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Abstract

For example in multiphysical modeling coupled problems naturally occur.
Each subproblem is commonly represented by a system of partial differential-
algebraic equations. Applying the method of lines, this results in coupled dif-
ferential algebraic equations (DAEs). A standard technique for the transient
simulation of such systems is dynamic iteration (or cosimulation). In contrast
to the dynamic iteration of systems of ordinary differential equations, con-
vergence for DAEs cannot be generally guaranteed unless some contraction
condition is fulfilled. In the case of convergence, it is a linear one.

In this paper, we quantify the convergence rate, i.e., the slope of the
contraction, in terms of the coupling structure for DAE and ODE systems
and also for two and more subsystems. We find higher rates (for certain
coupling structures) than known before and give sharp estimates for the
rate. Furthermore it is revealed how the rate depends on the number of
subsystems.
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1. Introduction

Downscaling and advanced functionality require multiphysical models in
many technical simulations. E.g. in electrical engineering, circuits are cou-
pled to refined models (for networks, semiconductors [3]) or to magnetic field
models (electric machines [10]). This results in multiphysical problems.

Simulator coupling is a standard technique for the transient simulation of
coupled multiphysics problems. At synchronization times data between sim-
ulators is exchanged. Each simulator computes the solution for a dedicated
subsystem only. Then iteration of this process ensures the consistency of the
overall solution. In applications, this is referred to as cosimulation, whereas
in mathematics it is usually called dynamic iteration or waveform relaxation.

Time integration of spatially discretized models is typically based on cou-
pled system of differential algebraic equations (DAEs). Dynamic iteration of
coupled ordinary differential equations (ODEs) always convergences linearly
[5]. In contrast, the dynamic iteration of DAE systems will not always con-
verge. Convergence can be guaranteed if contraction conditions are fulfilled,
see e.g. [9, 8, 2].

To derive the convergence result, first an error recursion is set up, which
covers the solution process of all subsystem once. To apply Banach’s fixed-
point theorem, a contraction condition is derived from the recursion. Then
convergence and stability follows.

In case of convergence, one generally has linear convergence with rate
O(
√
H) (error reduction per iteration) where H denotes the time interval of

interest. Convergence is not only influenced by the coupling structure, but
also by the order of computation ([2, 3]) and by the actual dynamic iteration
scheme employed.

A higher convergence rate can be obtained from certain coupling struc-
tures [4, 3]. Also in applications (field-circuit coupling [10]), a higher rate
was numerically observed.

The aim of this work is to derive an analytical background for the higher
convergence rates and to present coupling structures, which guarantee con-
vergence rates up to O(H2). To this end, we apply the strategy for the error
recursions from previous work to systems with a refined structural analysis.
Although Jacobi-type of dynamic iteration is quite popular (high potential of
parallelization), we will investigate Gauss-Seidel-type iteration schemes that
lead to faster convergence for particular DAE problems, which are free of
contraction conditions.
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The paper is organized as follows. Sec. 2 introduces the notation of cou-
pled systems and dynamic iteration. Sec. 3 summarizes the known procedure
to derive the recursion estimates, contraction and convergences. Our contri-
bution of refined structural analysis for coupled DAEs follows in Sec. 4. We
investigate two and multiple coupled systems and derive the convergence rate
for different couplings. In Sec. 5 a academic test problem is presented that
verifies the theoretical results by experiments and the application to real-
world problems from electrical engineering is discussed. Conclusions form
the final section.

2. Coupled DAE Systems and Dynamic Iteration Schemes

We consider coupled initial value problems (IVPs), which can be written
in semi-explicit form (for each of the r subsystems):

ẏi = fi(y, z), y := (y1, . . . ,yr)
>, y(0) = y0 ∈ Rny (1a)

0 = gi(y, z), z := (z1, . . . , zr)
>, z(0) = z0 ∈ Rnz (1b)

with i = 1, . . . , r. Without loss of generality, this system is in autonomous
form. This system is a split structure for an overall semi-explicit DAE system
ẏ = f(y, z), 0 = g(y, z) with f = (f1, . . . , fr)

> and g = (g1, . . . ,gr)
>.

