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ANALYSIS OF SMOOTHED AGGREGATION MULTIGRID METHODS BASED
ON TOEPLITZ MATRICES

MATTHIAS BOLTEN∗, MARCO DONATELLI†, AND THOMAS HUCKLE‡

Abstract. Aim of the paper is to analyze multigrid methods based on smoothed aggregation in the case of
circulant and Toeplitz matrices. The analysis is based on the classical convergence theory for these types of matrices
and results in optimal smoothing parameters that have to be chosen for the smoothing of the grid transfer operators in
order to guarantee optimality of the resulting multigrid method. The developed analysis allows a new understanding
of smoothed aggregation and can also be applied for unstructured matrices. A detailed analysis of the multigrid
convergence behavior is developed for the finite difference discretization of the 2D Laplacian with nine point stencils.
The theoretical findings are backed up by numerical experiments.
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1. Introduction. In this paper we consider smoothed aggregation (SA) multigrid meth-
ods for solving the linear system

Ax = b,

where x, b ∈ CN and A is an ill-conditioned symmetric positive definite N × N matrix.
Mainly, we analyse the case of multilevel Toeplitz matrices, while some numerical results
will be presented also for the discretization of non-constant coefficient partial differential
equations (PDEs) based on a local stencil analysis.

On the one hand development of multigrid methods for τ -matrices and Toeplitz matrices
goes back to [1], the two level case was considered in [2]. Using the same ideas methods
for circulant matrices were developed later in [3]. While these works provide the basis to de-
velop and analyze multigrid methods for Toeplitz matrices and matrices from different matrix
algebras, including the τ - and circulant algebra, they did not provide a prove of optimality
of the multigrid cycle, in the sense that the convergence rate is bounded by a constant c < 1
independent on the number of levels used in the multigrid cycle. This prove was added later
in [4, 5]. In [6] a two-grid optimality is proved in the case of a cutting greater than two
for Toeplitz matrices. This analysis can be useful for 1D aggregation methods and will be
extended to multidimensional problems in this paper.

The theory that is used to build up the two-grid and multigrid methods and to prove
their convergence is based on the classical variational multigrid theory, as it is presented in
e.g. [7, 8, 9, 10].

Aggregation based multigrid goes back at least to [11], where the so-called aggrega-
tion/disaggregation methods [12, 13] have been used in a multigrid setting. The idea of ag-
gregation based multigrid is to avoid a C/F-splitting, i.e. a partitioning of the unknowns into
variables that are present on the coarse and the fine level and variables that are present on the
fine level, only. Rather than that the unknowns are grouped together into aggregates, these
aggregates form one variable on the coarse level, each. The pure aggregation can be improved
by incorporating smoothing [14] in the prolongation and/or the restriction leading to faster
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convergence. Recent results on the convergence of aggregation-based multigrid methods can
be found in [15, 16, 17, 18].

In this paper, firstly we extend the two-grid optimality results in [6] to multidimensional
problems. Using these new convergence results we can provide an analysis of aggregation
operators for multilevel Toeplitz matrices. According to the literature [16], we show that the
pure aggregation provides only two-grid optimality but it is not enough for V-cycle. There-
fore, we study a simple smoothing aggregation strategy based on a damping factor chosen
as the value that provides the smallest convergence rate. In contrast to previous analysis in
literature [16, 17, 18] our analysis uses a symbolic approach to discuss the convergence and
to choose the optimum damping factors. A detailed study for the finite difference discretiza-
tion of the 2D Laplacian with nine point stencils shows that our symbolic approach can be
easily performed and implemented, but, at the same time, it is also very effective. In particu-
lar, we show how to design the smoothed aggregation incorporating more than one smoother
or allowing nonsymmetric projection such that it leads to fast convergence without increas-
ing the bandwidth of the coarser systems. Finally, numerical results are provided also in the
non-constant coefficient case using the local stencil of the operator.

The outline of the paper is as follows. In Section 2 we introduce Toeplitz and circu-
lant matrices, multigrid methods, and some well-known results on multigrid methods for
Toeplitz matrices. The main theoretical results are in Section 3, where the aggregation and
the smoothed aggregation optimality conditions are studied in the case of circulant matri-
ces. In Section 4 we discuss how the results obtained in the circulant case can be applied to
Toeplitz matrices or to the discretization of nonconstant coefficients partial differential equa-
tions. A special attention is devoted in Section 4.3 to the discretization of the 2D Laplacian
by nine points stencils. A wide range of numerical experiments is presented in Section 5 and
some conclusive remarks complete the paper in Section 6.

2. Preliminary. In this section we introduce some well-known results on Toeplitz ma-
trices and multigrid methods.

2.1. Toeplitz and circulant matrices. A Toeplitz matrix Tn ∈ Cn×n is a matrix with
constant entries on the diagonals, i.e. Tn is of the form

(2.1) Tn =




t0 t−1 · · · t−n+1

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 · · · t1 t0




.

As a consequence the matrix entries are completely determined by the 2n−1 values t−n+1, . . . , tn−1.
There exists a close relationship of a Toeplitz matrix to its generating symbol f : R → C, a
2π-periodic function given by

(2.2) f(x) =

∞∑

j=−∞
tje

i2πjx, tj =
1

2π

π∫

−π

f(x)e−i2πjxdx.

with entries tj on the diagonals given as the Fourier coefficients of f . The generating symbol
f always induces a sequence {Tn(f)}∞n=1 of Toeplitz matrices Tn(f). In the case of f be-
ing a trigonometric polynomial, the resulting Toeplitz matrices are band matrices for n large
enough. There are various theoretical results on sequences of Toeplitz matrices and their
generating symbol, most important for the analysis of iterative methods for Toeplitz matri-
ces is the fact that the distribution of the eigenvalues of the Toeplitz matrix is given by the
generating symbol in the limit case n→∞, cf. [19].
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Circulant matrices are of a very similar form. A circulant matrix is a Toeplitz matrix with
additional property t−k = tn−k, k = 1, 2, . . . , i.e.

Cn =




t0 tn−1 · · · t1

t1 t0
. . .

...
...

. . . . . . tn−1

tn−1 · · · t1 t0




.

Cn is diagonalized by the Fourier matrix Fn, where

(Fn)j,k =
1√
n
e−

2πi
n jk, j, k = 0, . . . , n− 1,

i.e.

(2.3) Cn = Fn diag(λ
(n))FH

n ,

for λ(n) = (λ
(n)
0 , . . . , λ

(n)
n−1) given by λ

(n)
j = f (2πj/n), j = 0, . . . , n − 1. Allowing

negative indices to denote the diagonals above the main diagonal as in the Toeplitz case,
i.e. in (2.1), results in demanding tk = tk mod n. Using the generating symbol f in (2.2)
similarly to the Toeplitz case a sequence {Cn(f)}∞n=1 of matrices Cn(f) is defined. In contrast
to the Toeplitz case the circulant matrices form a matrix algebra as they are diagonalized by
the Fourier matrix Fn.

The concept of Toeplitz and circulant matrices can easily be extended to the block case,
i.e. the case where the matrix entries are not elements of the field of complex numbers but
rather of the ring of m ×m matrices. In this case the generating symbol becomes a matrix-
valued 2π-periodic function and the matrices are called block Toeplitz and block circulant
matrices, respectively. The aforementioned properties of the matrices transfer to this case,
e.g. a block circulant matrix with block size m × m and n blocks on the main diagonal is
block diagonalized by Fn ⊗ Im, where⊗ denotes the Kronecker product and Im denotes the
identity matrix of size m×m. The analysis of multigrid methods with more general blocks
is beyond the scope of this article, for further details see e.g. [20].

An interesting special type of block matrices that we will deal with is the case where the
blocks itself are Toeplitz/circulant, again. The resulting matrix will be called block Toeplitz
Toeplitz block (BTTB) or block circulant circulant block (BCCB) and it can be described
by a bivariate 2π-periodic generating symbol f . This is related to the two-dimensional case
d = 2. In the general d-level case the generating symbols are f : Rd → C a 2π periodic
functions having Fourier coefficients

tj =
1

(2π)d

∫

[−π,π]d
f(x)e−i〈j|x〉 dx, j = (j1, . . . , jd) ∈ Zd,

where 〈 · | · 〉 denotes the usual scalar product between vectors. From the coefficients tj one
can build the sequence {Cn(f)}, n = (n1, . . . , nd) ∈ Nd, of multilevel circulant matrices of
size N =

∏d
r=1 nr. Defining the d-dimensional Fourier matrix Fn = Fn1 ⊗ · · · ⊗ Fnd

, the
matrix Cn(f) can be written again in the form (2.3) where now λ(n) = λ(n1) × · · · × λ(nd).

