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A DEFLATED CONJUGATE GRADIENT METHOD FOR MULTIPLE RIGHT
HAND SIDES AND MULTIPLE SHIFTS

SEBASTIAN BIRK AND ANDREAS FROMMER∗

Abstract. We consider the task of computing solutions of linear systems that only differ by a shift with the
identity matrix as well as linear systems with several different right-hand sides. In the past, Krylov subspace methods
have been developed which exploit either the need for solutions to multiple right-hand sides (e.g. deflation type
methods and block methods) or multiple shifts (e.g. shifted CG) with some success. In this paper we present a block
Krylov subspace method which, based on a block Lanczos process, exploits both features—shifts and multiple right-
hand sides—at once. Such situations arise, for example, in lattice quantum chromodynamics (QCD) simulations
within the Rational Hybrid Monte Carlo (RHMC) algorithm. We present numerical evidence that our method is
superior compared to applying other iterative methods to each of the systems individually as well as, in typical
situations, to shifted or block Krylov subspace methods.
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1. Introduction. In this paper we consider solving systems of linear equations of the
form

(σ jI +A)xi, j = bi (1.1)

where σ jI +A ∈ Cn×n is a Hermitian positive definite (hpd) matrix for every shift σ j ∈ C,
xi, j,bi ∈ Cn, i = 1, . . . ,m and j = 1, . . . ,s.

Systems like these arise naturally in lattice QCD, where the bi represent multiple source
terms and A = MHM, with M being a discrete version of the Dirac operator, e.g., the Wil-
son fermion matrix. For example the Rational Hybrid Monte Carlo algorithm [16] needs to
solve Aν xi = bi with ν ∈ (−1,1) for multiple right-hand sides (rhs) bi. The matrix power
Aν therein is computed using a rational approximation which can be represented as a partial
fraction expansion (pfe) thus giving rise to multiple shifted systems. Another application
is the computation of symplectic integrators that require the evaluation of Aν BAν xi = bi for
multiple right-hand sides. In that case the inner multiplication with Aν is approximated via
a pfe. The solutions to all the individual terms of the pfe can then be regarded as multiple
right-hand sides for the outer multiplication with Aν even if there was only one right-hand
side B = b1 in the beginning.

On first attempt, the systems (1.1) can be solved separately, e.g., by applying the conju-
gate gradients method anew for every shift and every right-hand side. As one might expect
this turns out to be an inferior approach, since there exist methods making use of the nature
of the problem, resulting in a considerable gain in computation time.

By arranging the m right-hand sides and the corresponding solutions in the matrices

B = [b1| · · · |bm] and X j =
[
x1, j| · · · |xm, j

]

we can rewrite the systems (1.1) as

(σ jI +A)X j = B. (1.2)

∗Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal,
Germany, {birk,frommer}@math.uni-wuppertal.de, This work was supported by Deutsche Forschungsge-
meinschaft through the Collaborative Research Centre SFB-TR 55 ”Hadron physics from Lattice QCD”
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One might now try to solve these block systems for each shift σ j and hopefully benefit from
doing so. Methods capable of solving all right-hand sides at once in systems like (1.2) have
been around for more than thirty years and are called block methods. Essentially the idea of
block methods is to build up a common subspace, typically a block Krylov subspace, for all
right-hand sides, producing a richer space from which to find iterates. An early description of
a block conjugate gradients method dates back to [20]. As was observed in [20], naı̈ve imple-
mentations can suffer from linear dependencies which result in a breakdown. Thus, deflation,
i.e. removing vectors that became linearly dependent, was proposed as a cure. However, the
algorithmic details were not worked out in [20]. In [18] details on the reduction of the block
size for addressing the problems caused by linear dependencies were worked out. The result-
ing variable block CG method from [18] and [19] was then used to accelerate the solution of
single right-hand side systems. A detailed description of deflation and explanation of why it
is needed can be found in [14]. More recent approaches in developing a CG method for block
systems like in [8] try to overcome the problem of singular or nearly singular matrices by
computing (QR-)factorisations of the involved matrices and therefore successfully disguising
the singularities from the method. Other block methods not especially tailored to hpd include,
e.g., block-GMRES [17], Block BiCGStab [26] and block MINRES [24].

Another approach to solve block systems is to treat them as a sequence of linear systems
to the same matrix. So called seed methods [1, 22] solve these systems sequentially and
use Krylov subspace information gathered in solving one seed system to adjust the starting
vectors of the remaining unsolved systems. This update of the starting vectors has to be
done in every iteration of the seed system. Seed methods usually work best when the right-
hand sides are closely related. Deflation methods [25, 9] pursue a different approach. While
solving one system they compute an approximation to the smallest eigenpairs. The obtained
eigenvector approximations can either be used to base a preconditioner upon or to adjust the
starting vectors for solving the remaining systems.

Instead of grouping the right-hand sides into blocks, another approach to solve (1.1)
is to apply shifted methods like shifted CG, see [12]. Shifted CG makes use of the fact
that Krylov subspaces are shift-invariant, i.e. for solving the system (σ jI +A)x = b with the
CG method one builds up the same Krylov subspace, independently of the shift σ j. Since
usually the multiplications with the matrix A are the dominant cost factor, huge reductions in
computation time are attainable by building the Krylov subspace just for one seed system and
computing iterates for all shifted systems. As shown in [12] the shifted systems can be dealt
with at almost no additional cost using shifted CG.