Assumption 1 Given the coupled DAE-problem (1).

a) Let f and g be sufficiently often differentiable.

b) Let consistent initial values be given.

c) Let ∂g/∂z and ∂gi/∂zi be regular for each i with inverse φi.

In other words, by Assumption 1 we have an index-1 problem for each sub-
system and the overall system. Thus there is a unique solution x = (y, z)> ∈
C1([0, te],Rny) × C([0, te],Rnz) with y : [0, te] → Rny , z : [0, te] → Rnz .
With the trivial constraint gi ≡ 0 and dimension nzi = 0 (i.e., zi(t) ∈ Rnzi ),
the split system (1) may include also ODE subsystems.

We aim at computing a sufficiently accurate approximation x̃ := (ỹ, z̃)> :
[0, te]→ Rny ×Rnz of the unique x for (1). This approximation is represented
by a continuous waveform in our analysis. In practice it is represented by
sampled points stemming from a sufficiently accurate numerical time step-
ping procedure.

Dynamic iteration schemes compute approximations to the subsystems
separately, while an outer iteration loop can guarantee convergence towards
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the desired unique solution. Thus each subsystem may invoke a dedicated
solver to respect the corresponding structures like stiffness, activity, definite-
ness etc..

For the analysis, we formalize the iteration procedure. It is commonly
performed on so called (time-)windows [tn, tn+1] with 0 = t0 < t1 < t2 < . . . <
tN = te with window size Hn := tn+1−tn. Given a numerical approximation x̃
on [0, tn], a dynamic iteration defines the approximations on the next window:

(ỹ, z̃)|(tn,tn+1] ∈ C1,0
n with C1,0

n := C1((tn, tn+1],Rny)× C((tn, tn+1],Rnz)

via an extrapolation Φn : C1,0
n−1 → C1,0

n and a number of iterations Ψn :
C1,0
n → C1,0

n : (see e.g. [2])

Φn :

(
ỹ|[tn−1,tn]

z̃|[tn−1,tn]

)
7→

(
ỹ

(0)
n

z̃
(0)
n

)
Ψn :

(
ỹ

(k−1)
n

z̃
(k−1)
n

)
7→

(
ỹ

(k)
n

z̃
(k)
n

)
:= Ψn

(
ỹ

(k−1)
n

z̃
(k−1)
n

)
.

Subscript n refers to the time window and superscript k = 1, . . . , kn de-
notes the iteration count (with kn finite). To solve the split DAE (1) for
ỹn = (ỹ1,n, . . . , ỹr,n)>, z̃n = (z̃1,n, . . . , z̃r,n)>, operator Ψn maps given approx-
imations (index (k− 1)) to new ones ỹ(k), z̃(k) of the decoupled initial-values
problems. To this end, the right-hand sides f ,g are formally replaced by cor-
responding splitting functions F and G, which allow the simultaneous use of
known, old iterates (index (k − 1)) and updates (index (k)):

˙̃y
(k)
i,n = Fi(ỹ

(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ), with ỹ
(k)
i,n (tn) = ỹ

(k−1)
i,n (tn), (2a)

0 = Gi(ỹ
(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ) (2b)

(for i = 1, . . . , r). The splitting functions Fi and Gi, are arbitrary but
smooth and satisfy compatibility:

Fi(y,y, z, z) = fi(y, z), Gi(y,y, z, z) = gi(y, z), i = 1, . . . , r. (3)

Hence the analytical solution x = (y, z)> is a fixed-point of Ψn. For standard
dynamic iterations schemes see [2]. In this paper we only employ Gauss-
Seidel-type schemes and for simplicity of notation the computational se-
quence corresponds to the ordering of the subsystems, i.e., 1→ 2→ . . .→ r.