2.2. Multigrid methods. A multigrid method is a method to solve a linear system of
equations. When traditional stationary iterative methods like Jacobi are used to solve a linear
system, they perform poorly when the system gets more ill-conditioned, e.g. when the mesh
width is decreased in the discretization of a PDE. The reason for this is that error components
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belonging to large eigenvalues are damped efficiently, while error components belonging to
small eigenvalues get reduced slowly. In the discretized PDE example the first correspond to
the rough error modes, while the latter correspond to the smooth error modes. For this reason
methods like Jacobi are known as “smoothers”.

To construct a multigrid method various components have to be chosen. To construct a
multigrid method the coefficient matrix of the linear system (1) on the finest level is denoted
by A0 = A, the multi-index of the size is denoted by n0 = n ∈ Nd. The multi-indices of the
system sizes on the coarser grids are then denoted by ni < ni−1, i = 1, . . . , lmax, where lmax

is the maximum number of levels used. Defining Ni =
∏d

j=1(ni)j , to transfer a quantity
from one level to another restriction operators Ri : CNi → CNi+1 , i = 0, . . . , lmax − 1 and
Pi : CNi+1 → CNi , i = 0, . . . , lmax − 1 are needed, furthermore a hierarchy of operators
Ai ∈ CNi×Ni , i = 1, . . . , lmax has to be defined. On each level appropriate smoothers Si and
S̃i and the numbers of smoothing steps ν1 and ν2 have to be chosen, we limit ourselves to
stationary iterative methods although other smoother like Krylov-subspace methods can be
used, as well. After ν1 presmoothing steps using Si, the residual rni ∈ CNi is computed and
restricted to the coarse grid, the result is rni+1 . On the coarse grid the error is computed by
solving

Ai+1eni+1 = rni+1 ,

in the multigrid case this is done by a recursive application of the multigrid method. The
resulting error is interpolated back to obtain the fine level error eni and the current iterate
is updated using this error. Afterwards, the iterate is improved by postsmoothing. When
only one recursive call is applied, like in this paper, the whole iteration is called V-cycle.
The process of correcting the current iterate using the coarse level is known as coarse grid
correction, it has the iteration matrix

(2.4) Mi = I − PiA
−1
i+1RiAi.

In summary the multigrid methodMGi is given by Algorithm 1.

Algorithm 1 Multigrid cycle xni =MGi(xni , bni)

xni ← Sν1i (xni , bni)
rni ← bni −Aixni

rni+1 ← Rirni

eni+1 ← 0
if i+ 1 = lmax then
enlmax

← A−1
lmax

rnlmax

else
eni+1 ←MGi+1(eni+1 , rni+1)

end if
eni ← Pieni+1

xni ← xni + eni

xni ← S̃ν2i (xni , bni)

To show convergence of a multigrid method, usually, Ri is chosen to be the adjoint of
Pi and the coarse grid operator Ai+1 is chosen as the Galerkin coarse grid operator PH

i AiPi.
The classical algebraic convergence analysis is based on two properties, the smoothing prop-
erty and the approximation property that are coupled together by an appropriately chosen

4
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norm ‖ · ‖∗, where in the classical algebraic multigrid theory the AD−1A-norm with D =
diag(A) is chosen, cf. [10], and in the circulant case the A2-norm turns out to be helpful,
cf. [4].

DEFINITION 2.1 (Smoothing properties). An iterative method Si with iteration matrix
Si fulfills the presmoothing property if there exists an α > 0 such that for all vni ∈ CNi it
holds

(2.5) ‖Sivni‖2Ai
≤ ‖vni‖2Ai

− α‖Sivni‖2∗.

Analogously, it fulfills the postsmoothing property if there exists a β > 0 such that

(2.6) ‖S̃ivni‖2Ai
≤ ‖vni‖2Ai

− β‖vni‖2∗.

The following theorem is useful to prove two-grid method convergence since the forth-
coming condition (2.8) is usually weaker and easier to prove than the approximation property

(2.7) ‖Mivni‖2Ai
≤ γ‖vni‖2∗.

THEOREM 2.2 ([10]). Let Ai ∈ CNi×Ni be a positive definite matrix and let S̃i be the
postsmoother with iteration matrix S̃i fulfilling the postsmoothing property (2.6) for β > 0.
Assume that Ri = PH

i , Ai+1 = PH
i AiPi, and that there exists γ > 0 independent of Ni

such that

min
y∈CNi+1

‖x− Piy‖2Di
≤ γ‖x‖2Ai

, ∀x ∈ CNi ,(2.8)

where Di is the main diagonal of Ai. Then γ ≥ β and

‖S̃iMivni‖Ai ≤
√
1− β/γ, ∀vni ∈ CNi .

2.3. Multigrid methods for circulant and Toeplitz matrices. In the following, we
will introduce multigrid methods for circulant matrices and briefly review the convergence
results for these methods, as our analysis of aggregation based methods is based on such
results. After that, we will provide an overview over the modifications necessary to deal with
Toeplitz matrices in a conceptually very similar way.

Let fi be the symbol of Ai, in this paper we assume fi ≥ 0 thus Ai is positive definite1.
In general, to design a multigrid method, the smoother, a coarse level with fewer degrees of
freedom, the prolongation and restriction have to be chosen appropriately. Here, the common
choice for both, pre- and postsmoothing is relaxed Richardson, i.e. Si is chosen as

(2.9) Si(xni , bni) = (I − ωiAi)︸ ︷︷ ︸
=Si

xni + ωibni ,

and S̃i is chosen like this, but with a different ω̃i. Note that for Toeplitz matrices relaxed
Richardson is equivalent to relaxed Jacobi since the diagonal of the coefficient matrix is a

1Ai could be singular for circulant matrices if f vanishes at a grid point. In such case a rank-one correction like
in [4] could be considered, but it is not necessary in practice, see [insert citation to the other paper or a Matthias’s
paper on singular circulant matrices].

5
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multiple of the identity. Using appropriate relaxation parameters ωi and ω̃i this smoother ful-
fills the presmoothing property (2.5) respectively the postsmoothing property (2.6) as stated
by the following theorem that can be found as Proposition 3 in [5].

THEOREM 2.3 ([5]). Let Ai = Cni(fi), where fi : Rd → R and let Si as defined in (2.9)
with ωi ∈ R, and S̃i defined ad Si but with parameter ω̃i ∈ R. Then if ωi, ω̃i ∈ (0, 2/‖fi‖∞),
the smoothing properties (2.5) and (2.6) are fullfilled with ‖ · ‖∗ = ‖ · ‖A2 .

Regarding the choice of the coarse level, for circulant matrices usually we assume that
the number of unknowns in each “direction” is divisible by 2, i.e. (ni)j mod 2 = 0 for
j = 1, . . . , d. Then on the coarse level we choose every other degree of freedom, effectively
dividing the number of unknowns by 2d when moving from level i to level i + 1. This
corresponds to standard coarsening in geometric multigrid. Other coarsenings, e.g. by a
factor different from 2 [6] or corresponding to semi-coarsening [21, 22] are derived and used
in a straightforward way. The reduction from the fine level to the coarse level is described
with the help of a cut matrix Kni ∈ Cni+1×ni that in the case of a 1-level circulant matrix of
even size on the fine level is given by

Kni =




1 0
1 0

. . .
1 0


 .

The effect of this cut matrix is that every even variable is skipped when it is transferred to the
coarse level. Regarding the action of the cut matrix on the Fourier matrix we obtain

(2.10) KniFni =
1√
2
[1, 1]⊗ Fni+1 =

1√
2
Fni+1([1, 1]⊗ Ini+1)

in the 1-level case. In the d-level case the cut matrix is defined by Kronecker product

(2.11) Kni = K(ni)1 ⊗ · · · ⊗K(ni)d .

Combining (2.10) with (2.11) and due to the properties of the Kronecker product we have

KniFni = K(ni)1F(ni)1 ⊗ · · · ⊗K(ni)dF(ni)d

=
1√
2d

(F(ni+1)1([1, 1]⊗ I(ni+1)1))⊗ · · · ⊗ (F(ni+1)d([1, 1]⊗ I(ni+1)d))

=
1√
2d

Fni+1Θni+1 ,(2.12)

where Θni+1 = ([1, 1]⊗ I(ni+1)1)⊗ · · · ⊗ ([1, 1]⊗ I(ni+1)d). With the help of the cut matrix
the prolongation is now defined as

Pi = Cni(pi)K
T
ni

given some generating symbol pi and the restriction is defined as the adjoint of the prolonga-
tion, i.e., Ri = PH

i . To study the approximation property, we first define the set Ω(x) of all
“corners” of x, given by

Ω(x) = {y : yj ∈ {xj , xj + π}},

and the setM(x) of all “mirror points” of x as

M(x) = Ω(x)\{x}.
6
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To obtain optimal, i.e. level independent, multigrid convergence the generating symbol pi of
the prolongation has to fulfill certain properties. For that purpose let x0 in [−π, π)d be the
single isolated zero of the generating symbol fi of the system matrix on level i. Choose pi
such that

(2.13) lim sup
x→x0

∣∣∣∣
pi(y)

fi(x)

∣∣∣∣ < +∞, y ∈M(x), i = 0, . . . , lmax − 1

and such that for all x ∈ [−π, π) we have

(2.14) 0 <
∑

y∈Ω(x)

|pi|2(y), i = 0, . . . , lmax − 1.