Previous work on methods combining multiple shifts and multiple right-hand sides in-
cludes GMRES [4] and QMR [10] based methods. Both types focus on non-Hermitian matri-
ces where the former—being a GMRES method—uses long recurrences with deflated restarts.
While the restarts improve on the memory requirement they deteriorate the optimal conver-
gence properties of full GMRES. The QMR method in [10] needs a multiplication with A and
AH in every step. However, the multiplication with AH does not contribute to the solution,
since it is only needed to span an additional space for orthogonalisation.

We present a new, deflated shifted block CG method (DSBlockCG) that merges multiple
aspects: the block idea, the idea of computing solutions for the shifted systems alongside one
seed system and the focus on hpd matrices. It is based on a block Lanczos process which is
the restriction to the Hermitian case of the non-symmetric block Lanczos process from [2].
This process is capable of handling multiple starting vectors and includes deflation.

After a short overview over block Krylov subspaces in section 2 we describe the deflated
block Lanczos process in detail in section 3. In section 4 we work out the algorithmic details
of our deflated shifted block CG method before we demonstrate its efficiency with a series of
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numerical experiments in section 6. We end this introduction explaining some of our notation.
Variables having two lower indices like xi, j depend on the right-hand side bi as well as on the
shift σ j. Single lower indices are to be understood by context. Upper indices in brackets x(k)

or square brackets X [k] refer to the iteration index k. The notation [A1|A2| · · · |Ak] indicates a
matrix which is composed of the vectors or matrices Ai as its columns.

2. Block Krylov subspace methods. For ease of presentation we first disregard the
shifts, i.e. we deal with systems

Axi = bi, i = 1, . . . ,m.

Without loss of generality we assume that for each right-hand side bi our initial guess is the
zero vector. If we have a better initial guess x(0)i for the i-th right-hand side, we just have to
replace bi by the residual bi−Ax(0)i .

We define the k-th block Krylov subspace with respect to A and B = [b1| · · · |bm] as

Kk(A,B) := colspan
([

B | AB | A2B | · · · | Ak−1B
])

= span
{

b1, . . . ,bm,Ab1, . . . ,Abm,A2b1, . . . ,Ak−1bm

}
.

(2.1)

The Krylov subspaces Kk(A,bi) := span
{

bi,Abi, . . . ,Ak−1bi
}

are contained in Kk(A,B). While
the dimension of each space Kk(A,bi) is k (unless we have reached an invariant subspace),
the dimension of the block subspace can be smaller than mk. This is due to the fact that some
of the subspaces Kk(A,bi) can have non-trivial intersections even when all the bi are linearly
independent.

The block conjugate gradient methods in [8] and [20] create block iterates

X (k) = [x(k)1 | . . . |x
(k)
m ]

with x(k)i ∈ Kk(A,B) and advance from Kk(A,B) to Kk+1(A,B) in each step. The iterates X (k)

are obtained such that they satisfy the Galerkin condition

X (k) ∈ Kk(A,B) and R(k) = B−AX (k) ⊥ Kk(A,B),

which in the non-block case reduces to the classical variational characterisation of the CG
iterates. Let V[k] denote a matrix whose columns form a basis of Kk(A,B). Then the Galerkin
condition is equivalent to

X (k) = V[k] ·
(
(V[k])HAV[k]

)−1
· (V[k])HB. (2.2)

Following [20], Algorithm 1 displays a first version of a block CG method. It will break
down due to a singular matrix R(k−2)HR(k−2) in line 4 if the block subspace Kk−1(A,B) has
dimension less than m(k− 1). To avoid these breakdowns one can monitor the rank of the
matrices P(k) and R(k) as suggested in [20]. If one of these matrices loses full rank, the system
belonging to the linearly dependent column has to be removed and the iteration can continue
on the remaining systems. The drawback is that the bookkeeping in the resulting algorithm is
quite complicated, and checking for rank deficiency is costly and has to be done in each step.

In [8] various other modifications of Algorithm 1 are proposed to resolve the problem of
rank deficiency. The key idea is to use QR factorisations of P(k) and/or R(k) and to enforce full
rank for Q even if P(k) or R(k) are rank deficient. In this manner the modified block conjugate
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Algorithm 1: BlockCG (without deflation)
Data: A ∈ Cn×n hpd, linearly independent B = [b1| . . . |bm] ∈ Cn×m

Result: solution X of AX = B
1 begin
2 X (0) = 0;R(0) = B;R(−1) = In,m;P(0) = 0
3 for k = 1,2, . . . until convergence do
4 S(k−1) = (R(k−2)HR(k−2))−1R(k−1)HR(k−1)

5 P(k) = R(k−1)+P(k−1)S(k−1)

6 T (k) = (P(k)HAP(k))−1R(k−1)HR(k−1)

7 X (k) = X (k−1)+P(k)T (k)

8 R(k) = R(k−1)−AP(k)T (k)

gradients algorithm inverts only non-singular matrices, thus successfully disguising the rank
deficient matrices. This method has the advantage that there is no need for book keeping
of those vectors that became linearly dependent. On the downside one always invests the
equivalent of m matrix-vector multiplications with A per step, even when this would not be
necessary due to rank deficiency.

3. The deflated block Lanczos process. In [2] and [11] a non-symmetric block Lanczos-
type process was derived for general non-Hermitian matrices. Several simplifications apply
if this process is used for Hermitian matrices, and it is the purpose of this section to describe
the resulting deflated block Lanczos process for Hermitian matrices in detail. Based on the
block Lanczos process, we will then be able to develop another stable variant of the block
CG method which—as opposed to those described in section 2—exploits rank deficiency to
reduce the number of multiplications with A.