4



3. Error definition and basic convergence analysis

In [2, 4, 3] the convergence of the dynamic iteration schemes is investi-
gated by studying error recursions within one window and the error transport
from window to window. Here, we focus on the error recursion on one win-
dow. In contrast to previous works, we distinguish between the errors for each
subsystem. This will allow for better error estimates. Contraction, general
convergence and stability can be derived analogously as before. Therefore
we briefly summarize the known results.

For given distance d > 0, we define a neighborhood Ud,n of the analytical
solution xn = (yn, zn)> in the n-th window:

Ud,n =
{

X := (Y,Z)> ∈ C1,0
n :

∣∣∣∣Y − y|[tn,tn+1]

∣∣∣∣, ∣∣∣∣Z− z|[tn,tn+1]

∣∣∣∣ ≤ d
}
,

where ||v|| := suptn<t≤tn+1
|v(t)| using the the Euclidean norm | · |.

Assumption 2 Given splitting functions F, G for the split system (1), there
is d0 > 0 such that on Ud0,n:

(a) function F is Lipschitz with constant LF > 0, (4)

(b) G is totally differentiable (i.e., derivatives are Lipschitz), (5)

(c) Gz(k) is invertible. (6)

Usually, contractivity is proven in the smaller set Ud,n ⊂ Ud0,n using Lipschitz
estimates and a kind of homotpy for the algebraic variables. This is the basis
for the following notations. Let X, X̃ ∈ Ud0,n, for k dynamic iterations the
n-th window, we use the shorthands:

(Yk
n, Zk

n)> := Ψk
nX, (Ỹk

n, Z̃k
n)> := Ψk

nX̃, (7)

∆k
y(t) := Yk

n(t)− Ỹk
n(t), δky := ||∆k

y|| = suptn<t≤tn+1

(∣∣∆k
y(t)

∣∣) ,
∆k

z(t) := Zk
n(t)− Z̃k

n(t), δkzn := ||∆k
z|| = suptn<t≤tn+1

(∣∣∆k
z(t)
∣∣) . (8)

Based on the above definitions, one can deduce a basic error recursion
(eg. [3]). It has the following structure. For sufficiently small H and small
space Ud,n, the iterates of the split DAE (1) fulfill the estimate:(

δky
δkz

)
≤ K

(
δk−1
y

δk−1
z

)
+

(
1 + CH

C

)
|∆k−1

y (tn)| (9)
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with iteration matrix K and important constant αn: (and constants c, C > 0)

K :=

(
CH CH

C CH + αn

)
, αn := (1 + c d)

∣∣∣∣G−1
z(k)

Gz(k−1)

∣∣∣∣+ Cd. (10)

The second term in (9) describes the initial offset in a window. If the eigen-
values of K are strictly less than one, contraction is established, and the
arguments in [2] yield convergence. The largest eigenvalue of K is responsi-
ble for the slowest reduction of errors (in the case of convergence).

Remark 3 (Simple Coupling) If the subsystems are weakly coupled, i.e.,
Gz(k−1) which is due to our numeration the strict upper right triangle of G =
∂g/∂z tends to zero then αn → 0 and the maximum eigenvalue is dominated
by terms in H. In the limit case αn = 0 (’simple coupling’), the algebraic
constraints do not use old algebraic variables, [4, 3].

We focus here on systems that are not constrained by αn. This motivates:

Definition 4 Let λmax(K) ∈ O(Hp), then we refer to O(Hp) as rate of
convergence where p is the order (per iteration).

4. Refined Structural Analysis for DAE Coupling

The above strategy is employed to carry out a refined structural analysis
of DAE problems with two and more subsystems w.r.t. the convergence rate.

4.1. Two Subsystems

First we consider the case of two coupled DAE systems. The conver-
gence rate is generally αn, see (9-10). This changes if we consider systems
with less mutual interaction as discussed before. Therefore we compute the
corresponding recursion estimates with a refined analysis, draw relations to
the previously established results and show what can be gained in terms of
convergence.