Using (2.13) and (2.14) the approximation property (2.7) can be stated for circulant matrices
with a constant independent of the level i and the V-cycle optimality can be proved.

THEOREM 2.4 ([5]). Let Ai = Cni(fi) with fi being the d-variate nonnegative gen-
erating symbol of Ai, having a single isolated zero in [−π, π)d. If smoothers are chosen
according to Theorem 2.3, the projectors Pi = Cni(pi)K

H
ni

and Ri = PH
i , such that pi

fulfills (2.13) and (2.14), then

‖MGM‖A ≤ ξ < 1.

where MGM is the V-cycle iteration matrix and ξ is independent of lmax. If the order of the
zero x0 of the generating symbol is 2q, a natural choice for pi is

pi(x) = c ·
d∏

j=1

(cos(x0
j ) + cos(xj))

q.

If the system matrix A is not circulant but Toeplitz, a few changes are necessary. In the
case of a Toeplitz matrix which has a generating symbol f being a trigonometric polynomial
of degree at most one, the matrix is in the τ -algebra. Matrices out of the τ -algebra are
diagonalized by the matrix

(Qn)j,k =

√
2

n+ 1
sin

(
jkπ

n+ 1

)
, j, k = 1, . . . , n.

Assuming ni odd, the cut matrix Kni is chosen as

(2.15) Kni =




0 1 0
1 0

. . .
1 0




in the τ -case, the results on multilevel matrices and convergence transfer to this case imme-
diately, if Qn is chosen instead of Fn and the appropriate cut matrix is used. If A is Toeplitz
but the generating symbol is a higher degree trigonometric polynomial of degree δ, the cut
matrix has to be chosen as

(2.16) Kni(δ) =




0 · · · 0 1 0
1 0

. . .
1 0 · · · 0


 ,

7
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where the first and last δ columns are zero, so the non-constant entries in the first δ and in
the last δ rows and columns are not taken into account on the coarser level to guarantee the
Toeplitz structure on all levels.

We will now focus on the choice of pi in an aggregation based framework.

3. Aggregation and SA for circulant matrices. In the following, we will start with
the definition of simple aggregation based multigrid methods for 1-level circulant matrices,
corresponding to one dimensional problems. Emphasizing the downside of pure aggregation
we will then introduce SA in the circulant setting and finally transfer the results to the d-level
case.

3.1. 1-level case. Let n = 2lmax+1, in a 1D aggregation-based multigrid method with
aggregates of size 2 this corresponds to a prolongation operator Pi given by

PH
i =




1 1
1 1

. . .
1 1


 ∈ Cni+1×ni .

Transferring this to the circulant case yields a prolongation Pi = Cni(pi)K
T
ni

with pi = a1,2,
where

a1,2 : [−π, π)→ C
x 7→ a1,2(x) = 1 + e−ix.

Note that Cni(pi) is not hermitian. This projector fulfills (2.14) since
∑

y∈Ω(x)

|a1,2(y)|2 =
∑

y∈Ω(x)

|1 + e−iy|2 =
∑

y∈Ω(x)

2 + 2 cos(y) > 0 .

If the symbol fi has a single isolated zero of order 2 at the origin, like the Laplacian, this
projection does not fulfill (2.13), but it fulfills a weaker condition sufficient for two-grid
optimality, namely

(3.1) lim sup
x→x0

|pi(y)|2
|fi(x)|

≤ +∞, y ∈M(x), i = 0, . . . , lmax − 1.

Hence the aggregation defines an optimal two-grid method but it is not strong enough for the
optimality of V-cycle. This agrees with results in [16].

To fulfill the stronger condition (2.13) the prolongation can be improved by smoothing,
i.e. applying a step of an iterative method used as a smoother. In the case of Richardson this
corresponds to the generating symbol

(3.2) si,ω(x) = 1− ωfi(x).

Under the assumption that fi has its single maximum at position x = π no additional zero
is introduced in si,ω when ω is chosen as ω = 1/f(π) and the symbol of the prolongation
operator

pi(x) = si,1/f(π)(x) a1,2(x)

fulfills (2.13) since si,1/f(π)(π) = 0.
8
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We like to note that if the introduced zero is of second order it suffices to smooth either
the prolongation or the restriction operator, as the symbol of the pure aggregation already
has a zero of order 1 at the mirror point x = π. Since in this case Ri 6= PH

i the previous
theory does not apply. Nevertheless, defining Ri = KniCni(ri), in [23] it is shown that the
condition (2.14) can be replaced with

(3.3) 0 <
∑

y∈Ω(x)

ri(y)pi(y), i = 0, . . . , lmax − 1.

and the two-grid condition (3.1) replaced with

(3.4) lim sup
x→x0

|ri(y)pi(y)|
|fi(x)|

≤ +∞, y ∈M(x), i = 0, . . . , lmax − 1.

Similarly, assuming that ripi ≥ 0, the condition (2.13) can be replaced with

(3.5) lim sup
x→x0

∣∣∣∣∣

√
ri(y)pi(y)

fi(x)

∣∣∣∣∣ < +∞, y ∈M(x), i = 0, . . . , lmax − 1.

The resulting coarse matrix Ai+1 = RiAiPi is Ai+1 = Cn(fi+1) with

(3.6) fi+1(x) =
1

2

∑

y∈Ω(x/2)

ri(y)fi(y)pi(y)

and hence it is nonnegative definite for ripi ≥ 0. Smoothing only the restriction or the
prolongation operator, we have

ri(x)pi(x) = si,ω(x)a1,2(x)a1,2(x) = si,ω(x)(2 + 2 cos(x)).

Under the assumption that f has its maximum at π, si,1/f(π) is nonnegative and has a zero of
order at least 2 at π. Hence conditions (3.3) and (3.5) are satisfied and Ai+1 is nonnegative
definite.

REMARK 3.1. This choice of pi is only valid for system matrices A = Cn(f) where the
generating symbol has a single isolated zero at x0 = 0. In general for a system matrix with
generating symbol fi having a single isolated zero at x0 we choose pi as

pi : [−π, π)→ C

x 7→ pi(x) = 1 + e−i(x+x0).

For this prolongation operator we have

|pi(x)|2 = 2 + 2 cos(x + x0),

so (2.14) and (3.1) are fulfilled, the latter for a single isolated zero x0 of order 2. The stronger
condition (2.13) is fulfilled in the case that fi has its single maximum at x0+π by smoothing
the operator using ω-Richardson with ω = fi(x0 + π).

In general, aggregation with aggregates of sizes g corresponds to using the cut matrix

(3.7) Kni,g =




1 0 · · · 0
1 0 · · · 0

. . .
1 0 · · · 0




9
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with g − 1 zero columns after each column containing a one. The prolongation defined by
this cut matrix and the generating symbol pi = a1,g with

a1,g : [−π, π)→ C

x 7→ a1,g(x) =

g−1∑

k=0

e−ikx

is

(3.8) Pi = Cni(pi)K
T
ni,g.

The effect of the cut matrix applied to the Fourier matrix is similar to (2.10) described by

Kni,gFni =
1√
g
eTg ⊗ Fni+1 =

1√
g
Fni+1(e

T
g ⊗ Ini+1),

where eTg = [1, . . . , 1] ∈ Ng and the set of mirror points consists of the g − 1 points in
Mg(x) = Ωg(x)\{x} where

Ωg(x) =

{
y : y = x+

2πj

g
(mod2π), j = 0, 1, . . . , g − 1

}
.

Assuming n0 = n = glmax+1, for a given matrix Ai = Cni(fi) the coarse level matrix
Ai+1 = PH

i AiPi, ni+1 = ni/g is given by Ai+1 = Cni+1(fi+1) with

fni+1(x) =
1

g

∑

y∈Ωg(x/g)

|p|2f(y), x ∈ [−π, π).

