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1 Introduction

Over the course of the last two decades the liberalization of energy markets has accelerated. While
in the past energy companies could act independently of competition with fixed prices, they now
have to face variable prices. With the foundation of the Federal Network Agency, which guarantees
grid access under fair conditions, the variety and quantity of market participants increased. This
development led to more intense competition, also affecting fuel markets and the volatility of input
costs. Since the installation of the European Union Emission Trading System (EU ETS) another
impact factor has been introduced. As a power plant manager has to surrender enough European
Emission Allowances (EUAs) to cover the emitted greenhouse gas, they can be interpreted as part
of production costs, thus influencing the margin of a power plant. We see, that in opposition to
the past, investment decisions concerning new technologies or power plants now have to consider
a more complex market situation and uncertainty about future price developments.

In this paper we want to quantify the value of coal and gas fired power plants in the German
electricity market. Beside renewable energy they form a major part of the German energy mix.
The profitability of a certain plant will be determined by the spread between the price of one
unit of electricity and its production costs. If we neglect operational constraints, such as starting
and minimum operating times, a plant will be online whenever its spread is positive. Therefore,
the value can be computed with the help of a real option approach, the so-called spread options.
Carmona et al. (2012) introduced a joint model to connect the price for electricity, fuel and emission
allowances for a theoretical market. Inspired by their approach, we introduce a joint model for
the complicated German energy market. Based on the stochastic bid stack, presented by Howison
and Coulon (2009), we calculate the price for electricity and the current emission rate of CO2,
including exogenous factors like demand, supply, fuel and emission allowances.

2 Clean Spread Options

The value of a coal or gas fired power plant can be quantified with the help of clean dark spread
options (coal) or clean spark spread options (gas). The spread determines the costs of transforming
fuel into electricity at a given power plant efficiency. Clean options also take into account the costs
of EUAs to offset the pollution of greenhouse gas.

In the following we define the spreads for the German market. The clean dark spread is defined
as:

CDS = S −
1

eff1

(K + e1A) ,

where S denotes the price of electricity in e/MWh, K the price of coal in e/MWh and A the price
of an EUA in e/tCO2. The variable e1 determines how much greenhouse gas are emitted if one
MWh of energy is produced at 100% efficiency. Corresponding to Abadie and Chamorro (2008),
IPCC (2006) we set e1 = 0.34056 tCO2 / MWh. The power plant’s efficiency is denoted by eff1 .

The clean spark spread is given by:

CSS = S −
1

eff2

(G+ e2A) ,

where G is the price of gas in e/MWh and e2 the emission factor. According to Abadie and
Chamorro (2008), IPCC (2006) the emission of natural gas is e2 = 0.20196 tCO2 / MWh. The
efficiency of a gas fired power plant is denoted by eff2 .

The spread determines the economic value of a power plant. In an ideal world, with simplifying
model assumptions, that there are neither delivery commitments nor restrictions on starting and
minimum operating times of a power plant, it will be online whenever the spread is positive.
Hence we can model its value by a call option on the spread with maturity T under the risk
neutral measure Q:

VCDS = e−rTEQ
(

ST −
1

eff1

(KT + e1 AT )
)+

,VCSS = e−rTEQ
(

ST −
1

eff2

(GT + e2 AT )
)+

.
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The profit of a coal or gas fired power plant with a capacity of one MWh in the period [0, T ] can
be determined by summing up the option values

PPVCDS =
T∑

t=1

VCDSt
,

PPVCSS =

T∑

t=1

VCSSt
.

Figure 2.1 shows the peak hour1 spreads in the German electricity market during the year 2012.
All data were taken from the European Energy Exchange (EEX). Since the coal price is quoted in
USD / t, we transform it from t to MWh under the assumption that hard coal burns at a rate of
7.00126 MWh / t as reported by Heizung-Direkt (2013). With the help of the exchange rate from
USD to e, we receive the desired quotation. The gas price is already quoted in e/ MWh and no
further transformation is necessary. Corresponding to a study by the VDI (2007) we choose the
typical efficiency of a coal fired plant as eff1 = 41.425% and of a gas fired one as eff2 = 50.625%.
The clean dark spread was always higher than the clean spark spread. This indicates that the
average coal fired power plant was more profitable than the average gas fired power plant in 2012.
In fact, the clean spark spread was negative most of the time and therefore, it was not profitable to
produce energy with a gas fired plant. The historic spreads also reveal a strong positive correlation
to the price of electricity.
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Figure 2.1: Spreads in the German electricity spot market (Peak hours)

3 The Electricity Spot Price

Since the liberalization of energy markets gathered pace, the number of modelling approaches has
grown rapidly. They range from full equilibrium models to reduced form models. Equilibrium
models try to identify all necessary parameters and economic fundamentals, which influence the
price of energy. Therefore a huge amount of data and knowledge about all generating units,
maintaining schedules, transmission constraints etc. is essential. On the one hand, these models
provide deep insights into market mechanisms, but on the other hand, the tremendous amount of
required data and its complexity make them unsuitable for derivatives pricing. For more details on
equilibrium models we refer to Eydeland and Wolyniec (2002), Bessembinder and Lemmon (2002).
Reduced form models approximate the energy price directly through stochastic processes. They

1trading hours 9 to 20
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are easy to use for straightforward derivatives pricing, but do not incorporate any fundamental
factors. The most advanced models of this group include regime switching and jumps, in Culot
et al. (2013) and DeJong (2006). Structural models try to combine the advantages of the two other
approaches while avoiding their disadvantages. They focus on identifying and modelling the main
price drivers (e.g. demand, supply, price of resources) and derive the energy price from them.