4.1.1. No Old Algebraic Iterates

Here we examine the coupled DAE system with special structure:

ẏ1 = f1(y1, z1,y2, z2), ẏ2 = f2(y1, z2,y2, z2),

0 = g1(y1, z1,y2, 0), 0 = g2(y1, z1,y2, z2).
(11)
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Notice g1 does not depend on z2. We use a Gauss-Seidel iteration scheme
and start the iteration with subsystem 1. Thus — in contrast to the reversed
computational sequence — there is no coupling via old algebraic iterates in
algebraic equations, cf. Remark 3. Hence, for time windows small enough
this leads to a convergent iteration scheme. To investigate the order of the
convergence rate, we establish:

Lemma 5 (Error Recursion for Two Simply Coupled DAEs) Given
the system (11) with Ass. 1 fulfilled. Then exists H0 > 0, such that for
window size H < H0 we obtain the error recursion (on the n-th window)

δky1

δky2

δkz1
δkz2

 ≤ K


δk−1
y1

δk−1
y2

δk−1
z1

δk−1
z2

+ M

(|∆k−1
y1

(tn)|
|∆k−1

y2
(tn)|

)
(12)

with matrices: (and constant C > 0)

K = C


0 H 0 H
0 H 0 H2

0 1 0 H
0 1 0 H

 M =


1 + CH 0
CH 1 + CH
C 0
C C

 . (13)

Proof. We follow the line of the proof from [3], but we exploit the par-
ticular structure of (11) with less mutual dependency. First, we examine
subsystem one with old iterates for y2 and z2. The Lipschitz continuity of
z1 = Φ1(y1,y2) implies:

|∆k
z1
| ≤ LΦ

(
|∆k

y1
|+ |∆k−1

y2
|
)
. (14)

where LΦ is the maximum of the Lipschitz constants of Φi w.r.t. yi and zi.
Then applying Lipschitz continuity to the corresponding ODE-part yields:

|∆k
y1

(τ)| ≤ |∆k−1
y1

(tn)|+ Lf

∫ τ

tn

(
(1 + LΦ)

(
|∆k

y1
|+ |∆k−1

y2
|
)

+ |∆k−1
z2
|
)

dt.

where Lf is the maximum of the Lipschitz constants of fi. For L0 := Lf (1 +
LΦ) this leads to the estimate for the maximum over the time interval

δky1
≤ |∆k−1

y1
(tn)|+ L0H

(
δky1

+ δk−1
y2

+ δk−1
z2

)
.
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Let H0 < 1/L0, then for any H < H0, we find

δky1
≤ (1 +H ′) |∆k−1

y1
(tn)|+H ′

(
δk−1
y2

+ δk−1
z2

)
(15)

with H ′ := cyH where cy := L0/(1−L0H0). Then from (14) and (15) we get

δkz1 ≤ LΦ(1 +H ′)|∆k−1
y1

(tn)|+ LΦ(1 +H ′)δk−1
y2

+ LΦH
′δk−1

z2
. (16)

Analogously we get estimates for the second subsystem, where we use
already known, actual iterates y

(k)
1 , z

(k)
1 . The corresponding estimates for

(14) and (15) (by Lipschitz continuity) read:

|∆k
z2
| ≤ LΦ

(
|∆k

y1
|+ |∆k

y2
|+ |∆k

z1
|
)
, (17)

δky2
≤ (1 +H ′)|∆k−1

y2
(tn)|+H ′

(
δky1

+ δkz1
)
. (18)

Regarding (18), we insert for the new iterates (15) and (16) and obtain

δky2
≤ (1 + LΦ)(1 +H ′)H ′|∆k−1

y1
(tn)|+ (1 +H ′)|∆k−1

y2
(tn)|

+ (H ′ + LΦ(1 +H ′))H ′δk−1
y2

+ (1 + LΦ)(H ′)2δk−1
z2

. (19)

Similar we treat the algebraic estimate (17), where we additionally use (19):

δkz2 ≤C0(1 +H ′)2|∆k−1
y1

(tn)|+ LΦ(1 +H ′)|∆k−1
y2

(tn)|
+ C0(1 +H ′)2δk−1

y2
+ C0(1 +H ′)H ′δk−1

z2
(20)

with C0 := LΦ(1 + LΦ). Equations (15), (19), (16) and (20) together with
the constant C := C0 · (1 + 2H0 +H2