The idea in [2, 11] is to compute a nested orthonormal basis for the block Krylov sub-
spaces Kk(A,B) one vector at a time. For simplicity, assume first that there is no deflation, i.e.
all the block spaces Kk(A,B) have full dimension mk. We denote

Kk,i(A,B) = Kk−1(A,B)+ span
{

Akb1, . . . ,Akbi

}

the subspaces lying “between” Kk−1(A,b) and Kk(A,B). We proceed by extending an or-
thonormal basis Vk,i−1 = {v(1), . . . ,v(mk+i−1)} of Kk,i−1 to one of Kk,i by orthogonalising
Av(m(k−1)+i) against Vk,i−1. Since A is Hermitian, we actually only have to orthogonalise
against the vectors v(m(k−2)+i), . . . ,v(mk+i−1). We thus obtain a Lanczos-type relation of the
form

AV[k] = V[k+1]T[k+1,k], (3.1)

where the orthonormal columns of V[k+1] = [v(1)| . . . |v(m(k+1))] ∈ Cn×mk represent a basis
for Kk+1(A,B), and the matrix T[k+1,k] ∈ Cm(k+1)×mk is block tridiagonal with triangular off-
diagonal blocks. Figure 3.1 displays the structure of T[k+1,k]. The bold font and the indices
in square brackets emphasise the block structure of the respective matrices.

Deflation occurs when the orthogonalisation of Av(m(k−1)+i) against Vk,i−1 leaves us with
the zero vector (such exact deflation is unlikely to be seen in practice) or a vector with very
small norm (which we will call inexact deflation). We then skip the remaining computations
for the current step and proceed with orthogonalising the next vector Av(m(k−1)+i+1) (which
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FIG. 3.1. Example for the sparsity pattern of the matrix T[k+1,k] in case of no deflation for 4 right-hand sides.

is Av(mk+1) if i = m). In the case of inexact deflation we save the respective vector since we
still have to orthogonalise against it in the following steps.

Algorithm 2 describes the block Lanczos process including deflation and it is a stripped
down version of the non-symmetric block Lanczos-type process from [11]. We modified it to
be suited for hpd matrices. The indices of the (inexactly) deflated vectors are kept in the set
I. Since deflation may occur several times, we have to be careful with the indexing to use. In
Algorithm 2, i is used as the index for the vectors of the orthogonal basis. The index µ keeps
track of the vector from which we get the next candidate basis vector by orthogonalising
Av(µ), and the ‘history index’ hµ denotes the smallest index of the basis vectors we have to
orthogonalise against. In the non-deflated case µ = i−m and hµ = i− 2m. Once we have
deflated d vectors, we have µ = i−m+d > i−m.

In the table in Figure 3.2 we demonstrate in an example how the iteration counters i and
µ and the history indices hi and hµ are related. The numbers mi and mµ will be explained
later. For this example let m = 4 and assume that deflation occurs in steps µ = 4 and µ = 9.
The table in Figure 3.2 shows that the iteration counter i can not be used to uniquely describe
the progress of the iteration because i only counts the successfully created basis vectors. But
since µ counts every candidate basis vector, we can use µ to unambiguously describe the
progress of Algorithm 2. Therefore, from now on we use µ as the iteration index and iµ is
the corresponding index i in iteration step µ .

As soon as deflation occurs, the simple block Lanczos relation (3.1) does not hold any
more. In the transition from V[k] to V[k+1] the dimension of the Krylov subspace is now
increased by less than m. We emphasise this in our notation and instead of (3.1) we have the
relation

AV (µ) =V (iµ )T̃ (iµ ,µ)+Ṽ (µ)
defl . (3.2)

Here, the matrix V (µ) = [v(1)| . . . |v(µ)] contains the orthonormal basis for what we call the
µ-th deflated block Krylov subspace Kdefl

µ (A,B) created by the algorithm. The number mµ =
µ − hµ ≤ m is the reduced block size due to deflation. Hence, m−mµ is the number of
deflated vectors up to step µ . In the table in Figure 3.2 we show how mµ decreases when
deflation occurs. The matrix T̃ (iµ ,µ) ∈ Ciµ×µ consists of the values t j,µ from line 10, i.e.

T̃ (iµ ,µ) = (t j,µ) j≤(iµ ),µ≤µ .

Lastly, the matrix Ṽ (µ)
defl contains the inexactly deflated, non-normalised—and thus with norm

smaller than the deflation tolerance tol—vectors in its respective columns. All other columns
5
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Algorithm 2: deflated block Lanczos-type process
Data: A ∈ Cn×n hpd, linearly independent B = [b1| . . . |bm] ∈ Cn×m, deflation

tolerance tol
Result: basis V (iµ ) = [v(1)| . . . |v(µ)| . . . |v(iµ )] for Kdefl

iµ (A,B) and T̃ (iµ ,µ) ∈ Ciµ×µ , such
that (3.2) holds

1 begin
2 µ = 0, I = /0,(h1, . . . ,hm) = (1, . . . ,1)
3 orthonormalise B, giving v(1), . . . ,v(m)

4 for i = m+1,m+2, . . . ,k and i 6= µ do
5 repeat
6 µ = µ +1
7 v = Av(µ)

8 iv = hµ
9 J = {iv, . . . ,k−1}∪ I

10 compute t j,µ = (v( j))Hv for all j ∈ J
11 v = v−∑

j∈J
t j,µ v( j)

12 if ‖v‖ = 0 then
13 exact deflation: discard vector v

14 else if ‖v‖ < tol then
15 inexact deflation: keep v for later orthogonalisation and set

I = I∪{µ}
16 else
17 ti,µ = ‖v‖
18 v(i) =

v
ti,µ

19 hi = µ

20 until non-deflated new vector v(i) computed in line 18

are zero. A possible sparsity pattern of T̃ (iµ ,µ) is displayed in Figure 3.2 which uses the same
example setting as the table. Note that the reduced block size mν can be found in T̃ (iµ ,µ)

as the number of non-zeros above and left of entry (ν ,ν) whilst ignoring entries of small
magnitude (boxes). Moreover, hν is the row-number of the first non-zero entry in column ν .