Howison and Coulon (2009) used a joint distribution function to extract bid curves by generator
type (coal, gas) from historical bid data. They were able to show a mapping between densities’
parameters and fundamental drivers, such as fuel prices. In the following section we will briefly
review their approach.

3.1 Stochastic Bid Curves and the Price for Electricity

We consider a market at time t with a demand Dt for energy and a capacity Ct in MWh. During
day ahead auctions energy companies place m bids, consisting of quantity qj and price pj for
j = 1, · · · ,m. These bids are arranged in merit order and the market operator calls upon generators
until the current demand is met. Let the distribution function Fi(St) denote the proportion of
bids below St e/MWh for generators of fuel type i = 1, · · · , n, then the spot price St solves the
equation

F (St) =

n∑

i=1

wiFi(St) =
Dt

Ct
, where

n∑

i=1

wi = 1.

Hence the electricity spot price can be expressed by

St = B(Dt

Ct
) := F (.)−1(Dt

Ct
),

where B : [0, 1] → R. Coulon and Howison suggest to use logistic distributions. To improve the
goodness of fit they use a trunctated domain with fixed lower and upper bounds bL, bU , where
bL < Dt

Ct
< bU must hold. The demand and capacity can then be rescaled by

D̂t := Dt − bL Ct, Ĉt := (bU − bL)Ct.

Hence the spot price fulfills

F (St) =
n∑

i=1

wiFi(St) =
D̂t

Ĉt

. (3.1)

3.2 The German Spot Market

The German electricity market is relatively unique in the world. Since the federal government
passed the Renewable Energy Law (Erneuerbare Energiengesetz, EEG), the capacity of sustain-
able generators has grown steadily. The Federal Ministry for the Environment, Nature Conserva-
tion and Nuclear Safety BMU (2004) estimates that renewable energy will represent 55% of the
installed capacity in 2050. Today, solar and wind power are the most important contributors to
green energy. However their production is significantly determined by the actual weather condi-
tions. The combination of the great share of green power in the German energy mix and volatile
production capacities makes the German market rather complicated. More information can be
found in Hendricks (2013).

In the following we want to analyse the demand and supply situation in the German market. We
will use Phelix2 price data from the two last years. It is traded at the EPEX Spot and published
as Phelix Base and Phelix Peak:

• EPEXSpot (2012) Phelix Day Base is the average price of the hours 1 to 24 for electricity
traded on the spot market. It is calculated for all calendar days of the year as the simple
average of the auction prices for the hours 1 to 24 in the market area Germany disregarding
power transmission bottlenecks.

2Physical Electricity Index (Germany/Austria)
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• EPEXSpot (2012) Phelix Day Peak is the average price of the hours 9 to 20 for electricity
traded on the spot market. It is calculated for all calendar days of the year as the simple
average of the auction prices for the hours 9 to 20 in the market area Germany disregarding
power transmission bottlenecks.

During daily day ahead auctions bids ranging from -3000e to 3000e for each individual hour can
be made. All bids are sorted by price and aggregate bids form the bid curve. Based on these
results the energy price is calculated as the match of the bid and demand curve. In Figure 3.1
we see aggregate bid curves in the Phelix Energy market. In the German/Austrian market huge
bids at the lower bound of -3000e can be observed. Within our time series from the years 2011
and 2012 these bids represent up to 91.24% 3 of the total capacity. This bid behaviour cannot
be found in bid data of other European countries, e.g. Switzerland and France. Comparing the
production forecasts 4 of wind and solar energy to the quantity of bids below -1000e in Figure 3.2
makes clear, that these bids belong to green producers and nucelar power plants. Since the EEG
forces to prefer renewable to conventional energy, their bids can be found at the lower bound of the
price range. The capacity available from nuclear power plants is also assumed to be at the lower
bound, because they cannot be switched on or off easily and their running costs remain rather
stable, regardless whether they are online or not. Wind production forecasts seem to be higher
during winter months, while solar modules provide more energy during summer. Please note that
intra-day patterns have been removed by taking the mean of all hours of each day.
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Figure 3.1: Phelix purchase and sale curve on 10th and 14th November 2012

On the contrary to the original stochastic approach by Howison and Coulon (2009), we use variable
bounds to account for changing bid volumes of clean generators:

bL =

m∑

i=1

qi1{pi<−1000}

m∑

i=1

qi

, bU = 1−

m∑

i=1

qi1{pi>1000}

m∑

i=1

qi

.

Beside renewable and nuclear energy, the German energy mix is dominated by coal (hard coal,
lignite) and gas (gas, oil). After the bids of clean generators have been removed, the remaining ones
belong to conventional generators. According to a study by the BDEW (2011) we set w1 = 0.6984
(market capacity coal) and w2 = 0.3016 (market capacity gas). In Figure 3.3 we compare the
density parameters to coal and gas prices. The parameters have been estimated with Maximum
Likelihood Estimation using logisitic density functions. The coal time series consists of future
contracts with the nearest expiry. The gas price series is given by GASPOOL spot price data.
The fitted parameters are strongly correlated to coal and gas prices. Generators move their bids in
accordance to changing production costs. They also take into account the bid behaviour of other