For further details see [6], where it is proved that the two-grid convergence follows as in the
case g = 2 outlined in section 2.3 with the requirements (3.1) and (2.14) stated on the sets
Mg and Ωg, respectively. In more detail, the two-grid optimality requires

lim sup
x→x0

|pi(y)|2
|fi(x)|

≤ +∞, y ∈ Mg(x), i = 0, . . . , lmax − 1,(3.9)

0 <
∑

y∈Ωg(x)

|pi|2(y), i = 0, . . . , lmax − 1,(3.10)

for all x ∈ [−π, π), see Theorem 5.1 in [6]. The V-cycle optimality for a coarsening factor
g > 2 is an open problem, but a natural conjecture is that in (2.13), similarly to (3.1), it is
enough to replaceM withMg, namely

(3.11) lim sup
x→x0

∣∣∣∣
pi(y)

fi(x)

∣∣∣∣ < +∞, y ∈Mg(x), i = 0, . . . , lmax − 1.

As the pure aggregation pi = a1,g fulfills only (3.9) but not (3.11), the prolongation has to
be improved for all mirror points, possibly resulting in more than one smoothing parameter
ω and thus multiple necessary smoothing steps. Note, that the extension of these results to
the case of zeros at other positions is possible analogously to the case outlined in Remark 3.1
with the same symbol pi(x) = 1 + e−i(x+x0).

10
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3.2. Cutting in the d-level case for d > 1. Using the 1-level case as motivation, prior
to introducing aggregation and SA multigrid for d-level circulant matrices, d ∈ N (usually
associated to d-dimensional problems), we have to extend the theoretical results in [6] to
d > 1. For that purpose let A = Cn(f), where f : Rd → C is a nonnegative function
2π-periodic in each variable, n ∈ Nd, g ∈ Nd is the size of the aggregates and assume that
n = glmax+1, i.e., nj = glmax+1

j , j = 1, . . . , d. As before, we define the fine level operator
A0 = A with f0 = f and recursively the system size as ni+1 = ni/g (all the multi-indices
operations in the paper are intended component-wise), the prolongation as in (3.8) where
Kni,g = K(ni)1,g1 ⊗ · · · ⊗K(ni)d,gd , and the coarse grid operator as Ai+1 = PH

i AiPi. The
set of all corners of x ∈ Rd associated to the cut matrix Kni,g is

Ωg(x) =

{
y

∣∣∣∣ yj ∈
{
xj +

2πk

gj
(mod 2π)

}
, k = 0, . . . , gj − 1, j = 1, . . . , d

}
.

To simplify the following notation we define G =
∏d

j=1 gj .
Analogously to the 1-level case, the generating symbol of the system matrix of the

coarser level is given as stated by the following lemma.
LEMMA 3.2. Let Ai = Cni(fi), Pi defined in (3.8), and ni+1 = g · ni ∈ Nd, then the

coarse level system matrix Ai+1 = PH
i AiPi is Ai+1 = Cni+1(fi+1) where

(3.12) fi+1(x) =
1

G

∑

y∈Ωg(x/g)

|pi|2fi(y), x ∈ [−π, π)d.

Proof. The proof is a generalization of the proof of Proposition 5.1 in [3]. First we note
that in analogy to (2.12), we have

Kni,gFni = K(ni)1,g1Fni,1 ⊗ · · · ⊗K(ni)d,gdFni,d

=
1√
G
(Fni+1,1(e

T
g1 ⊗ Ini,1))⊗ · · · ⊗ (Fni+1,d

(eTgd ⊗ Ini,d
))

=
1√
G
(Fni+1,1 ⊗ · · · ⊗ Fni+1,d

)((eTg1 ⊗ Ini,1)⊗ · · · ⊗ (eTgd ⊗ Ini,d
)),

so

(3.13) KniFni =
1√
G
Fni+1Θni,g,

where Θni,g = (eTg1 ⊗ Ini,1)⊗ · · · ⊗ (eTgd ⊗ Ini,d
). So, for Ai+1 = PH

i AiPi we have

PH
i AiPi = Kni,gCHni

(pi)Cni(fi)Cni(pi)K
H
ni,g

= Kni,gFniDni(|pi|2fi)FH
ni
KH

ni,g

=
1

G
Fni+1Θni,gDni(|pi|2fi)ΘH

ni,gF
H
ni+1

.

Here,

Dni(f) = diag0≤j≤ni−ed(f((xi)j)),

where (xi)j ≡ 2πj/ni = (2πj1/(ni)1, . . . , 2πjd/(ni)d)
T and 0 ≤ j ≤ ni − ed. All

operations and inequalities between multi-indices are intended component-wise. For a given
multi-index k = (k1, . . . , kd), 0 ≤ kj ≤ (ni+1)j we have

(Θni,gx)k =

g−ed∑

l=0

xk+l,

11
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so we obtain

Θni,gDni(|pi|2fi)ΘT
ni,g =

g−ed∑

l=0

Dni,g,l(|pi|2fi),

where

Dni,g,l(f) = diagni+1·l≤j′≤ni+1·(l+ed)−ed
(f((xi)j′ )).

For an example of the multi-index notation in the case d = g = 2 we refer to the proof of
Proposition 5.1 in [3]. As result we obtain

PH
i AiPi =

1

G
Fni+1

(
g−ed∑

l=0

Dni,g,l(|pi|2fi)
)
FH
ni+1

and with

(xi)j′ = (xi+1)j/g + π · l (mod 2π), 0 ≤ j ≤ ni+1 − ed, j
′ = j + ni+1 · l,

we get PH
i AiPi = Cni+1(fi+1), with fi+1 defined in (3.12).

REMARK 3.3. If the two conditions (3.9) and (3.10) are satisfied with x ∈ [−π, π)d, we
obtain as consequence of Lemma 3.2 that if x0 is a zero of fi then g · x0 mod 2π is a zero of
fi+1 with the same order.

The two-grid optimality can be obtained similarly to the 1-level case. The following
result shows that two-grid conditions (3.9) and (3.10) are sufficient in order to satisfy the
condition (2.8).

THEOREM 3.4. Let Ai := Cni(fi), with fi being a d-variate nonnegative trigonometric
polynomial (not identically zero), and let Pi = Cni(pi)K

T
ni,g be the prolongation operator,

with pi trigonometric polynomial, satisfying condition (3.9), for any zero of fi, and satisfying
globally condition (3.10). Then, there exists a positive value γ independent of ni such that
inequality (2.8) is satisfied.

Proof. The proof is a combination of Theorem 5.1 in [6] and Lemma 6.3 in [3], but
we report it here for completeness. First, we recall that the main diagonal of Ai is given by
Di = tiINi with ti = ‖fi‖1 > 0, so that ‖ · ‖2Di

= y = ti‖ · ‖22.
In order to prove that there exists γ > 0 independent of ni such that for any x ∈ CNi

min
y∈CNi+1

‖x− Piy‖2Di
= ti min

y∈CNi+1

‖x− Piy‖22 ≤ γ‖x‖2Ai
,

we chose a special instance of y. For any x ∈ CNi , let y ≡ y(x) ∈ CNi+1 be defined as
y =

[
PH
i Pi

]−1
PH
i x. Therefore, (2.8) is implied by

‖x− Piy‖22 ≤ (γ/ti)‖x‖2Ai
, ∀x ∈ CNi ,

where the latter is equivalent to the matrix inequality

(3.14) Wni(pi)
HWni(pi) ≤ (γ/ti)Cni(fi),

with Wni(pi) = INi − Pi

[
PH
i Pi

]−1
PH
i . Since Wni(pi)

HWni(pi) = Wni(pi), inequality
(3.14) can be rewritten as

Wni(pi) ≤ (γ/ti)Cni(fi).(3.15)
12
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Let µ = (µ1, . . . , µd) with 0 ≤ µr ≤ (ni+1)r − 1, r = 1, . . . , d, and let pi[µ] ∈ CG

whose entries are given by the evaluations of pi over the points of Ω(x(ni)
µ ), with x

(ni)
µ =

(2πµ1/(ni)1, . . . , 2πµd/(ni)d). Using the same notation for fi[µ], we denote by diag(fi[µ])
the diagonal matrix having the vector fi[µ] on the main diagonal. There exists a suitable
permutation by rows and columns of FH

ni
Wni(pi)Fni , such that we can obtain a G×G block

diagonal matrix and the condition (3.15) is equivalent to

(3.16) IG −
pi[µ](pi[µ])

T

‖pi[µ]‖22
≤ (γ/ti)diag(fi[µ]), ∀µ.

By the Sylvester inertia law [24], the relation (3.16) is satisfied if every entry of

diag(fi[µ])
−1/2

(
IG −

pi[µ](pi[µ])
T

‖pi[µ]‖22

)
diag(fi[µ])

−1/2

is bounded in modulus by a constant, which follows from the conditions (3.9) and (3.10).