To derive our block CG method we need to symmetrise the square part of matrix T̃ (iµ ,µ)

in (3.2). To this purpose we remove the entries outside the band (displayed by boxes in Figure
3.2) which leaves us with a matrix T (iµ ,µ) the square part of which is Hermitian. Using

V (iµ )T̃ (iµ ,µ) =V (iµ )T (iµ ,µ)+V (iµ )
(

T̃ (iµ ,µ)−T (iµ ,µ)
)
, (3.3)

we obtain from (3.2) the deflated Lanczos relation

AV (µ) =V (iµ )T (iµ ,µ)+V (µ)
defl , (3.4)

where the change from Ṽ (µ)
defl to V (µ)

defl accounts for the second term in (3.3).
For ease of notation we will denote the square part of T (iµ ,µ) as T (µ) from now on. Note

6
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i µ hi hµ mi mµ

5 1 1 1 4 0
6 2 2 1 4 1
7 3 3 1 4 2
8 4 - 1 - 3
8 5 5 1 3 4
9 6 6 2 3 4
10 7 7 3 3 4
11 8 8 5 3 3
12 9 - 6 - 3
12 10 10 7 2 3

mν

T (µ)

iµT (iµ ,µ) :

µ

FIG. 3.2. Left: Example showing the relation of the iteration counters i and µ , the history indices hi and hµ
and the reduced block sizes mi and mµ in Algorithm 2 for m = 4 and deflation in steps µ = 4 and µ = 9. Right:
Example for the sparsity pattern of the square part of matrix T̃ (iµ ,µ) (with the boxes �) and the square part T (µ) of
T (iµ ,µ) (without the boxes) in case of deflation in steps µ = 4 and µ = 8 for 4 right-hand sides. The term ’square
part’ refers to the top µ×µ submatrix that is represented by the shaded background. The boxes � denote entries of
small magnitude arising due to orthogonalisation against inexactly deflated vectors.

that

T (µ) = (V (µ))HAV (µ). (3.5)

A few remarks on implementation details for Algorithm 2 are in order:
• The initial orthonormalisation of the vectors bi can be incorporated in the algorithm

by starting with a negative index µ and some minor changes to lines 2, 3, 7 and 8.
• An actual implementation should use modified Gram-Schmidt instead of Gram-

Schmidt in the orthogonalisation process of lines 10 and 11.
• In line 10 the scalar t j,µ has to be computed only for j ≥ µ . The entries above the

diagonal are already known due to symmetry.
• The check for ‖v‖ = 0 in line 12 should be implemented by comparing to some

small threshold.

4. The deflated shifted block CG method. Based on the block Lanczos process pre-
sented in the previous section we can now derive the DSBlockCG method. We do so in a
similar manner as non-block CG is derived from the Lanczos process [23, Chapter 6.7], for
example. We start considering the unshifted block system AX = B. Handling additional shifts
will be addressed in section 4.4.

A deflated block Krylov subspace method generates the block iterates

X (µ) = [x(µ)1 | . . . |x
(µ)
m ],

where x(µ)j ∈ Kdefl
µ (A,B). Building upon (2.2), but using the orthogonal basis of the deflated

block Krylov subspace and (3.5), we obtain the iterates X (µ) as

X (µ) :=V (µ)(T (µ))−1(V (µ))HB. (4.1)

Note that we still assume x(0)j = 0 for all j.
7
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4.1. Cholesky decomposition. The Hermitian and positive definite matrix

T (µ) = (V (µ))HAV (µ)

that is generated during the block Lanczos process has band structure, and if deflation occurs,
the width of the band shrinks as we move down the diagonal. Figure (3.2) illustrates this. The
entries at the positions indicated by the boxes are present in T̃ (iµ ,µ) when deflation occurs,
they are set to 0 in T (µ). Their values are smaller than the deflation tolerance, so that we
assume that they have no substantial influence on the approximation X (µ) from (4.1). Now
let

T (µ) =: L(µ)D(µ)(L(µ))H

be the root-free Cholesky decomposition of T (µ) where L(µ) is a lower triangular matrix of
unit diagonal with the same sparsity pattern as T (µ) and D(µ) is a diagonal matrix.

The matrix T (µ) gets updated every time a new candidate vector v for extending the
Krylov subspace is generated in line 11 of Algorithm 2—even though v occasionally gets
removed in case of deflation. The only difference between T (µ) and T (µ−1) is the newly
appended last column and row. So by writing

T (µ) =

[
T (µ−1) (t(µ))H

t(µ) t(µ,µ)

]
, L(µ) =

[
L(µ−1) 0

l(µ) 1

]

and

D(µ) = diag(d(1),d(2), . . . ,d(µ))

we get updates for L(µ−1) to L(µ) and D(µ−1) to D(µ) by computing

l(µ) = t(µ)(L(µ−1))−H(D(µ−1))−1 and d(µ) = t(µ,µ)− l(µ)D(µ−1)(l(µ))H . (4.2)

Note that in our notation l(µ) and t(µ) are row vectors and due to the sparsity pattern of T (µ)

and L(µ) only the last at most m entries in each of the vectors are non-zero.