3May, 29th, 2012, 12:00-13:00h
4Production forecasts and installed capacities are available at www.transparency.eex.com
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Figure 3.3: Fitted parameters and commodity prices

generators. In February 2012, for example, when the price of gas reached its peak, coal generators
moved their bids upwards in order to gain an extra profit. We therefore model the parameters
with the help of a linear regression model:

µ1 = α0 + α1 K + α2 G, σ1 = β0 + β1 K + β2 G,

µ2 = γ0 + γ1 K + γ2 G, σ2 = δ0 + δ1 K + δ2 G,

where K represents the price of coal, while G is the gas price. Table 3.1 shows the parameters,
which were estimated via conditional (non-negative slopes) least square regression. The spot price
for energy St, in the case of logistic density functions, can now be calculated by solving equation
(3.1)

B−1(.)(St) = w1
1

1 + e
−

St−(α0+α1 K+α2 G)
β0+β1 K+β2 G

+ w2
1

1 + e
−

St−(γ0+γ1 K+γ2 G)
δ0+δ1 K +δ2 G

=
D̂t

Ĉt

. (3.2)

The equation possesses no analytic solution and hence must be solved numerically.
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Intercept Slope Coal Slope Gas

µ1 -27.69 0.3590 1.9285

σ1 -39.4864 0.1419 1.5298

µ2 -52.5649 0 7.7496

σ2 -59.1102 0 6.8472

Table 3.1: Results by conditional regression

3.3 Demand and Capacity

The demand process Dt is not directly observable in auction data. To be able to use the framework
presented before, we set Dt to the point of intersection of the sale and bid curve for every hour. D̂t

can be calculated via the transformation D̂t = Dt − bL,tCt. It can be interpreted as the demand,

which has to be fulfilled by conventional generators. The process Ĉt can be derived from Ct by
Ĉt = (bU,t − bL,t)Ct and understood as the capacity of conventional generators. Figure 3.4 shows

that most intra-day effects of D̂t, Ĉt are compensated by the patterns of Dt, Ct and bL,t. In

order to be able to model the slight intra-day and annual pattern we model D̂t as the sum of an
Ornstein-Uhlenbeck process Xt and a seasonal component s1

log(D̂t) = Xt + s1(t)

dXt = θ1(µ1 −Xt)dt+ σ1dWt

s1(t) = α0 + α1 cos

(
2π

365 ∗ 24
(t+ φ1)

)

+ α2 cos

(
2π

12
(t+ φ2)

)

.

(3.3)

To ensure that 0 < D̂t < Ĉt always holds, we do not simulate the capacity directly, but the margin
Mt and receive Ĉt via Ĉt = D̂t + Mt. Mt can be interpreted as the "unused capacity" in the
market. Therefore modelling Ĉt reduces to modelling a strictly positive process Mt. The process
log(Mt) is

log(Mt) = Zt + s2(t)

dZt = θ2(µ2 − Zt)dt+ σ2dW̃t

s2(t) = β0 + β1 cos

(
2π

365 ∗ 24
(t+ ω1)

)

+ β2 cos

(
2π

24
(t+ ω2)

)

.

(3.4)

Figure 3.4 shows the averaged demand, capacity and margin time series. The unscaled demand
process reaches its daily peak during midday, while the scaled demand process exhibits one peak
around 8 am and another one around 7 pm. We therefore use 2π

12 as the period to model the intra-
day pattern. Peaks in the morning and the early evening can also often be observed in intra-day
Phelix spot data. The capacity shows the same patterns as the demand process. This may be
explained by power plant maintaining schedules, which are designed to meet low demand times,
so that most capacity is available when demand is at a high level. The scaled capacity process is
highest in the night and reaches its low at midday. The margin process is highest during the night
hours, when demand reaches its lows. Throughout the year a moderate annual pattern can be
seen. Demand, capacity and margin are highest during autumn/winter and lowest in spring and
summer.

α0 α1 α2 φ1 φ2

7.9544 0.0147 -0.2204 0.6520 -1.6143

β0 β1 β2 ω1 ω2

8.6685 0.0488 0.3193 1.8095 -1.5501

Table 3.2: Seasonal parameters log(D̂t), log(Mt), cf. (3.3),(3.4)

The parameters in Table 3.2 have been estimated via least squares regression and the ones in Table
3.3 with Maximum Likelihood Estimation.
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Figure 3.4: Hourly and daily demand, capacity and margin

i θi µi σi

1 0.1304 -0.0017 0.2729

2 0.1641 -0.0007 0.2065

Table 3.3: Parameters Xt, Zt, cf. (3.3),(3.4)

3.4 Gas and Coal

The fuel processes Kt, Gt are modelled with two correlated Ornstein-Uhlenbeck processes. In our
data set no clear seasonal pattern can be observed. So we drop a seasonal component.

log(Kt) = Q1,t,

dQ1,t = θQ1
(µQ2

−Q1,t)dt+ σQ1
dW1,t, Q1,0 = q1,0 ∈ R+,

log(Gt) = Q2,t,

dQ2,t = θQ2
(µQ2

−Q2,t)dt+ σQ2
dW2,t, Q2,0 = q2,0 ∈ R+,

(3.5)

where dW1,tdW2,t = ρdt. In our empiric time series we have observed a correlation of ρ = 0.0872.
Table 3.4 shows the estimated parameters of the logarithmic fuel time series.

i θQi
µQi

σQi

1 0.00004 4.8598 0.0021

2 0.0026 3.219 0.007

Table 3.4: Parameters Q1,t, Q2,t, cf. (3.5)

3.5 Transformation

We used the logarithm of prices in (3.3) - (3.5). As we want to price derivatives with them, we
have to transform them to Itô processes. We will do this for the demand and coal process. The
application to the other ones is straight forward. Using (3.3) and the ansatz D̂t := f(t,Xt) =
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eXt+s1(t) we apply Itô′s Lemma and obtain

dD̂t =

(

eXt+s1(t)θ(µ1 −Xt) + s′1(t)e
Xt−s1(t) +

1

2
eXt+s1(t)σ2

1

)

dt+ eXt+s1(t)σ1 dWt

=

(

θ
[

µ1 − log(D̂t) + s1(t)
]

+ s′1(t) +
1

2
σ2
1

)

D̂t dt+ D̂tσ1dWt.