Since the post-smoothing property holds unchanged, combining Theorem 2.3 and The-
orem 3.4 with Theorem 2.2, it follows that the two-grid convergence speed does not depend
on the size of the linear system.

3.3. The aggregation operator. In the pure aggregation setting the generating symbol
of the prolongation is given by

(3.17) ad,g(x) =

d∏

j=1

gj−1∑

k=0

e−ikxj , x ∈ [−π, π)d.

THEOREM 3.5. For the function ad,g defined in (3.17) there exists a constant c with
0 < c < +∞ such that

(3.18) lim sup
x→0

|ad,g(y)|∑d
j=1 x

z
j

= c, y ∈Mg(x).

where z = d−# {yj | yj = 0, j = 1, . . . , d} is the number of directions along which ad,g is
zero.
Further on, if fi has a single isolated zero of order 2 at the origin, pi = ad,g fulfills (3.10)
and (3.9).

Proof. The limit (3.18) follows from the Taylor series of ad,g: Consider y ∈ Mg(x), i.e.,
yj = xj +

2πℓ
gj

(mod 2π) for ℓ = 0, . . . , gj − 1, then the j-th factor of ad,g(y) is

gj−1∑

k=0

e−ikyj =

gj−1∑

k=0

e
−ik(xj+

2πℓ
gj

)
=

gj−1∑

k=0

e
−i2πkℓ

gj e−ikxj .

Since
gj−1∑

k=0

e
−i2πkℓ

gj =

{
gj if ℓ = 0,
0 otherwise,

the j-th factor in (3.17) has an infinite Taylor series with the constant term equal to zero only
if ℓ 6= 0.
If fi has a single isolated zero of order 2 at the origin then

lim sup
x→0

fi(x)∑d
j=1 x

2
j

= ĉ, 0 < ĉ < +∞

13
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FIG. 3.1. Order of y ∈ Mg(0) for the aggregation operator ad,g : ◦ → order = 1, � → order = 2, ♦ →
order = 3.

and hence pi = ad,g fulfills (3.9).
Regarding (3.10), let x be such that |ad,g|2(x) = 0. If x lies on the axes then 0 ∈ Ωg(x)

and |ad,g|2(0) > 0. If x does not lie on the axes, then there exists a y ∈ Ωg(x) that lies on an
axis and that fulfills |ad,g|2(y) > 0.

Figure 3.1 gives a visual representation of the behaviour of pi = ad,g atMg(0) for two
examples. The previous Theorem 3.5 states that if the symbol f has a zero at the origin of
order two then the two-grid method is optimal. On the other hand, the V -cycle can not be
optimal since pi = ad,g vanishes only with order one at the mirror points located along the
cardinal axes. For the same reason, when f vanishes at the origin with a zero of order greater
than two, e.g., for the biharmonic problem, also the aggregation two-grid method can not be
optimal. To overcome this weakness of the aggregation operator, smoothing techniques for
the projector are usually employed. A simple strategy of this kind will be analyzed in the next
subsection.

3.4. Smoothing the projector by weigthed Richardson. The order of the zero at the
points where pi = ad,g is zero in one direction, only, can be improved by applying smoothing.
For that purpose we again use an ω-Richardson smoother. In the d-level case the generating
symbol of this smoother is given by

si,ω : [−π, π)d → C(3.19)
x→ si,ω(x) = 1− ωfi(x).(3.20)

LEMMA 3.6. Assume that fi ≥ 0 has a single isolated zero of order 2 at the origin and
that fi obtains the maximum only at all y ∈ Mg(0) lying on the axes and let ỹ be one of
these points. Then the symbol of the smoothed prolongation given by

pi(x) = si,1/f(ỹ)(x) ad,g(x)

fulfills (3.11) and (3.10).
Proof. Since ỹ is point of maximum for fi, the function si,1/f(ỹ) is nonnegative and

vanishes for y ∈ Mg(0) lying on the axes with order at least one. From Theorem 3.5 ad,g
vanishes at y ∈ Mg(0) with order one if y lies on the axes and with order at least two,
otherwise. Therefore, pi = si,1/f(ỹ) ad,g vanishes with order at least two for all y ∈ Mg(0)
and hence it fulfills (3.11).

Regarding (3.10), the assumptions on fi implies that si,1/f(ỹ)(y) = 0 only for y ∈
Mg(0) lying on the axes. Hence {x | si,1/f(ỹ)(x) = 0} ⊂ {x | ad,g(x) = 0} and pi =

14
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ad,gsi,1/f(ỹ) fulfills (3.10) since it is already satisfied by pi = ad,g thanks to Theorem 3.5.

In general ω should be chosen improving the projector where the aggregation operator
is less effective, that is at the mirror points located along the cardinal axes, i.e., the points
belonging to

(3.21) Ag(0) = {y ∈ Mg(0), # {yj | yj 6= 0, j = 1, . . . , d} = 1}.

Therefore, ω is obtained imposing that si,ω(y) = 0 for a certain y ∈ Ag(0). If different
points in Ag(0) lead to different values of ω, then more smoothing steps with different ω
should be added to the aggregation. For a detailed discussion see Section 4.3.

Again, if the smoother introduces a zero of order two, it is sufficient to smooth either the
prolongation or the restriction operator generalizing the results in [23] to g > 2. Moreover,
like in Remark 3.1 the aggregation operator for a zero at a position x0 6= 0 ∈ Rd is defined
by

pi(x) =
d∏

j=1

gj−1∑

k=0

e−ik(xj+x0
j), x ∈ [−π, π)d.

4. Analysis and design of SA for some classes of matrices. Firstly, we observe that
the theoretical results obtained in the previous section to design SA for circulant matrices can
be applied in a straightforward way to Toeplitz matrices. Subsequently, we pass to study in
detail matrices arising from the finite difference discretization of some PDEs.

As noted at the end of section 2.3 the circulant case can be applied and extended to the
Toeplitz case. In analogy to (2.15) the cut matrix Kni,g given by (3.7) in the Toeplitz case is
given by

Kni,g =




0 · · · 0 1 0 · · · 0
1 0 · · · 0

. . .
1 0 · · · 0


 ,

where the first and last (g−1)/2 columns are zero. The multilevel counterpart is formed with
the help of Kronecker products. In the case that the degree of the trigonometric polynomial
is smaller than g in the 1-level case of the degree of each variable in the multilevel case is
smaller than the corresponding gj the Toeplitz structure is kept on the coarser levels. This is
a general advantage of multigrid methods that use reductions of the system size greater than
2. If the degree is higher the cut matrix can be padded with zeros as in (2.16).

In the following we consider the finite difference discretization of PDEs, in particular the
2D Laplacian, with constant coefficients. Nevertheless, the analysis can be used to design a
SA multigrid also in the non-constant coefficients case as well. Indeed, while non-constant
coefficients do not lead to circulant or Toeplitz matrices, circulant or Toeplitz matrices can
be used as a local model by freezing the coefficients and analyzing the resulting stencils by
the methods derived for the constant coefficient case. This approach is employed in [23]
and is similar to local Fourier analysis (LFA) for multigrid methods that is used to analyze
geometric multigrid methods. For a detailed review of LFA see [25]. The developed theory
can be used to choose different smoothers based on the local stencil within the smoothing
process in general SA multigrid methods. Hence, the used smoother is of the form I −ΩiAi

with a diagonal matrix Ωi, each Ωi related to a frozen local stencil. This strategy will be
employed in Section 5.5.
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4.1. Symmetric projection for 2D Laplacian. Now we turn to finite differences dis-
cretization of the 2D Laplacian with constant coefficients. In this case we are able to formu-
late some results based on the developed theory. In the following we allow only the same
coarsening in x and y direction, and therefore we will denote the coarsening g by only one
integer, g = 2, 3, 4, or 5.

LEMMA 4.1. Let f be an even trigonometric polynomial obtained by an isotropic dis-
cretization of the 2D Laplacian. If g = 2 or g = 3, there always exists a smoother si,ω
defined in (3.19) with unique ω such that the resulting projection pi = si,ω a2,g fulfills (3.11).
In particular

i) for g = 2 we obtain ω = 1/f(0, π),
ii) for g = 3 we obtain ω = 1/f(0, 2π3 ).