4.2. Updating iterates. Having both the updates in (4.2) for L(µ) and D(µ) we can for-
mulate how the iterates X (µ−1) can be updated. Using (4.1) we get

X (µ) =V (µ)(L(µ)D(µ)(L(µ))H)−1(V (µ))HB

=
[
V (µ−1) v(µ)

]
(L(µ))−H(D(µ))−1(L(µ))−1 [V (µ−1) v(µ)

]H
B

=
[
V (µ−1) v(µ)

][L(µ−1) 0
l(µ) 1

]−H

(D(µ))−1
[

L(µ−1) 0
l(µ) 1

]−1 [
(V (µ−1))H

(v(µ))H

]
B

=
[
P(µ−1) p(µ)

]
(D(µ))−1

[
U (µ−1)

u(µ)

]

= X (µ−1)+
1

d(µ) p(µ)u(µ). (4.3)

Here we used

P(µ) :=
[
P(µ−1) p(µ)

]
=
[
V (µ−1) v(µ)

][L(µ−1) 0
l(µ) 1

]−H

8
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and

U (µ) :=
[
U (µ−1)

u(µ)

]
=

[
L(µ−1) 0

l(µ) 1

]−1 [
(V (µ−1))H

(v(µ))H

]
B.

The advantage of introducing the new matrices P(µ) and U (µ) is that for the cost of having to
store them we have the benefit of being able to do the inversion of L(µ) implicitly and have
simple updates for

p(µ) = v(µ)−P(µ−1)(l(µ))H and u(µ) = (v(µ))HB− l(µ)U (µ−1). (4.4)

One must expect that the vectors v(µ) tend to lose orthogonality rather quickly in numerical
computation. However, (v(µ))HB in (4.4) should always be taken as zero for µ > m even
though it is not in actual computation since it stabilises the computation of the new iterates.
As described before, L(µ) inherits the banded structure of T (µ). This implies that the updates
in (4.4) need at most the last m columns of P(µ−1) and, accordingly, the last m rows of U (µ−1).

4.3. Computing norms of the residuals. In order to be able to stop the iteration we
should be able to compute the norms of the residuals r(µ)j ,1 ≤ j ≤ m. Fortunately, although
the residuals are not directly available, their norms can be computed at very low additional
cost. The iterates X (µ) are generated in such a way that the residuals R(µ) are orthogonal to
the Lanczos vectors v( j) for j ≤ µ . Therefore, they may be written as

R(µ) =W (µ)C(µ)

where C(µ) ∈Cmµ×m and W (µ) ∈Cn×mµ consists of the last mµ columns of V (iµ ), i.e. W (µ) =

[v(µ+1)| . . . |v(iµ )]. For k > m this can be seen by using relation (3.4) which yields

(v(k))HR(µ) = (v(k))H(B−AX (µ))

= (v(k))H(B︸ ︷︷ ︸
=0

−AV (µ)(T (µ))−1(V (µ))HB)

= (v(k))HV (iµ )T (iµ ,µ)(T (µ))−1(V (µ))HB.

Thus, if we are just interested in the norm of each of the residuals we only have to compute
the norm of the columns of C(µ) ∈ Cmµ×m, V (µ) having orthonormal columns. Computing
C(µ) is actually quite simple since

C(µ) = (W (µ))HR(µ)

= (W (µ))H(B−AX (µ))

= (W (µ))H(B−AP(µ)(D(µ))−1U (µ))

= (W (µ))H(B−AV (µ)(L(µ))−H(D(µ))−1U (µ))

= (W (µ))H(B︸ ︷︷ ︸
=0 for µ>m

−V (iµ )T (iµ ,µ) (L(µ))−H(D(µ))−1U (µ)
︸ ︷︷ ︸

=:C̃(µ)

)

=−
[
0 Imµ

]
T (iµ ,µ)C̃(µ). (4.5)

The computation of C(µ) thus essentially only involves one matrix-matrix product of small
matrices of dimension mµ and one inversion of the small triangular matrix (L(µ))H . So ob-
taining C(µ) is computationally cheap.
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4.4. Shifts. The block method developed so far can be extended to handle shifted sys-
tems and multiple right-hand sides at the same time. The only restriction is on the choice of
the starting vectors, because we need to have collinear initial residuals for all shifts of a given
right-hand side. This constraint can obviously be fulfilled by choosing 0 as the starting vector
for all shifts. For ease of notation we focus on a situation where we have just one additional
shift σ and use the notation Aσ := σ I +A. Matrices and vectors belonging to the shifted
system will also be noted by the index σ .

Krylov subspaces are shift invariant, i.e. Kk(A,b) = Kk(Aσ ,b) for all k and σ . Moreover,
starting with the initial vector b, the Lanczos process produces exactly the same vectors,
whether we take A or Aσ [21]. This property immediately carries over to the block Lanczos
process and to the deflated block Lanczos process if we use the same criteria to detect exact
or inexact deflation. Moreover, the deflated block Lanczos relation (3.4) turns into

AσV (µ) =V (iµ )T (iµ ,µ)
σ +V (µ)

defl

with

T (iµ ,µ)
σ = T (iµ ,µ)+σ




Iµ
0 · · · 0
...

. . .
...

0 · · · 0


 ,

where Iµ is the identity matrix of dimension µ . In particular, we have

(V (µ))H(σ jIn +A)V (µ) = σ jIµ +T (µ) =: T (µ)
σ ,

so that we can obtain the block CG iterates for the shifted system in exactly the same manner
as described in section 4.2, with T (µ) replaced by T (µ)

σ . This saves us the cost of creating
V (µ) and T (µ) for each shifted system individually which is expected to be the most expen-
sive part since it involves multiplications with the matrix Aσ . However, for every shift, the
Cholesky decomposition L(µ)

σ and D(µ)
σ and the matrices P(µ)

σ and U (µ)
σ needed for generating

the iterates, have to be computed and stored. We will give a detailed analysis of the memory
requirements in the next section.

