

i fi)Ki{t}H = Tn(i+1)( fi+1).

Furthermore, Pi preserves the Toeplitz structure cutting the minimum possible number
of rows.
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Proof It is enough to observe that Kn(i)−2t has the first and the last column equal to
the null vector, and then apply the Proposition 6.1. The fact that by cutting one less
row and column the Toeplitz structure is lost follows from the proof of Proposition
6.1 (compare equation (6.3)).

Remark 6.1 From the Corollary 6.1, we have that if n = 2α −1, f has a zero of order
two and p is chosen to have smallest bandwidth, then t = 0 and so all the different
strategies 1–3 are equivalent.

For the multidimensional case, it is enough to extend definition (6.1) using tensor
products and to use tensor product arguments in Proposition 6.1 and Corollary 6.1.

We now study the V-cycle optimality for Tn( f ) when f has a unique zero of order
two. In the literature the V-cycle optimality in [1,2] was proved only in the algebra
(circulant, tau, etc.) case. For the Toeplitz case, in [21] the TGM optimality was
proved, while in [4] the level independency for zeros of order two has been shown.
Note that the level independency does not necessarily imply the V-cycle optimality,
but only the W-cycle optimality (see [2]).

For the V-cycle optimality we need to introduce the τ algebra. Multilevel τ matri-
ces are simultaneously diagonalized by the multidimensional discrete sine transform.
For n ∈ N, the sine matrix of order n is

Sn =

√
2

n+1

[
sin
(

jy(n)k

)]
k, j

,

where y(n)k = πk/(n+1), k = 1, . . . ,n. The d-dimensional sine matrix is defined using
tensor products as Sn = Sn1 ⊗ ·· · ⊗ Snd . The multilevel τ matrix generated by f is
τn( f ) = SnDn( f )SH

n . A τ matrix can be expressed as τn( f ) = Tn( f )+Hn( f ) where
Hn( f ) is the centrosymmetric Hankel matrix generated by f . A Hankel matrix has the
property that its entries are constant along any lower-left-upper-right diagonal and it
can be defined similar to the Toeplitz case:

Hn( f ) = ∑
26| j1|6n1−1

· · · ∑
26| jd |6nd−1

a( j1,..., jd)K
[ j1]
n1 ⊗·· ·⊗K[ jd ]

nd , (6.5)

where, for n, j ∈ Z, K[ j]
n denotes the matrix of order n whose entry (s, t) equals 1 if

s+ t = j mod 2(n−1) and equals zero otherwise. From equation (6.5), it follows that
if f has degree at most one in each variable then τn( f ) = Tn( f ).

We can now prove the V-cycle optimality of multigrid methods for Toeplitz ma-
trices having a symbol of order two.

Theorem 6.1 Let f be an even trigonometric polynomial having a unique zero of
order two at x0 and choose pi(x) = ∏d

j=1(1+ cos(x− [x0
i ] j)), where x0

i ∈ Rd is the
zero of fi, i = 0, . . .m−1 and f0 = f . Then

(i) the cutting strategies 1−3 coincide,
(ii) the V-cycle is optimal if furthermore f (x) = ∑d

j=1(1− cos(x− [x0] j)).
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Proof First, we note that the functions fi, for i = 0, . . .m, have a unique zero of order
two which moves in [0,π]d according to Proposition 7.2 in [21] (see [10] for the 2D
case).

The symbol pi of the projector has degree one in each variable and so, according
to Remark 6.1, the projection strategies and the coarse matrices in 1−3 are the same.
More in detail, An(i+1) = Tn(i+1)( fi+1)=PiTn(i)( fi)PH

i , where fi+1 is the coarse function
obtained from fi by applying equation (2.1).

To prove the V-cycle optimality, it is enough to observe that pi and fi have degree
at most one in each variable for i = 0, . . . ,m−1, and so Tn(pi) = τn(pi) and Tn( fi) =
τn( fi). Therefore, the V-cycle optimality prove for the τ algebra presented in [1] can
be applied.