Proof. The function f is nonnegative and vanishes only at the origin with order two.
The isotropic discretization leads to a symmetry on f such that f(0, z) = f(z, 0), that
is inherited by s0,ω. From (3.21) it holds A(2,2)(0) = {(0, π), (π, 0)} and A(3,3)(0) =

{(0, 2π3 ), (0, 4π
3 ), (2π3 , 0), (4π3 , 0)}. Therefore, ω has to be chosen such that s0,ω(0, π) =

1− ωf(0, π) = 0 for g = 2 and s0,ω(0, 4π/3) = s0,ω(0, 2π/3) = 1 − ωf(0, 2π/3) = 0 for
g = 3. The coarse symbols fi, i > 0, preserve the same properties of f thanks to Lemma 3.2
and Remark 3.3. In the case that every fourth point is taken in each direction, i.e. the
number of unknowns is reduced by a factor of 16, we obtain a similar result:

LEMMA 4.2. Let f be an even trigonometric polynomial obtained by an isotropic dis-
cretization of the 2D Laplacian. If g = 4 we need two smoothers with two different ω
given by ω1 = 1/f(0, π/2) and ω2 = 1/f(0, π) such that the resulting projection pi =
si,ω1si,ω2 a2,g fulfills (3.11). For g = 5 the same results holds for ω1 = 1/f(0, 2π/5) and
ω2 = 1/f(0, 4π/5)

Proof. The proof is analogous to that of Lemma 4.1 by the sets A(4,4) and A(5,5). Two
differents ω are necessary in view of cos(π/2) = cos(3π/2) 6= cos(π) and cos(2π/5) =
cos(8π/5) 6= cos(4π/5) = cos(6π/5). For anisotropic stencils even with standard
coarsening two ω are needed.

LEMMA 4.3. Let f be an anisotropic discretization of the 2D Laplacian. If g = 2 we
need two different ω given by ω1 = 1/f(π, 0) and ω2 = 1/f(0, π) such that the resulting
projection pi = si,ω1si,ω2 a2,g fulfills (3.11). For g = 3 we need also two ω, namely ω1 =
1/f(2π/3, 0) and ω2 = 1/f(0, 2π/3). For g = 4 and g = 5, four ω are necessary.

Proof. Due to the anisotropic discretization f(π, 0) 6= f(0, π), in general, and hence a
double number of ω with respect to the isotropic case in lemmas 4.1 and 4.2 is required.

4.2. Non-symmetric projection for 2D Laplacian. The SA projection is defined by
applying the aggregation prolongation Cn(ad,g)K

T
n in the restriction and the prolongation

and additional smoothers Sj := I−ωjdiag(A)
−1A, j = 1, ...k. In the symmetric application

we include each Sj in the restriction and the prolongation. In the nonsymmetric application
we include each Sj only once, either in the restriction or in the prolongation. Hence, the
coarse system is related to the matrix

KnC
H
n (ad,g)Sk..S1AS1...SkCn(ad,g)K

T
n

in the symmetric case, and in the nonsymmetric application e.g. to

KnC
H
n (ad,g)S1..SlASl+1...SkCn(ad,g)K

T
n .

THEOREM 4.4. To maintain the original block tridiagonal structure also on the coarse
levels the number k of smoothers that can be included in both restriction and prolongation
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is restricted by k < g. Therefore, if we incorporate the smoothing only in the restriction OR
the prolongation, k < g smoothers are allowed in SA; if we use symmetric projection with
RT

i = Pi, then we have to satisfy k < g/2:

g 2 3 4 5
allowed k for nonsymmetric case 1 2 3 4

allowed k for symmetric application 0 1 1 2

Proof. The injection has block bandwidth given by g − 1 upper diagonals, A and the
smoothers are block tridiagonal with 1 upper diagonal. Hence, applying k smoothers leads to
g+k upper diagonals. Picking out every g-th diagonal gives block tridiagonal 9-point stencil
if k < g.

THEOREM 4.5. To derive the right number of zeros in the restriction/prolongation such
that (3.5) holds, the necessary number k of smoothers on the whole is given by:

g 2 3 4 5
necessary k in the isotropic case 1 1 2 2

necessary k in the anisotropic case 2 2 4 4

Proof. The symmetric application of the aggregation gives the right order of zeros on all
mirror points that are not lying on the coordinate axes. Following the analysis in lemmas 4.1
and 4.2 the smoothers, resp. ωj , have to be chosen to add zeros on f(0, 2πj/g), f(2πj/g, 0),
j = 1, ..., g− 1. Because of the identities cos(2π/3) = cos(4π/3), cos(2π/4) = cos(6π/4),
and cos(2π/5) = cos(8π/5), cos(4π/5) = cos(6π/5), in the isotropic case, many of the
mirror points coincide and smoothing only the restriction or prolongation is necessary to
satisfy (3.5). For the anisotropic case, we have to consider the two axes x and y separately
and hence to double the number of smoothers like in Lemma 4.3.

To obtain both goals on the order of zeros and the block tridiagonal structure, combining
theorems 4.4 and 4.5, we can apply the SA according to the following cases:

1. isotropic case and nonsymmetric projection for all g,
2. isotropic case and symmetric projection for g = 3 or g = 5,
3. anisotropic case and nonsymmetric projection for g = 3 or g = 5,
4. anisotropic case and symmetric projection for no g.

4.3. SA for 2D Laplacian with 9-point stencils. Now we want to discuss exemplarily
and in detail the application of the smoothed aggregation technique on the 2D Laplacian with
9-point stencils. We design the projections that on all levels we derive again 9-point stencils
and that we use smoothers in the projection to get zeros of order at least 2 on all mirror points
besides the origin according to condition (3.5). Therefore, our analysis will be focused to
obtain a stable stencil according to the following definition.

DEFINITION 4.6. A stencil associated to a symbol fi is stable if exist ri and pi that
satisfy (3.5), and fi+1 = αifi, with αi > 0. Of course, if the stencil f at the finest level is
stable the same holds for all fi at the coarser levels i = 1, . . . , lmax.

Appling the nonsymmetric projection, e.g. by including the smoothers only in the prolon-
gation or in the restriction, the coarse matrix will again be symmetric because of the cutting
procedure, but the coarse system might get indefinite. Therefore, we have to analyze the re-
sulting coarse grid matrix and determine when it is symmetric positive definite. An obvious
criterion that we use here is the M-matrix property.

According to the points 1–3 at the end of the previous subsection, we study in detail
17
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points 1 and 2 for the isotropic stencil

(4.1)
1

4 + 4c



−c −1 −c
−1 4 + 4c −1
−c −1 −c


 , c ≥ 0,

which is associated to the symbol

(4.2) f(x, y) =
(
2− cos(x)− cos(y) + c(2− cos(x+ y)− cos(x − y))

)
/(2 + 2c) ,

and the point 3 for the anisotropic case

(4.3) f(x, y) = ((1 − cos(x)) + b(1− cos(y)), b > 0.

Firstly, we compute stable stencils for the isotropic case and nonsymmetric projection
(point 1) for g = 2, . . . , 5.

THEOREM 4.7. For g = 2 and nonsymmetric smoothing, the stencil (4.1) with c = 1/
√
2

is stable. Moreover the coarse system is a block tridiagonal M-matrix for all c > 0.
Proof. From the symbol (4.2) only one ω = (1 + c)/(1 + 2c) is necessary to ensure

1− ωf(0, π) = 0 and so to satisfy (3.5). Using the function

g(x, y) = f(x, y)(1 − ωf(x, y))(1 + cos(x))(1 + cos(y))

from (3.6) it follows

f1(x, y) =
1

4
(g(

x

2
,
x

2
) + g(

x

2
+ π,

x

2
) + g(

x

2
,
x

2
+ π) + g(

x

2
+ π,

y

2
+ π)) .

This can be evaluated at (0, 0), (0, π), and (π, π), leading to

f1(0, 0) = 0, f1(0, π) =
1 + 2c

4(1 + c)
, f1(π, π) =

c

1 + 2c
.