5. Algorithm. Summarising the previous sections and using Algorithm 2 we now for-
mulate the DSBlockCG algorithm as Algorithm 3. The loop in line 7 means that if for a fixed
shift σ j all the iterates xi, j with 1 ≤ i ≤ m are converged to the requested tolerance, the ma-
trices L(µ)

σ ,D(µ)
σ ,P(µ)

σ ,U (µ)
σ and C(µ)

σ do not have to be updated anymore. Additionally then,
only those columns of C(µ)

σ have to be computed that belong to non-converged systems for
shift σ .

The memory footprint of the DSBlockCG algorithm in a memory efficient implementa-
tion consists of 2m+1 vectors of length n for storing the matrix V , and a temporary vector v.
For every shift the search direction matrix P(µ)

σ has to be stored which amounts to additional
s ·m vectors of length n. The matrix T (µ) can be stored using (2m+ 1)× (m+ 1) entries.
Since for every shifted system the shift only has to be applied to the diagonal of T (µ), there
is no need for storing more than one copy of this matrix. However, for every shift we need to
store the matrices U (µ)

σ , L(µ)
σ , C(µ)

σ and a temporary matrix, which all have a size of at most
m×m.

Overall we end up with a memory footprint of (sm+ 2m+ 1)n+ 6m2 +O(m) floating
point numbers in addition to the storage for the matrix A, the right-hand sides B and the result
vectors X .
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Algorithm 3: DSBlockCG - deflated shifted BlockCG
Data: A ∈ Cn×n hpd, B = [b1| . . . |bm] ∈ Cn×m, shifts σ1, . . . ,σs, deflation tolerance tol

for Algorithm 2, target relative residual δ
Result: solutions xi, j to the systems (1.1) with

∥∥bi− (σ jI +A)xi, j
∥∥ < δ ‖bi‖

1 begin
2 set µ =−m, I = /0 for Algorithm 2
3 repeat
4 repeat
5 perform the lines 6 to 19 of Algorithm 2
6 if µ > 0 then
7 forall the unconverged systems σ do
8 compute l(µ)σ and d(µ)

σ in the Cholesky decomposition, see (4.2)

9 update the matrices P(µ)
σ and U (µ)

σ using (4.4)

10 update the non-converged columns of the iterate X (µ)
σ as in (4.3)

11 compute C(µ)
σ given in (4.5)

12 check convergence by calculating the norm of the columns of C(µ)
σ

13 until non-deflated new vector vi created
14 until all systems converged to given target relative residual δ

For the computational complexity we assume that n� m and n� s so that O(m3) and
O(ms) are negligible compared to O(n). For simplicity, we only analyse the non-deflation
case. The computational cost for one step in the DSBlockCG algorithm consists of

• a multiplication with the matrix A,
• the orthogonalisation against 2m previous vectors,
• the normalisation of the new vector that extends the Krylov subspace,
• the update of the search direction matrices P(µ)

σ for every shift σ and
• the update of the iterates X (µ)

σ for every shift σ .
The cost of the multiplication with A is cAO(n) where cA represents a constant that depends
on the number of non-zeros of A. The orthogonalisation needs 2m vector additions but just
m inner products by exploiting the symmetry of T (µ). Normalising the resulting vector after
orthogonalisation accounts for one operation with cost O(n). Finally, the updates of the
search directions and the iterates account for sm vector operations each. Overall we end up
with a computational complexity of (cA +3m+1+2sm)O(n) per step.

Concluding this section we discuss how DSBlockCG performs depending on the number
of right-hand sides. Solving for only one right-hand side DSBlockCG has a computational
complexity of (cA +4+2s)O(n) per step. Now let k be the number of steps that DSBlockCG
needs to solve (1.1) and let l be the combined number of steps that DSBlockCG needs if we
apply the algorithm to each side separately. Then, solving for m right-hand sides at once is
faster if

k
l
<

(cA +4+2s)
(cA +3m+1+2sm)

.

This means that using DSBlockCG for m right-hand sides is advisable if the matrix-vector
multiplications dominate the computation (i.e. cA is large compared to m and s) or the number
of iterations k is significantly lower than l (i.e. the block Krylov subspace contains valuable
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additional information for each right-hand side compared to the non-block subspaces).

6. Numerical results. In this section we present and discuss results for Algorithm 3 ap-
plied to different test problems. In order to achieve fair time measurements all the algorithms
we are comparing were implemented in C++ using the Eigen library [13] for sparse and dense
BLAS operations. We stored the matrices in the compressed column storage (CCS) sparse
format. Our programs were not parallelised and ran on an Intel Xeon X5680 (3.33 GHz, 96
GiB RAM).

We compare our algorithm to three other algorithms—the first is non-preconditioned
conjugate gradients which we will simply call CG from now on. In CG we solve each of the
systems (1.1)

(σ jI +A)xi, j = bi

separately. The second algorithm is the shifted conjugate gradients algorithm from [12] re-
ferred to as shifted CG. It has to be applied m times with one single right-hand side bi at a
time: For every single right-hand side all s shifted systems are solved at the same time. The
third and last competing algorithm is BCGrQ from [8]. This block CG algorithm solves all
the systems belonging to a single shift but several right hand sides in one go.