(3.6)

For (3.5) we use Kt := f(t, Qt) = eQt and Itô′s Lemma yields

dKt =

(

eQ1,tθQ1
[µQ1

−Qt] +
1

2
eQ1,tσ2

Q1

)

dt+ eQ1,tσQ dWt

=

(

θQ1
[µQ1

− log(Kt)] +
1

2
σ2
Q1

)

Kt dt+KtσQ1
dWt.

(3.7)

4 European Emission Trading System

The European Union Emission Trading System (EU ETS) was launched in 2005 to reduce the
emission of greenhouse gas. The 31 participants (27 EU member states and Croatia, Iceland,
Norway, Liechtenstein) agreed on a reduction of 21% of CO2 emissions until 2020 compared to
2005. The system covers over 11,000 installations in the energy sector and electricity intense
industries, such as steel, paper, cement industries etc. In total, about 45% of all EU emissions are
limited by the EU ETS Commission (January 2013).

The EU ETS is based on the so-called cap and trade principle. The cap determines the total
amount of greenhouse gas that can be emitted by all installations. After each year a company
has to surrender enough European Union Emission Allowances (EUA) to cover their emissions. If
more allowances are needed or if some remain unused, they can be freely traded among market
participants. Hence, the emission reduction is performed where it is economically most senseful at
lowest possible costs. If a company does not have enough EUAs to offset its pollution, a penalty of
100e is charged. In addition, the allowance has to be handed in later, e.g. by reducing emissions
in the next year or by buying it.

Due to the rapidly evolving emission markets, the amount of modelling approaches is steadily
growing. Benz and Trück (2009) and Daskalakis et al. (2009) discuss a wide class of reduced form
models, such as regime switching and models including jumps, which are common in computational
finance, to approximate the CO2 price dynamics of the EU ETS. As we want to link fundamental
factors, such as fuel prices, to the price of carbon, we introduce a structural approach. It is
closely connected to the one by Carmona et al. (2012), but we will deviate from their approach
by modelling the CO2 emission rate of the German market with the help of the framework of the
previous chapters.

4.1 The CO2 Emission Rate

The market emission rate µe is a positive and bounded function, which shall be influenced by
the actual demand for energy, the available capacity and coal and gas prices. Furthermore, the
emission rate shall react on changes in CO2 allowance prices, which is basically the aim of the
EU ETS. If carbon prices fluctuate, we expect a change in the merit order and hence a varying
emission of greenhouse gas. To receive a feedback of EUA prices, we assume the electricity spot
price to react towards changing prices. Due to the fact that generators have to buy certificates to
offset their pollution and that they at least proceed any changes in production costs partially to the
market, this assumption seems to be rather relevant. Nevertheless we could not find any empirical
evidence for a linear relationship of allowance prices towards the density parameters within our
data set. This may be explained by the low prices of CO2 allowances during the years 2011 and
2012. In the sequel we assume a linear dependency of the form below to exist for the German
market with the fuels coal and gas:

µ1 = α0 + α1 K + α2 G+ α3 A, σ1 = β0 + β1 K + β2 G+ β3 A,

µ2 = γ0 + γ1 K + γ2 G+ γ3 A, σ2 = δ0 + δ1 K + δ2 G+ δ3 A.
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Furthermore, we assume that the emission costs are completely passed to the market. We therefore
choose the sensitivities corresponding to Abadie and Chamorro (2008), IPCC (2006), VDI (2007):

α3 =
e1

eff1
=

0.34056

0.41425

tCO2

MWh
, γ3 =

e2

eff2
=

0.20196

0.50625

tCO2

MWh
.

The parameter choice for β3 = α3

10 and δ3 = δ3
10 is arbitrary. Since the intercept has been calibrated

without any influence of carbon, we reduce it by the allowance sensitivity multiplied with the
observed mean of EUAs of 10.3268e / tCO2. To be able to receive the current emission rate for
the German market, we have to calculate how much energy is supplied by dirty generators. The
percentage of clean energy is given by bL. After these bids have been removed from the data set,
D̂t is the remaining demand which has to be fulfilled by conventional generators. With the help
of model (3.1) and (3.2) respectively, we can calculate the percentage of the remaining demand,

which is satisfied by generators of fuel i = 1, 2 via wiFi(St) = wiFi(B( D̂t

Ĉt

)). Their contribution

towards demand D̂t is then given by

Ci
t := wiFi(St) Ĉt = wiFi

(

B
(

D̂t

Ĉt

))

Ĉt

for i = 1, 2. If we assume that each type of generator has its specific emission rate êi (tCO2 /
MWh), the overall emission rate is then

µe(D̂t, At,Mt,Kt, Gt) = ê1w1F1(St) (D̂t +Mt)
︸ ︷︷ ︸

Ĉt

+ê2w2F2(St) (D̂t +Mt)
︸ ︷︷ ︸

Ĉt

.