0 ) ·max{1, cy, c2
y} conclude the proof. �

The just established error recursion yields for k iterations:

Theorem 6 (Recursion Estimate) Let the assumptions of Lemma 5 hold.
Let C and H0 be the constants for that lemma. Then a constant Ĉ exists such
that for all k ≥ 1 and for all H ≤ H0 it holds:
δky1

δky2

δkz1
δkz2

 ≤2k−2Hk−1Ck


0 H +Hmax(2−k,0) 0 2max(2−k,0)(H +H2)

0 2H 0 2H2

0 2 0 H

0 2 0 H



δ0
y1

δ0
y2

δ0
z1

δ0
z2



+


1 + ĈH ĈH

ĈH 1 + ĈH

Ĉ Ĉ

Ĉ Ĉ


(
δ0
y1

(tn)

δ0
y2

(tn)

)
.
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Proof. We follow the technique from [2]. By (13) and induction holds:

Kj = 2j−1CjHj−1


0 H + 1 0 H2 +H
0 2H 0 2H2

0 2 0 2H
0 2 0 2H

 (21)

given j ≥ 2. Then, for CH0 <
1
2

we have

j−1∑
i=0

Ki ≤
∞∑
i=0

Ki = I + K + C?H


0 H + 1 0 H2 +H
0 2H 0 2H2

0 2 0 2H
0 2 0 2H


with identity matrix I and C? := C2

1−2CH0
. Thus we get

j−1∑
i=0

KiM ≤

(
∞∑
i=0

Ki

)
M =


1 + ĈH ĈH

ĈH 1 + ĈH

Ĉ Ĉ

Ĉ Ĉ

 . (22)

The equations (21) and (22) conclude the proof. �

Corollary 7 (Convergence Rate) The single, non-zero eigenvalue of K in
(13) is λ = 2CH. Hence the convergence rate is O(H) with p = 1.

Remark 8 (Improved Estimate) Notice the perspective of these estimates:
K expresses the contraction in terms of y2 and z2. These are the latest
updated variables in a Gauss-Seidel scheme.

The global estimates in [2, 3] suggested a rate of convergence O(
√
H) (for

Gauss-Seidel iteration). This is due to the fact that there the error recursion
did not exploit the particular structure. In contrast our detailed analysis
reveals a rate of O(H). For Jacobi iteration the analysis reveals a rate of
only O(αn).

4.1.2. Coupled Systems with Higher Order Convergence

We have shown above that system (11) has a convergence rate O(H).
Here, we give examples of coupling structures (of two subsystems), where
even higher rates of convergence are expected, i.e., previous results were too
pessimistic for those systems.
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Example 9 We consider the coupled DAE system

ẏ1 = f1(y1, z1,y2, 0), ẏ2 = f2(y1, 0, y2, z2),

0 = g1(y1, z1, 0, 0), 0 = g2(y1, z1,y2, z2).
(23)

The Gauss-Seidel dynamic iteration scheme yields the iteration matrix K
(starting with subsystem with subscript 1) with some constant Ĉ:

K = ĈH


0 1 0 0
0 H 0 0
0 1 0 0
0 1 0 0

 .

The non-zero eigenvalue λ = ĈH2 gives convergence rate O(H2). The anal-
ysis in [3] would suggest a convergence rate O(H).

Example 10 The dynamic iteration scheme applied to the coupled system

ẏ1 = f1(y1, z1,y2, z2), ẏ2 = f2(y1, z1,y2, z2),

0 = g1(y1, z1, 0, 0), 0 = g2(0, 0, y2, z2)
(24)

leads to the iteration matrix (independent of the starting subsystem)

K = ĈH


0 1 0 1
0 H 0 H
0 1 0 1
0 H 0 H

 .