We note that the assumption f (x) = ∑d
j=1(1− cos(x− [x0] j)) in (ii) of Theo-

rem 6.1 to prove the V-cycle optimality is only a structural assumption to work with
the τ algebra also at the coarse levels. However, if f is an even trigonometric polyno-
mial having a unique zero of order two at x0, it is well-known that ∑d

j=1(1− cos(x−
[x0] j)) is an optimal preconditioner that gives a strong cluster at one (see [5]) and so
if the V-cycle is optimal for ∑d

j=1(1− cos(x− [x0] j)) the same is true for f .
We have proved that for a zero of order 2 the three coarsening strategies are the

same and give an optimal V-cycle. If f has a zero of order greater than two higher
order projectors must be considered and the three coarsening strategies are no longer
the same. We note that the strategies 1 and 2 can be applied for every n, while the
strategy 3 requires n= 2α +1−2δp. We now give a numerical comparison for δp > 1.

Example 6.1 We consider the fourth-order “long stencil” discretization of the 1D
Laplacian leading to the generating symbol

f (x) = 30−32cos(x)+2cos(2x).

We consider two different projectors: p4/3 and p2, where pz is defined in (4.1). Ac-
cording to the analysis in Section 4, p4/3 has a zero of order 4 at π and satisfies
both conditions (2.2) and (3.5), while p2 vanishes at π and π/2 and as a conse-
quence violates condition (2.2b) but satisfies the new condition (3.5b). The projec-
tor p2(x) = 2cos(x)(1+ cos(x)) is the 1D version of our 2D proposal in (5.3) an-
alyzed in Example 5.1. One step of Gauss-Seidel as post-smoother is applied. The
pre-smoother is one step of Richardson with relaxation parameter ωpre

i = 1.5/‖ fi‖∞
for p4/3 and ωpre

i = 1/ fi(π/2) for p2 according to condition (3.5c).
Figure 6.1 shows the relative error at each iteration for the three considered coars-

ening strategies. We observe that Toeplitzisation can slow down the convergence, but
such effect is largely reduced using p2 with the strategy 3 (Toeplitzisation by cutting).
In detail, combining the projector p2 that does not satisfy the classical conditions
(2.2) with an intermediate iteration as pre-smoother given by ωpre

i = 1/ fi(π/2), we
obtain that the Toeplitzification approach 3 has about the same effectiveness as the
Galerkin approach 1 that destroys the Toeplitz structure at the coarser levels. Like in
Example 5.1 the pre-smoother ωpre

i = 1/ fi(π/2) is not convergent, but its combina-
tion with a post smoother – here a Gauss-Seidel smoother – leads to a converging
multigrid method.
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Fig. 6.1 Relative error of Example 6.1 varying the iteration number: the dashed curve depicts the strat-
egy 1. (the original Galerkin matrix), the solid curve depicts the strategy 2. (the modified Toeplitz matrix),
the dotted curve depicts the strategy 3. (the Toeplitz matrix via cutting).

7 Conclusions

In this paper we analyzed the multigrid optimality conditions from a practical point
of view to construct high order grid transfer operators at lower cost. This has lead to
the new optimality conditions where the old condition (2.2b) is now relaxed with its
new version (3.5b). This allows to use computationally convenient projections that
lead to singular coarse grid problems. Hence a further condition (3.5c) is provided to
ensure fast convergence adding a pre-smoother, i.e., an intermediate iteration, linked
to the projection when necessary.

The new relaxed condition (3.5b) allows to define new projectors, like in equation
(5.3), that do not satisfy the old condition (2.2b) but are computationally cheaper than
the classical grid transfer operators used in the literature without increasing the con-
vergence rate. Moreover combining such projectors with the intermediate iteration,
the convergence rate is improved by a factor at least 1/3 with respect to the classical
choices for Toeplitz matrices.

Further, coarsening strategies for Toeplitz matrices have been investigated. We
have proved that if projectors with order greater than two are not necessary, all the
different approaches are equivalent and the V-cycle is optimal. For high-order projec-
tors, like the ones introduced in this paper, we have numerically shown that the new
conditions (3.5) are very effective when combined with the coarsening strategy that
preserves the Toeplitz structure at each level by cutting.
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