In the sequel we will set ê1 = 0.34056
0.41425

tCO2

MWh
, ê2 = 0.20196

0.50625
tCO2

MWh
. The complexity of our emission rate

can be reduced, if the margin process Mt is chosen to be deterministic. Thus we replace it by its
seasonal, deterministic component es(t) and write µe(D̂t, At,Kt, Gt) := µe(D̂t, At, e

s(t),Kt, Gt).

In Figure 4.1 (A) we see the emission rate for changing fuel prices. High coal prices lead to an
increased usage of gas fired power plants and thus to less pollution. Contrarily if gas is expensive,
more coal power plants will be used and hence there is a higher emission of greenhouse gas. In (B)
we analyse the influence of CO2 allowances on the emission rate. If the capacity utilisation is low,
gas plants can provide enough electricity to fulfill the complete demand and we see a reduction of
4.92% in emission. In the case of a high capacity utilisation dirty coal power plants are needed
to fulfill demand, since there is not enough capacity from clean gas plants. Here the decrease in
emitted CO2 is only 2.57%. This emission reduction seems quite low, since it does not incorporate
any changes in the total capacities of coal and gas generators. It can be interpreted as the short
term effect of the emission trading system. In the long run we expect energy companies to change
their power plant portfolio in favour of cleaner plants, if allowances remain at a high level. This
results in a higher reduction of greenhouse gas emissions. Therefore, the model parameters have
to be recalibrated if the market environment alters.

4.2 Emission Allowances

In this section we want to price emission allowances in a risk-neutral setting. To avoid any diffi-
culties resulting from estimating the market risk premium, we assume it to be zero for the sake of
simplicity. Hence, the calibrated processes under the real world measure P remain the same under
the risk neutral measure Q.

The cumulative emission can be gained by integrating the emission rate over time

Et =

∫ t

0

µe(D̂s, As,Ks, Gs)ds.

Thus we have
dEt = µe(D̂t, At,Kt, Gt)dt.
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Figure 4.1: (A): µe for D=2500, M=2500, A=25
(B): Influence of allowances on the emission rate, K = 100, G = 25

In combination with the underlying stochastic processes, we receive a four dimensional system of
stochastic differential equations (SDE):







dD̂t = µD̂(D̂t)dt+ σD̂(D̂t)dWt, D̂0 = d̂0 ∈ R+,

dKt = µK(Kt)dt+ σK(Kt)dŴ1,t, K0 = k0 ∈ R+,

dGt = µG(Gt)dt+ σG(Gt)dŴ2,t, G0 = g0 ∈ R+,

dEt = µe(D̂t, At,Kt, Gt)dt, E0 = 0.

If we consider the value of an EUA A as a derivative of the underlying processes, we can obtain
with the help of Itô′s Lemma

dA =

[
∂A

∂t
+ µD̂(D̂t)

∂A

∂D̂t

+ µe(D̂t, At,Kt, Gt)
∂A

∂Et

+ µK(Kt)
∂A

∂Gt

+ µG(Gt)
∂A

∂Gt

+
1

2
σD̂(D̂t)

2 ∂
2A

∂D̂2
t

+
1

2
σK(Kt)

2 ∂
2A

∂K2
t

+
1

2
σG(Gt)

2 ∂
2A

∂G2
t

+ ρσK(Kt)σG(Gt)
∂2A

∂Kt∂Gt

]

dt

+ σD̂(D̂t)
∂A

∂D̂t

dWt + σK(Kt)
∂A

∂Kt

dŴ1,t + σG(Gt)
∂A

∂Gt

dŴ2,t,

where we have simplified our notation by A = A(t, D̂t, Et,Kt, Gt). Standard risk-neutrality argu-
ments with risk free interest rate r, yield the partial differential equation (PDE)

∂A

∂t
+ µD̂(D̂)

∂A

∂D̂
+ µe(D̂, A,K,G)

∂A

∂E
+ µK(K)

∂A

∂K
+ µG(G)

∂A

∂G

+
1

2
σD̂(D̂)2

∂2A

∂D̂2
+

1

2
σK(K)2

∂2A

∂K2
+

1

2
σG(G)2

∂2A

∂G2

+ρσK(K)σG(G)
∂2A

∂K∂G
− rA = 0,

(4.1)

At maturity T one either has to pay the penalty π if cumulative emissions E exceed the emission
cap Ecap or nothing if emissions have not reached the cap. So the allowance’s payoff is given by

A(T,D,E,K,G) = π1[Ecap,∞)(E). (4.2)

A discussion of boundary conditions, needed to specify the solution, has been moved to Section 6.

In Figure 4.2 we see the impact of the emission cap on the value of CO2 allowances with fixed fuel
prices. If the cap is low and likely to be reached, the right to emit greenhouse gas is expensive.
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Figure 4.2: CO2 allowance with base emission cap, emission cap +20%, emission cap -20% in direction of
demand and emission

Vice versa, it is cheaper if the cap is high. In Figure 4.3 the allowance value in direction of both
fuel processes for fixed values in demand and emission is plotted. We see that the value exhibits
the same form as the emission rate. If emission is high, there is a higher chance that the emission
cap is reached and hence the certificate’s value rises.
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Figure 4.3: CO2 allowance and emission in direction of coal and gas
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5 Case Studies

The spread between the price for electricity and its production costs is influenced by many factors.
Power plants characteristics, such as its efficiency, have a great impact. But also external factors,
like the price of EUAs and fuel costs, can lower or widen the spread significantly. While we expect
clean power plants to benefit from higher EUA prices, we expect inefficient and dirty plants to
have a greater economic value if fuel and the right to emit greenhouse gas is cheap.