The non-zero eigenvalue λ = 2ĈH2 gives convergence rate O(H2). Notice,
this is more or less a coupled ODE-system, since the algebraic equations are
not mutually coupled (coupling is done by the differential variables only).

In summary, for two systems we have at least O(H) without old algebraic
variables. The rate can reach up to O(H2), since for each iteration two
integrations are performed (one for y1 and one for y2).

4.1.3. Several Subsystems

Next, we investigate the rate of convergence for multiple subsystems
(r > 2). Again the general system (1) with all mutual dependencies has

10



convergence rate αn. First we assume a coupling without old algebraic vari-
ables such that αn vanishes, i.e.,

∂gi
∂zj

= 0 for j > i. (25)

All other dependencies via differential variables yj are allowed. Then we
obtain:

Lemma 11 Given r DAE-subsystems with the coupling structure (25), we
obtain an error recursion (for the Gauss-Seidel type-scheme) with

K = C

(
H P
I H

)
with H =

0 H . . . H
...

...
. . .

...
0 H . . . H

 ∈ Rr×r,

P =


0 H H . . . H
0 H2 H . . . H
...

...
. . . . . .

...
...

...
. . . . . . H

0 H2 . . . . . . H2

 , I =

0 1 . . . 1
...

...
. . .

...
0 1 . . . 1

 ∈ Rr×r . (26)

Furthermore, λ1,2 = (r − 1)H ±
√(

r
2

)
H2 +

(
r−1

2

)
H are the non-zero eigen-

values of K. Thus we have a convergence rate of O(
√
H).

Proof. Applying the technique of Lemma 5, the recursion matrix K is de-
duced. The characteristic polynomial can be obtained by using block Gauss
elimination: first I is reduced to one row (by a row transformation), and then
the lower block H − λI is reduced to diagonal block plus one row (by the
inverse transformation from the right). Secondly, the corresponding trans-
formations are made for the first block row. See Appendix A for details.
�

Remark 12 For more than 2 subsystems, the rate O(
√
H) for Gauss-Seidel-

type iteration coincides with the general result in [2]. Only for 2 subsystem we
can proof higher convergence rates for certain fine structured problem classes.

Secondly, we restrict the coupling further to an ODE-like coupling:

ẏi = fi(y, z), 0 = gi(yi, zi) (i = 1, . . . r), (27)

11



that is, the i-th algebraic constraint depends only on the local variables of
the i-th system.

Lemma 13 Given r ≥ 2 DAE-subsystems with the coupling structure (27),
we obtain an error recursion (for the Gauss-Seidel type-scheme) with

K = C

(
P P
P P

)
(28)

where P is given in (26). Thus we have a convergence rate of O(H
r

r−1 ).

Proof. Again applying the technique of Lemma 5, one deduces the recur-
sion matrix K. The characteristic polynomial is obtained by first applying a
block Gaussian elimination (with a matrix B, see below) and than expanding
w.r.t. the columns/rows which have only one non-zero entry:

χ(K) = det (B (K− λI2r)B) with B =

(
Ir 0
−Ir Ir

)

= (−λ)r+1 det (2HMr−1−λIr−1) with Mr−1 :=


H 1 . . . 1
...

. . . . . .
...

...
. . . 1

H . . . . . . H


(and identity matrix Im ∈ Rm×m). For Mr−1, one finds by induction:

χ (Mr−1) = λr−1 +O(H)
r−2∑
k=0

λk = λr−1 +O(H), for H → 0.

(expanding the determinant along the first column). Here we use that λMr−1

is at least of order O(H0). Thus, for the non-zero eigenvalues it holds that
λ(2HMr−1) = O(H

r
r−1 ) for H → 0. �

Thus, it is shown that the convergence rate approaches O(H) as the
number of subsystems approaches infinity.

Remark 14 (Coupling of Systems of ODEs) Lemma 13 includes the case of
multiple ODE systems since the reasoning remains valid if one performs an
index-reduction for each subproblem.
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(b) System of type (11)
yields rate O(H)
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(c) System of type (23)
yields rate O(H2)

Figure 1: Experiments for r = 2 coupled Prothero-Robinson DAE systems. Convergence
rate versus window size H computed according to the error norm (8).