6.1. Lattice quantum chromodynamics (QCD). In the Rational Hybrid Monte Carlo
algorithm (RHMC) used in the context of lattice QCD the j-th root (MHM)1/ j of a matrix
MHM has to be applied to a couple of random vectors [16]. The matrix M represents a
nearest neighbour coupling on a four dimensional lattice having 12 variables at each lattice
point. Thus, the dimension of M is n = 12n1n2n3n4 and typical values for ni start from 16
and range up to 128 resulting in n being of magnitude 106−109. Because of the size of the
matrix M, direct and iterative methods for explicitly computing the full matrix (MHM)1/ j are
not feasible [15]. Approximating the j-th root via a partial fraction expansion of a rational
approximation gives rise to shifted methods. The situation is favourable for Algorithm 3,
since MHM is positive definite and all shifts of the partial fraction expansion are positive, too.

FIG. 6.1. The left plot shows the relative time (vertical axis) of all compared algorithms on a 164 lattice for
various numbers of right-hand sides (horizontal axis) where the times are normalised w.r.t. shifted CG. The right
plot displays the relative number of mvms for the same run with the same normalisation.

Figure 6.1 shows a comparison of all four algorithms for a 164 lattice. The matrix used
corresponds to a typical configuration in lattice QCD with parameters taken from run A3
in [6, 7]. We used several numbers of random right-hand sides and a fixed number of 12
shifts. The shifts were taken for the partial fraction expansion of a Padé approximation to
f (x) = x1/4. They range between 0.0053 and 964.0944. This Padé approximation differs
from x1/4 on the interval [λmin(MHM),λmax(MHM)] by less than 3 ·10−5. The target relative
residual was chosen as 10−12, s.t. the error of the solution is about in the order of the accuracy
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of the approximation. For each run with k right-hand sides we used the same k random
right-hand sides for all four methods. In our numerical experiments shown in Figure 6.1 we
computed the matrix MHM explicitly instead of multiplying by M and MH separately for
computing MHMx. The rationale for this is our discussion of the computational complexity
in Section 5. Computing MHM explicitly increased the number of non-zeros per row from
49 in M and MH to about 310 in MHM. In Section 6.2 we give more examples for tests with
matrices with varying numbers of non-zeros per row.

FIG. 6.2. The left plot shows the relative time (vertical axis) of all compared algorithms on a 164 lattice for
various numbers of right-hand sides (horizontal axis) where the times are normalised w.r.t. shifted CG. The right
plot displays the relative number of mvms for the same run with the same normalisation.

FIG. 6.3. Convergence plots for all the compared algorithms on a 164 lattice with 4 right-hand sides and
12 shifts. Horizontal axis: time in seconds. Vertical axis: relative norm of residual. In case of the methods that
can not solve shifted systems at the same time, the saw tooth shape of the plots is caused by their subsequent runs.
DSBlockCG and shifted CG show a saw tooth shape too, since we always plot the residual for the system belonging
to the shift that converges next, i.e. the worst conditioned of the remaining systems.

Figure 6.2 shows the same test setting as in Figure 6.1 but without computing MHM
explicitly. In this case the matrix-vector multiplications do not dominate the computations
anymore which results in shifted CG outperforming our algorithm. Figures 6.1 and 6.2 clearly
show that in any case CG and BCGrQ are not competitive. For shifted CG vs. DSBlockCG we
will see later that the situation changes in favour of DSBlockCG not only when the sparsity

13



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

of the matrix M decreases but also when the matrix M is less well conditioned.
In Figure 6.3 we display the convergence behaviour for the run with four right-hand

sides in more detail. As seen in the top left plot for DSBlockCG, better conditioned systems
converge much faster. Thus, it is important to stop updating them as soon as they reach
the target residual to speed up the computation of the remaining systems as we did in our
implementation of Algorithm 3. The top right shifted CG plot shows that the different random
right-hand side vectors show almost the same convergence behaviour. Table 6.1 gives the
plain numbers for the same test run. It shows that CG needs the highest number of matrix-
vector multiplications. However, comparing the times reveals that BCGrQ is not faster than
CG and that both, shifted CG and DSBlockCG are much faster than CG. DSBlockCG is a bit
slower than shifted CG despite the fact hat it needs a significantly lower number of matrix-
vector multiplications. This reflects the fact that additional work to be invested to handle
multiple right-hand sides is not negligible. As a consequence of the results we now constrain
the remaining tests with shifted systems to comparisons of DSBlockCG and shifted CG.

TABLE 6.1
Number of mvms, time, relative number of mvms and relative time as compared to DSBlockCG of the test runs

of Figure 6.3.

CG BCGrQ shifted CG DSBlockCG

mvms 13246 12180 4360 3496
time in seconds 3981.85 4700.07 1424.52 1498.50
relative mvms 3.79 3.48 1.25 1
relative time 2.66 3.14 0.95 1

In Figure 6.4 we used the same matrix as in the previous example. This time, however, we
enforced one right-hand side to be linearly dependent from the remaining randomly chosen
right-hand sides. This results in immediate deflation and, as a consequence, in a huge speed
up in solving all systems. Admittedly, this behaviour is rarely seen in real computations, but
it shows that deflation is working as expected. Furthermore, if deflation occurs early in the
iteration, DSBlockCG can be significantly faster than using shifted CG.

FIG. 6.4. This figure shows the effect if one right-hand side can be deflated early in the iteration. In the left
picture the relative time (vertical axis) of algorithm DSBlockCG over shifted CG on a 164 lattice for a different
number of right-hand sides (horizontal axis) can be seen. The right plot displays the relative number of mvms for
the same run.