In the past years a coal fired power plant was much more profitable than a cleaner gas fired power
plant (cf. 2.1). CO2 allowance prices were steadily declining in recent history and critics argue,
that the EU ETS has failed. In the following we want to consider and simulate several future
scenarios. We want to investigate how changes in the key parameters influence the spreads and
therefore the value of a power plant.

Our base scenario, Tables 5.1 and 5.2, considers a market with an emission cap of 20 million t /
CO2, which results in an allowance price of A0 = 33.62e (with K0 = 100, G0 = 25, D̂0 = 2300).
The coal starting price is 100 USD / t and the gas price 25e / MWh. For the sake of simplicity
we assume a fixed exchange rate 1.30 USD = 1e to convert the coal price into euro. The market
is simulated for 8760 trading hours or equivalently one year. If the emission cap is exceeded at
the end of the trading period, a penalty of 100e is due. The spread options VCDSt

and VCSSt

are computed for maturities t = 1, · · · , 8760. To visualise our results and gain insights into the
intra-day profitability of a power plant, we average option prices for all 24 trading hours of a day.
Since there is no strong annual pattern in the German electricity market, we omit it in our analysis.

D̂0 K0 G0

2300 100 25

Table 5.1: Parameters base scenario

T π Ecap r

8760 100 20 ∗ 106 0.02

Table 5.2: Parameters EU ETS

5.1 Influence of the Emission Cap

We are now interested in the influence of the emission cap on the spread of coal and gas fired power
plants. When the emission cap is very high and not likely to be reached, we expect low EUA prices
and high clean dark options. On the contrary we expect higher clean spark spread options if
the emission cap is low. In the following we will compare the base scenario to a market with a
generous emission cap Ecap = 24 ∗ 106 t CO2 (Base + 20%) and to a market with a restrictive cap
of Ecap = 16 ∗ 106 t CO2 (Base - 20%). In the first case an allowance starting price of A0 = 13.73
can be observed, while the latter leads to A0 = 74.30.

In Figure 5.1 we compare the averaged spread option values for normally, lowly and highly efficient
plants. The intra-day pattern with a top in the morning and another one in the evening corresponds
to the demand cycle D̂. The increase in demand leads to a higher price for electricity and thus
to higher spreads. The value of a coal power plant shows adverse effects towards high allowance
prices. Especially lowly efficient plants suffer from high prices, while highly efficient plants do
not seem to be influenced. During periods of high demand, when the price for electricity is near
the top of the stack, these cleaner power plants gain an extra profit by a price, which was set by
less efficient coal plants. Hence, the negative effect of high carbon prices is compensated by an
extra profit. Gas fired power plants are strongly influenced by the prices of emission allowances.
If the cap is restrictive and hence the right to emit greenhouse gas is expensive, gas power plants
are pushed in front of coal generators in the merit order. On the contrary they are behind coal
generators in the merit order if allowances are cheap.

The simulation reveals that a reduction of greenhouse gas can be achieved if the emission cap is
likely to be reached. Thus, clean gas plants are favoured over coal plants and especially over lowly

12



efficient and dirty coal plants.

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(A) avg. Clean Dark Spread Option e
ff1

 = 41.425 % 

 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(C) avg. Clean Dark Spread Option e
ff1

 = 35 %

 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(E) avg. Clean Dark Spread Option e
ff1

 = 45 %

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(B) avg. Clean Spark Spread Option e
ff2

 = 50.625 %

 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(D) avg. Clean Spark Spread Option e
ff2

 = 45 %

 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

h

E
U

R
/M

W
h

(F) avg. Clean Spark Spread Option e
ff2

 = 55 %

E
cap

 low

E
cap

 high

E
cap

 base

E
cap

 low

E
cap

 high

E
cap

 base

Figure 5.1: Influence of the emission cap

5.2 Influence of the Demand Process

In the second trading phase of the EU ETS, the European Union struggled into an economic
recession. The lowered need for electricity led to a steady decline of emission certificates. In this
case study, we want to simulate the effects of an economic boom and a recession. The boom will
be modelled by a demand process, which is increased by 5% to simulate industrial prosperity and
a strong need for energy. Vice versa, the depression is modelled by a drop in demand of 5%.

In Figure 5.2 we compare averaged clean spread options in the recession and boom scenarios.
The higher need for energy in the boom scenario leads to a higher overall emission of greenhouse
gas, hence, the allowances are more expensive. The starting values for EUAs are Abase

0 = 33.62,

A+5%
0 = 43.48 and A−5%

0 = 24.86. The boom scenario favours gas fired power plants in two points:
the higher demand for energy pushes the price for electricity upwards and additionally carbon
prices rise. Hence, we can see a strong impact of demand shifts on gas plants. In the case of coal
plants rising EUAs have a negative effect. The plots reveal that the positive effects of increasing
electricity prices on the one hand and adverse effects of rising EUAs on the other hand almost
completely equate each other. In the case of lowly efficient coal plants, there is hardly any change
in the spread options. The higher (lower) electricity price is almost completely compensated by
higher (lower) carbon dioxide allowances.

5.3 Influence of Changes in initial Fuel Prices

We now want to simulate the influence of coal and gas prices on spread options. Since the fuel
processes are mean reverting, this corresponds to a temporary shift in fuel prices.