These function values are related to a 9-point stencil, resp. trigonometric polynomial

(4.4) f1(x, y) = σ − δ(cos(x) + cos(y))− ǫ cos(x) cos(y)

with

σ =
1 + 6c+ 6c2

8(1 + 2c)(1 + c)
, δ =

c

4(1 + 2c)
, ǫ =

1 + 2c+ 2c2

8(1 + 2c)(1 + c)
.

resulting in the coarse grid stencil

(4.5)
1

8(1 + 2c)(1 + c)




−1/4− c/2− c2/2 −c− c2 −1/4− c/2− c2/2
−c− c2 1 + 6c+ 6c2 −c− c2

−1/4− c/2− c2/2 −c− c2 −1/4− c/2− c2/2


 ,

which gives a M-matrix for all c > 0.
For a stable stencil the functions f and f1 have to be equivalent up to a scalar factor, or

2cδ = ǫ, which is satisfied for c = 1√
2

.
The following theorems can be proven using the same technique, where the coarse sym-

bol f1 is computed generalizing (3.6) to g > 2 like in Lemma 3.2.
THEOREM 4.8. For g = 3 and nonsymmetric smoothing, the stencil (4.1) with c = 1/

√
2

is stable. Moreover, the coarse stencil

(4.6)
1

18(1 + 2c)(1 + c)




−3− 4.5c− 3c2 3/2 − 9c− 12c2 −3− 4.5c− 3c2

3/2 − 9c− 12c2 6 + 54c+ 60c2 3/2 − 9c− 12c2

−3− 4.5c− 3c2 3/2 − 9c− 12c2 −3− 4.5c− 3c2




18
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defines a block tridiagonal M-matrix for c > −3+
√
17

8 ≈ 0.140388.
THEOREM 4.9. For g = 4 and nonsymmetric smoothing, the stencil (4.1) with c = 0 or

c = 1 is stable. Moreover, the coarse stencil

(4.7)
1

8(1 + c)(1 + 2c)2




−5c− 8c2 − 5c3 −2− 2c− 8c2 − 6c3 −5c− 8c2 − 5c3

−2− 2c− 8c2 − 6c3 8 + 28c+ 64c2 + 44c3 −2− 2c− 4c2 − 6c3

−5c− 8c2 − 5c3 −2− 2c− 8c2 − 6c3 −5c− 8c2 − 5c3




defines a block tridiagonal M-matrix for all c > 0.
THEOREM 4.10. For g = 5 and nonsymmetric smoothing, the stencil (4.1) with c =

1.910044687.. and c = 0.2296814707.. is stable. Moreover, the coarse stencil
(4.8)

1

20(1 + c)(1 + 2c)2




2− 13c− 24c2 − 16c3 −9− 4c− 12c2 − 8c3 2− 13c− 24c2 − 16c3

−9− 4c− 12c2 − 8c3 28 + 68c+ 144c2 + 96c3 −9− 4c− 12c2 − 8c3

2− 13c− 24c2 − 16c3 −9− 4c− 12c2 − 8c3 2− 13c− 24c2 − 16c3




defines a block tridiagonal M-matrix for c > 0.1234139034.
Consider now the isotropic case and symmetric projection (point 2).
THEOREM 4.11. For g = 3 and symmetric smoothing, the stencil (4.1) with c = 1 or

c = 0 is stable. Moreover, the coarse stencil
(4.9)

1

12(1 + 2c)2(1 + c)




−7c− 12c2 − 8c3 −3− 4c− 12c2 − 8c3 −7c− 12c2 − 8c3

−3− 4c− 12c2 − 8c3 12 + 44c+ 96c2 + 64c3 −3− 4c− 12c2 − 8c3

−7c− 12c2 − 8c3 −3− 4c− 12c2 − 8c3 −7c− 12c2 − 8c3




defines a block tridiagonal M-matrix for all c > 0.
THEOREM 4.12. For g = 5 and symmetric smoothing, the stencil (4.1) with c =

0.1991083336.. or c = 0.8931363030.. is stable. Moreover, the coarse grid matrix is a
block tridiagonal M-matrix for c > 0.1475660601...

Finally, we consider the anisotropic case and nonsymmetric projection (point 3).
THEOREM 4.13. For g = 3 and nonsymmetric smoothing, the anisotropic stencil of the

symbol (4.3) is stable and the coarse grid matrix is again an M-matrix for all b > 0.
Proof. We need two ω’s, ω1 = 2(1+b)

3b and ω2 = 2(1+b)
3 , those lead to

f1(π, π) = 2 , f1(0, π) =
2b

1 + b
, f1(π, 0) =

2

1 + b
.

Therefore, the coarse grid symbol is

f1(x, y) = α(1 − cos(x)) + β(1− cos(y))

with

β =
b

1 + b
, α =

1

1 + b
.

5. Numerical examples. All numerical tests were obtained using MATLAB R2012a.
We implemented the outlined method based on the developed theory for circulant and Toeplitz
d-level matrices with generating symbols with second order zero at the origin. The optimal
ω was chosen automatically on each level by computing the value of the symbol at all the
critical mirror points lying on the axes. We used 3 steps each of the Richardson iteration as
pre- and postsmoother. The coarsest grid was of size gd in the circulant case and 1 in the
case of Toeplitz matrices. For even cut sizes g we consider the circulant case, only, to allow
for a meaningful geometric interpretation of the resulting aggregation method. We report the
number of iterations to yield a reduction of the residual by a factor of 10−10, the operator
complexity and the asymptotic convergence rate given by the residuals of the last two cycles.
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# dof # iter. op. compl. asymp. conv.
4× 4 13 1.1000 0.1780
8× 8 12 1.3000 0.1779

16× 16 12 1.3750 0.1680
32× 32 12 1.3938 0.1693
64× 64 12 1.3938 0.1720
128× 128 12 1.3996 0.1714
256× 256 12 1.3999 0.1714

TABLE 5.1
Results for the circulant case for the 5-point Laplacian (5.2) for g = 2 and nonsymmetric smoothing.

5.1. 2-level isotropic examples. We consider stencils of the general form (4.1)

(5.1)
1

4 + 4c



−c −1 −c
−1 4 + 4c −1
−c −1 −c


 .

For c = 0 this yields the 2nd-order accurate 5-point finite difference discretization of the
Laplacian with the stencil

(5.2)
1

4




−1
−1 4 −1

−1


 ,

while for c = 1 we obtain the 2nd-order accurate 9-point finite element disrcetization of the
Laplacian given by the stencil

(5.3)
1

8



−1 −1 −1
−1 8 −1
−1 −1 −1


 .

We start with the case g = 2. To prevent unbounded growth of the operator complexity
we do not consider symmetric prolongation and restriction, but we rather consider a smoothed
prolongation operator, only. As denoted above, we only consider the circulant case. The
results for the 5-point Laplacian with stencil (5.2) can be found in Table 5.1, the results for
the 9-point stencil (5.3) are found in Table 5.2. As a last example we considered the stencil
given by (5.1) with c = 1/

√
2 that was shown to be stable in Theorem 4.7, the results are in

Table 5.3.
Next, we consider g = 3. In this case symmetric smoothing of prolongation and restric-

tion does not lead to stencil grow, so we first start with this approach. We tested this approach
for the 5- and 9-point Laplacian that are stable due to Theorem 4.11. The results for these
stencils in the Toeplitz case can be found in Tables 5.4 and 5.5, the results for the circulant
case are comparable. If non-symmetric smoothing of the prolongation only is applied, the 5-
point discretization of the Laplace operator leads to an indefinite stencil from level 2 onwards,
so we did not consider it, here. Note that it does not fulfill the requirements of Theorem 4.8,
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# dof # iter. op. compl. asymp. conv.
4× 4 8 1.1111 0.0596
8× 8 10 1.2778 0.1071

16× 16 9 1.3194 0.1062
32× 32 9 1.3299 0.1060
64× 64 9 1.3325 0.1067
128× 128 9 1.3331 0.1046
256× 256 9 1.3333 0.1053

TABLE 5.2
Results for the circulant case for the 9-point Laplacian (5.3) for g = 2 and nonsymmetric smoothing.

# dof # iter. op. compl. asymp. conv.
4× 4 9 1.1111 0.0730
8× 8 10 1.2778 0.1103

16× 16 9 1.3194 0.1059
32× 32 9 1.3299 0.1105
64× 64 9 1.3325 0.1041
128× 128 9 1.3331 0.1055
256× 256 9 1.3333 0.1054

TABLE 5.3
Results for the circulant case for the stable stencil (5.1) with c = 1/

√
2 for g = 2 and nonsymmetric smoothing.

# dof # iter. op. compl. asymp. conv.
9× 9 19 1.1355 0.3606

27× 27 23 1.1908 0.4296
81× 81 23 1.2129 0.4368
243× 243 24 1.2209 0.4376

TABLE 5.4
Results for the Toeplitz case for the 5-point Laplace (5.2) for g = 3 and symmetric smoothing.

# dof # iter. op. compl. asymp. conv.
9× 9 13 1.0800 0.2215

27× 27 16 1.1082 0.2718
81× 81 16 1.1191 0.2769
243× 243 16 1.1230 0.2788

TABLE 5.5
Results for the Toeplitz case for the 9-point Laplace (5.3) for g = 3 and symmetric smoothing.

# dof # iter. op. compl. asymp. conv.
9× 9 17 1.0800 0.2570

27× 27 16 1.1082 0.2943
81× 81 16 1.1191 0.2989
243× 243 16 1.1230 0.3015

TABLE 5.6
Results for the Toeplitz case for the 9-point Laplace (5.3) for g = 3 and nonsymmetric smoothing.
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# dof # iter. op. compl. asymp. conv.
9× 9 17 1.0800 0.2799

27× 27 16 1.1082 0.2746
81× 81 16 1.1191 0.2784
243× 243 16 1.1230 0.2819

TABLE 5.7
Results for the Toeplitz case for the stable stencil (5.1) with c = 1/

√
2 for g = 3 and nonsymmetric smoothing.