In lattice QCD, bigger lattices allow to adjust parameters close to physically relevant
values, typically resulting in less well conditioned systems. Since using larger lattices would
require a parallelization of our code which is out of scope for this paper, we simulated less
well conditioned systems on the 164 lattice by increasing the ”hopping parameter” κ in M =
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I−κD where D represents the coupling to the nearest neighbours. This is consistent to what
is done on large lattices, where κ is also increased. Note that for relevant values of κ all
eigenvalues of M lie in the right half plane. Whereas the smallest real part of any eigenvalue
in M was 7.7 · 10−3 in our previous experiments, we now set κ such that it becomes 10−6.
Again, we used a Padé approximation to f (x) = x1/4 with 12 shifts. They range between
5 · 10−4 and 103. The results for these settings are shown in Figure 6.5. The number of

FIG. 6.5. In this plot we shifted the systems of the previous plots to increase its condition number. The left
plot shows the relative time (vertical axis) of algorithm DSBlockCG over shifted CG on a 164 lattice for a different
number of right-hand sides (horizontal axis). The right plot displays the relative number of mvms for the same run.

mvms decreases considerably as the number of right-hand sides is increased and drops to
less than half the number of iterations needed by shifted CG. Additionally, there is a gain in
computational time. For 3 and 6 right-hand sides, solving the system with DSBlockCG needs
less than 75% of the time required for shifted CG. For increasingly more right-hand sides the
additional costs of handling them in DSBlockCG begins to dominate the computation time.

6.2. Unshifted systems with multiple right-hand sides. DSBlockCG can also be used
as a non-shifted multiple right-hand sides method. Our goal is to show that DSBlockCG can
compete with block methods like BCGrQ and outperforms CG when applied to non-shifted
block systems. For this we used four matrices from the Florida sparse matrix collection [5].
Table 6.2 displays information on the four matrices used in our tests. We chose these ma-

TABLE 6.2
Test matrices from the Florida sparse matrix collection [5]. Including the dimension of the operator, the

number of non-zeros and the mean non-zeros per column.

name dimension non-zeros non-zeros per column

msc04515 4515 97707 21.6
Pres Poisson 14822 715804 48.3
smt 25710 3749582 145.8
nd12k 36000 14220946 395.0

trices as examples, because they are hpd and have a relatively high number of non-zeros per
column. For more detailed information on the matrices see [5]. For all matrices we computed
solutions to random right-hand sides and compared our algorithm to CG and BCGrQ. In our
tests we experienced that if inexact deflation happens early in the iteration the stability of the
method suffers especially if a high precision as the target residual norm is requested. This
behaviour was already described and discussed in [3]. Thus, we have to balance the defla-
tion tolerance in Algorithm 3 and the final required accuracy. We chose a deflation tolerance
of 10−10 and stopped the iteration as soon as a relative residual norm of 10−6 was reached.
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Figure 6.6 displays the results for these runs depending on the number of right-hand sides.
While the number of matrix-vector multiplications is almost the same for BCGrQ and DS-
BlockCG in all examples, there is a noticeable difference in the total execution time for the
more sparse matrices like msc04515 and Pres Poisson: For small numbers of right-hand
sides DSBlockCG is significantly faster than BCGrQ. In the tests with the matrix msc04515

there is a turning point at 10 right-hand sides after which BCGrQ starts to solve the systems
faster than DSBlockCG. When solving systems with the matrix Pres Poisson DSBlockCG
is faster than BCGrQ only for up to 6 right-hand sides. We attribute this to caching effects that
have a higher impact on the computational time of DSBlockCG. For the other two matrices
DSBlockCG and BCGrQ show about the same speed and are from 20 up to 80 per cent faster
than CG.

Our results show that the achievable gain in computational time depends on the sparsity
of the matrix. The reason for this is that our block method saves matrix-vector multiplications
while spending more time on vector operations. So for less sparse matrices the savings in
matrix-vector multiplications outweigh the additional operations even more than for sparser
matrices.

For the QCD matrices we have seen that our method even gains more if deflation occurs.
We artificially chose one right-hand side to be linearly dependent from the others after a few
iteration steps. In Figure 6.7 as before, we chose 10−6 as the target relative residual norm.
As expected our algorithm can benefit from deflating the linearly dependent vector. The
reduction in the number of matrix-vector multiplications in all tests directly translates into
improved timings. Especially for a low number of right-hand sides DSBlockCG outperforms
BCGrQ. For matrix msc04515 the turning point now moves from 10 to 15 right-hand sides
from which on BCGrQ is faster.
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FIG. 6.6. Matrices from top to bottom: msc0415, Pres Poisson, smt, nd12k, left: relative time com-
pared to CG, right: relative number of mvms compared to CG
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FIG. 6.7. Matrices from top to bottom: msc0415, Pres Poisson, smt, nd12k, left: relative time com-
pared to CG, right: relative number of mvms compared to CG
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7. Conclusions. We proposed a new iterative method for the solution of systems of lin-
ear equations of the form (σ jI +A)xi, j = bi based on a block Lanczos-type process. The
method is stable since it accounts for deflation in the block Lanczos process, and it is effi-
cient since it avoids matrix-vector multiplications on deflated vectors. Numerical experiments
show that this method converges faster than just applying CG to every system or applying
block CG methods to systems belonging to a single shift. For reasonable numbers of right-
hand sides and shifts our new method proved to be faster than shifted CG applied to systems
belonging to a single right-hand side.

We wish to thank Kirk Soodhalter for his helpful comments on a draft of this paper.
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