In the case of gas, we consider starting values of G0 = 15e / MWh and G0 = 35e / MWh.
The mean reversion rate of θ2 = 0.0026 pushes the price back to its mean within approximately
four months. In Figure 5.3 we see the spreads of normally, lowly and highly efficient plants with
different gas starting values. When we calibrated our model to EPEX data in Section 3.2, we
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Figure 5.2: Influence of the demand

have seen, that coal plant operators take the actual gas price into account. They move their bids
according to the gas price to ensure that they are in front of gas plants in the merit order. Hence
if gas prices are low, the electricity spot price will be low too. Therefore gas plants do not profit
from a declining gas price as we would have intuitively expected. Contrarily if gas prices are high,
coal generators move their mean bid level upwards to gain an extra profit.

In Figure 5.4 we compute the spreads with coal starting values K0 = 80 USD / t and K0 = 120
USD / t. Coal plant operators move their bid levels with a slope of 0.3595, while the production
costs of an average plant move by 0.34486, if the price of coal changes by one USD. Hence their
margin remains rather stable if the coal price fluctuates. Although, gas plants are behind coal
plants at our simulated price levels, they gain an extra profit during peak times in demand, if coal
and thus the price for electricity is high. Please note, that compared to Figure 5.3, the effects of
changes in the initial coal price are stronger than for the gas price, since the coal process is less
mean reverting.

5Please compare to Table 3.1
6Assuming coal burns at a rate of 7.00126MWh

t
and eff1 = 41.425%: 1

7.00126
1

0.41425
= 0.3448
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6 Numerical Simulation

In this section we want to present numerical methods to solve the PDE (4.1) and to compute clean
spread options.

6.1 Numerical Solution of EUAs

The PDE we want to solve numerically is given by (4.1)

∂A

∂t
+ µd(t,D)

∂A

∂D
+

1

2
σd(D)2

∂2A

∂D2
+ µk(K)

∂A

∂K
+

1

2
σk(K)2

∂2

∂K2
+ µg(G)

∂A

∂G

+
1

2
σg(G)2

∂2A

∂G2
+ ρσk(K)σg(G)

∂2A

∂K∂G
+ µe(D,A,K,G)

∂A

∂E
− rA = 0

with terminal condition at maturity t = T

A(T,D,E,K,G) = π1[Ecap,∞)(E).

The PDE shall be solved on the set Ω = (0, Dmax] × (0, Ecap] × (0,Kmax] × (0, Gmax] for all
t ∈ [0, T ]. We use the Fichera function to investigate if boundary conditions are necessary. A
detailed introduction into Fichera theory can be found in Duffy and Kienitz (2009), Kichenassamy
(2007). Let ν = (νD, νE , νK , νG) be the inward normal vector to the boundary ∂Ω, then the
Fichera function is defined on the part of the boundary, where the characteristic form is zero. The
function is given by

b =

(

µd(D)−
1

2

∂σd(D)2

∂D

)

νD +

(

µk(K)−
1

2

∂σk(K)2

∂K
−

1

2
ρσg(G)

∂σk(K)

∂K

)

νK

+

(

µg(G)−
1

2

∂σg(G)2

∂G
−

1

2
ρσk(K)

∂σg(G)

∂G

)

νG + µe(D,A,K,G)νE .

If b < 0, the flow of information is inward and boundary conditions need to be specified. Contrarily
if b ≥ 0, the flow is outward and no boundary conditions are allowed. At the boundary ∂Ω,
which corresponds to D = 0, b ≥ 0 is fulfilled. At the lower boundary of both fuel processes
(K = 0, G = 0) the Fichera function is also positive. Since the emission rate µe is always positive
and νE = −1 at the boundary E = Ecap the function is negative. Hence a boundary condition has
to be specified. If the emission cap has already been reached, the penalty π surely has to be paid
and the allowance value A is given by

A(t,D,E,K,G) = πe−r(T−t) if E ≥ Ecap.

We discretise our five dimensional grid by

0 < D0 < D1 < · · · < DND−2 < DND−1 = Dmax,

0 < K0 < K1 < · · · < KNK−2 < KNK−1 = Kmax,

0 < G0 < G1 < · · · < GNG−2 < GNG−1 = Gmax,

0 = E0 < E1 < · · · < ENE−2 < ENE−1 = Ecap −∆E,

0 = t0 < t1 < · · · < tNT−1 < tNT
= T,

where ∆D = Di+1 −Di, ∆E = Ej+1 − Ej , ∆K = Kk+1 −Kk, ∆G = Gg+1 −Gg, ∆t = tn+1 − tn
for all i, j, k, g, n. In the following we want to simplify our notation and write

A
n
i,j,k,g = A(tn, Di, Ej ,Kk, Gg),

µd;n,i = µd(tn, Di),

σd;i = σd(Di),

µk;k = µk(Kk),

σk;k = σk(Kk),

µg;g = µg(Gg),

σg;g = σg(Gg),

µe;n,i,j,k,g = µe(Di, A
n
i,j,k,g,Kk, Gg).