# dof # iter. op. compl. asymp. conv.
16× 16 40 1.0625 0.6336
64× 64 39 1.0664 0.6214
256× 256 40 1.0667 0.6250

TABLE 5.8
Results for the circulant case for the stable 5-point stencil (5.2) for g = 4 and nonsymmetric smoothing.

so the positive definiteness is not guaranteed, anyway: The results for the 9-point stencil (5.3)
are in Table 5.6, those for the stencil (5.1) with c = 1/

√
2, that is stable due to Theorem 4.8,

are in Table 5.7. We also considered the 5-point Laplacian (5.2) in the case g = 4. In this
case the stencil is stable, cf. Theorem 4.9. As in the case g = 2 we only present results in
the circulant case that can be found in Table 5.8. Finally, results for the stencil (5.1) with
c = 0.22968147.. are presented in Table 5.9 for the Toeplitz case with g = 5. The stencil
is stable due to Theorem 4.10, the results for the circulant case are similar. In all cases we
see a nice convergence behavior that is independent of the number of levels. As expected
the convergence rate deteriorates when more aggressive coarsening is chosen, this could be
overcome by adding more smoothing steps or by using more efficient smoothers.

5.2. 2-level anisotropic examples. We consider matrices with the stencil

(5.4)



− 1

12 − 6b−2a
12a+12b − 1

12

− 6a−2b
12a+12b 1 − 6a−2b

12a+12b

− 1
12 − 6b−2a

12a+12b − 1
12


 ,

yielding the symbol

f(x) = 1− 12a− 4b

12a+ 12b
cos(x1)−

12b− 4a

12a+ 12b
cos(x2)−

1

3
cos(x1) cos(x2).

This corresponds to a discretization of an anisotropic PDE. First we consider an example
with a slight anisotropy where we choose a = 1 and b = 1.1. To reduce the growth of the
operator complexity we again choose to smooth the prolongation, only. The results for the
Toeplitz case are in Table 5.10, those for the circulant case are similar. If the anisotropy is
increased, the convergence rate deteriorates, as expected. The results for a = 1 and b = 2 can
be found in Table 5.11. The consideration of even higher anisotropies is not meaningful, as
other coarsening strategies like semicoarsening or the use of stretched aggregates is advisable.

22



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

# dof # iter. op. compl. asymp. conv.
25× 25 47 1.0319 0.6751
125× 125 49 1.0395 0.6924
625× 625 50 1.0412 0.6975

TABLE 5.9
Results for the Toeplitz case for the optimal stencil (5.1) with c = 0.22968147.. for g = 5 and nonsymmetric

smoothing.

# dof # iter. op. compl. asymp. conv.
32 × 32 16 1.0800 0.2744
33 × 33 18 1.1082 0.3346
34 × 34 18 1.1191 0.3376
35 × 35 19 1.1230 0.3450

TABLE 5.10
Results for the Toeplitz case for the anisotropic stencil (5.4) with a = 1 and b = 1.1 for g = 3.

5.3. 3D example. The stencil of the Laplacian in 3 dimensions using trilinear cubic
finite elements is given by

4

3



−4 −8 −4
−8 −8
−4 −8 −4






−8 −8

128
−8 −8






−4 −8 −4
−8 −8
−4 −8 −4


 .

The results for the Toeplitz case with g = 3 are in Table 5.12, the results for the circulant case
are very similar, so we omit them. The results show that the approach works as expected for
higher levels/dimensions, as well.

5.4. Optimality of ω. To illustrate the optimality of the ω resulting from our analysis,
we varied the ω. We chose the 9-point stencil (5.3) for the Toeplitz case with g = 3, as this
is a stable stencil according to our theoretical results. We changed the optimal ω obtained
with the developed theory by multiplying it by a factor α ∈ [0.9, 1.1] on each level. In each
case we were solving a system of size 35 × 35 using the same right hand side and a zero
initial guess, the resulting asymptotic convergence rates are provided in Table 5.13. While
the asymptotic convergence rate does not vary much in a neighborhood of the optimal ω,
the optimal ω yields the best convergence rate. This shows that the theory is valid but the
methods seem to be relatively robust regarding the choice of the smoothing parameter.

5.5. Non-constant coefficient case. The obtained results can be used to define SA
methods for the non-constant coefficient case straightforwardly. For that purpose we use
Jacobi as smoother, but we introduce a diagonal matrix Ω to damp the relaxation. We deal
with model problem 3 in [26, p. 131], i.e.

−ǫuxx − uyy = f ((x, y) ∈ Ω = (0, 1)2),

u = g ((x, y) ∈ ∂Ω),

where ǫ varies, discretized using the stencil

1

h2




−1
−ǫ 2(1 + ǫ) −ǫ

−1


 .
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# dof # iter. op. compl. asymp. conv.
32 × 32 21 1.0800 0.3846
33 × 33 24 1.1082 0.4545
34 × 34 26 1.1191 0.4829
35 × 35 26 1.1230 0.4841

TABLE 5.11
Results for the Toeplitz case for the anisotropic stencil (5.4) with a = 1 and b = 2 for g = 3.

# dof # iter. op. compl. asymp. conv.
9× 9× 9 12 1.0293 0.1964

27× 27× 27 15 1.0421 0.2611
81× 81× 81 15 1.0469 0.2715

TABLE 5.12
Results for the Toeplitz case for the finite element discretization of the 3D Laplacian using cubic finite elements

for g = 3 and symmetric smoothing.

We chose ǫ as

ǫ(x, y) =
1

2
(2 + sin(2πx) sin(2πy))

and we scaled the matrix symmetrically such that it has ones on the diagonal. We build
regular 3 × 3 aggregates, i.e., we deal with the case g = 3. For the traditional SA approach
we smoothed the prolongation and restriction operator with ω-Jacobi, in accordance with
[14] we choose ω = 2/3. For our adaptive approach using the local model we build a local
stencil for each grid point and calculated the locally optimal ω’s. As the problem is locally
anisotropic we got two ω’s that were used to build to diagonal matrices Ω1 and Ω2 that are
used to smooth the prolongation and the restriction operator, respectively, by multiplying
them by

Si = I − ΩiA, i = 1, 2.

Nonsymmetric smoothing is used to prevent the operator complexity from growing. While
the operator complexity is the same for both approaches, the achieved convergence rates and
iteration counts vary. They can be found in Table 5.14 and in Figure 5.1. The choice of
smoothing parameters that is achieved is illustrated in Figure 5.2, where the two ω’s that are
chosen in the 27× 27 case are plotted. Our modification clearly outperforms the traditional
approach. Moreover, the dependance of the iteration count on the system size and thus on the
number of levels is weaker, as we see an increase of more than 35% for the plain SA when
going from 81× 81 to 243× 243, while the increase in the latter case is only 12%.

6. Conclusion. Aggregation-based multigrid methods for circulant and Toeplitz matri-
ces can be analyzed using the classical theory. The non-optimality of non-SA-based multigrid
methods can be explained easily by the lack of fulfillment of (2.13) by the prolongation and
restriction operator in that case. Guided by this observation sufficient conditions for an im-
provement of the grid transfer operators by application of the Richardson iteration can be
derived, including the optimal choice of the parameter. The results carry over from aggre-
gates of size 2d to larger aggregates. Numerical experiments show that the theory is valid
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α 0.90 0.95 1.00 1.05 1.10
asymp. conv. 0.2901 0.2800 0.2777 0.2783 0.2847

TABLE 5.13
Asymptotic convergence rate for slight perturbation of ω in Toeplitz case with g = 3, system size 35 × 35 and

symmetric smoothing of the grid transfer operators.

# dof 9× 9 27× 27 81× 82 243× 243
# iter. (ω = 2/3) 20 32 45 61

asymp. conv. (ω = 2/3) 0.3246 0.4923 0.6038 0.6820
# iter. (opt. ω) 15 20 25 28

asymp. conv. (opt. ω) 0.2164 0.3686 0.4251 0.4628
TABLE 5.14

Results for the Toeplitz case for the finite element discretization of the 3D Laplacian using cubic finite elements
for g = 3 and symmetric smoothing.

and that it can be used as a local model to choose the appropriate damping in SA even for
the non-constant coefficient case. As a result the application of more than one smoother is
recommended in connection with nonsymmetric coarsening in order to match the necessary
order of the zeros in the projection without increasing the sparsity of the coarse matrices.
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