The PDE will be solved numerically with the help of Finite Difference Methods (FDM). As the
“curse of dimensionality” shows its effects very quickly in high dimensional problems, we try to
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lower the computational effort compared to standard FDM schemes. Standard schemes use broadly
banded matrix equations, which are very expensive to solve. Alternating Direction Implicit (ADI)
schemes avoid broad banded systems by decomposing them into simpler tridiagonal matrices. These
can be solved efficiently by LU-decomposition. More information can be found in Duffy (2006),
Haentjens and Hout (2012). In order to simplify our notation, we will use an operator notation in
our scheme:

δ
+
x u(x) = u(x+∆x)− u(x)

δ
−

x u(x) = u(x)− u(x−∆x)

δ
0
xu(x) = u(x+∆x)− u(x−∆x)

δ
2
xu(x) = u(x+∆x)− 2u(x) + u(x−∆x)

δ
0
xδ

0
yu(x, y) = u(x+∆x, y +∆y)− u(x−∆x, y +∆y)

− u(x+∆x, y −∆y) + u(x−∆x, y −∆y)

The scheme we use is given by
(

1 +
1

2
r∆t−

1

2
µ
d;n+

1

2
,i

∆t

∆D
δ
+/−
D −

1

4
σ
2
d,i

∆t

∆D2
δ
2
D

)

∆A
∗ =

(

− r∆t+ µ
d;n+

1

2
,i

∆t

∆D
δ
+/−
D +

1

2
σ
2
d;i

∆t

∆D2
δ
2
D

+µk;k
∆t

2∆K
δ
0
K +

1

2
σ
2
k;k

∆t

∆K2
δ
2
K + µg;g

∆t

2∆G
δ
0
G +

1

2
σ
2
g,g

∆t

∆G2
δ
2
G

+µe;n+1,i,j,k,g
∆t

∆E
δ
+
E + ρσk;kσg;g

∆t

4∆K∆G
δ
0
Kδ

0
G

)

A
n+1

(

1−
1

2
µk;k

∆t

2∆K
δ
0
K −

1

4
σ
2
k;k

∆t

∆K2
δ
2
K

)

∆A
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∗∗∗ = ∆A

∗∗

(

1−
1

2
µe;n+1,i,j,k,g

∆t

∆E
δ
+
E

)

∆A = ∆A
∗∗∗

(6.1)

with ∆A = An − An+1. This scheme can be derived by factorizing a Crank-Nicolson scheme and
rewriting the system in the so-called delta formulation (Thomas (1998)). According to Craig
and Sneyd (1988), Haentjens and Hout (2012) the mixed derivative is treated explicitly. Please
note that n+ 1 denotes the explicit part, since we are stepping backwards in time. In direction of
demand we use an upwind scheme in the convective part to account for a high Péclet number. In
direction of both fuel processes no convection dominance can be found and hence central differences
are deployed to approximate the first derivative. In order to handle the non-linearity in the emission
drift function, the allowance value of the previous step is used. Since the feedback of its price on
the emission rate is rather moderate (cf. 4.1), we do not expect to introduce a large error. In the
last leg we have to determine the boundary condition in the artificial variable ∆A. Since ∆A is the
difference in an allowance value of two consecutive time steps, we choose the boundary condition
as

∆A = π
(

e−r(T−tn) − e−r(T−tn+1)
)

if Et ≥ Ecap.

A detailled discussion of the stability, consistency and convergence properties can be found in
Hendricks (2013).

6.2 Monte Carlo Simulation of Clean Spread Options

The clean spread options in Section (2) will be computed via Monte Carlo Simulations. The
underlying paths D, K and G will be simulated with the analytic solution of an Ornstein-Uhlenbeck
process, while we will use a Euler scheme to approximate the evolution of cumulative emission.
The EUA value is received by interpolating the discrete solution from our FDM scheme. As a
tradeoff between accuracy and speed, a linear interpolation routine is used.
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The option value is estimated by simulating N payoffs and paths, respectively, with maturity T

V̂CDS = e−rT 1

N

N∑

i=1

(

Si
T −

1
eff1

(
Ki

T + e1 A
i
T

))+

,

V̂CSS = e−rT 1

N

N∑

i=1

(

Si
T −

1
eff2

(
Gi

T + e2 A
i
T

))+

,

where the index i denotes the i-th simulated path and S is derived by solving equation (3.2).

7 Conclusion

In this paper we have computed clean spread options for the German electricity market. Based
on a stochastic bid stack function, which connects demand and fuel with the electricity price, we
have analysed EPEX Phelix bid data. The high supply from renewable energy and the regulations,
concerning the forced usage of green energy, make the German energy market relatively unique in
the world. The bid stack function could be extended to cope with the singularities of the German
market. Furthermore, we have introduced the price of EUAs as an additional price driver. Based
on the bid stack model, we implemented an emission rate, which connects fundamental factors and
emission in a reasonable way.

The value of EUAs could be evaluated by solving a PDE with four spatial dimensions. It was
solved numerically by an ADI scheme, based on a Crank-Nicolson approximation. The value of
a power plant was computed with a real option approach in form of clean spread options. Our
numerical simulations pointed out, that the spread significantly depends on the emission cap, the
demand for electricity, the fuel prices and on the efficiency of a certain power plant. If the cap is
determined carefully, thus leading to a working carbon market, clean plants are pushed forward in
the merit order. The values of dirty and inefficient power plants drop to low levels and the incentive
to invest in new technologies or switch to a cleaner fuel rises. In the high demand scenario, gas
power plants could greatly benefit from higher electricity and EUA prices. In the third case study
we have analysed the influence of changes in initial fuel prices. Although the fuel processes are
mean reverting, we could see an influence on the value of power plants. Opposed to our intuitive
expectation that gas power plants profit from declining gas prices, the simulations showed that this
does not hold. Their value is much more influenced by the bids of their competitors (coal power
plants).
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