5. Applications

First we discuss an academic test example, which is derived from Prothero-
Robinson’s test equation. Then we investigate a particular coupling in circuit
simulation in more detail.

5.1. Academic Test Case

To analyze the dynamic iteration scheme analytically, we derive a new
test case. To this end, we extend the classical Prothero-Robinson test equa-
tion (for stiff ODEs) [7] to coupled DAEs. For the unknowns (y, z)> =
(y1, y2, . . . , yr, z1, z2, . . . , zr)

> : R→ R2r it reads:

y′ =A(y, z, t) (y − η(t)) + B(y, z, t) (z− Φ(y, t)) + η′(t) (29a)

0 =C(y, t) (y − η(t)) + D(y, t) (z− Φ(y, t)) (29b)

for given η : R → Rr continuous differentiable, Φ : Rr+1 → Rr continuous,
as well as A,B : R2r+1 → Rr×r, and C,D : Rr+1 → Rr×r continuously

differentiable, and initial values y(0) =
(
y1(0), . . . , yr(0)

)>
= η(0). To have

an index-1 system, we assume D to be a regular (for any y and t). Thus the
solution to (29) is:

y(t) = η(t) and z(t) = Φ(y, t).
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(b) System of type (25)
yields rate O(

√
H)
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(c) System of type (27)

yields rate O(H 3
2 )

Figure 2: Experiments for r = 3 coupled Prothero-Robinson DAE systems. Convergence
rate versus window size H computed according to the error norm (8).

A linear version using constant matrices and Φ(y, t) = Fy + ζ(t) reads:(
y′

0

)
=

(
A−BF B
C−DF D

)(
y
z

)
+

(
−Aη(t)−Bζ(t) + η′(t)
−Cη(t)−Dζ(t).

)
(30)

The simplicity of the linear test equation (30) allows us to solve the differ-
ential equations analytically by a computer algebra system and thus perform
a dynamic iteration with continuous waveforms. We solve r scalar DAE
subsystems in the obvious sequence (y1, z1)>→ (y2, z2)>→ . . .→ (yr, zr)

> us-
ing the Gauss-Seidel-type scheme with k = 4 iterations. The computations
have been carried out with Mathematica using simple choices of coefficients
such that analytical time integration was feasible. For example the results
of Fig. 1c) are obtained by

A =

(
4 2
2 5

)
, B =

(
2 0
0 2

)
, C =

(
1 0
0 1

)
, D =

(
2 0
1 2

)
, F =

(
1 0
0 1

)
with right-hand-side functions η(t) = (sin(2π106t), 2 cos(2π107t)+100)> and
ζ(t) = (2 cos(t), 7t)>. The experiments were found to be insensitive with
respect to the choice of coefficients.

The error reduction per iteration (8) is estimated by averaging the quo-
tient of the errors after k iterations:

δ̄ := k

√
δky,z
δ0
y,z

.
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network 2network 1

Figure 3: Coupling via an LC-link.

The dependency of δ̄ on the window sizeH is investigated in Fig. 1 and 2. The
figures depict the results for two and three coupled subsystems, respectively.
The experiments match the theoretical results very well and indicate that
the theoretical estimates for O(Hp) are sharp and not pessimistic: there is
an example for each coupling type that gives the predicted convergence rate.

5.2. Examples of Simple Coupling in Electrical Engineering

The problems with reduced mutual interdependence, e.g. (23) are not
pathological and can be observed in practice. In [3], we have analyzed
the convergence order of a Gauss-Seidel based dynamic iteration scheme for
circuit-semiconductor coupling and could show a convergence rate of O(H)
(independent of the sequence of the subsystems). Furthermore in the field
circuit coupling of magnetoquasistatics and electric networks, a coupled sys-
tem with two subsystems was investigated in [10]. There a second order
convergence rate O(H2) of the dynamic iteration was found, which is now
explainable with our refined theory.

Here we propose another application from circuit simulation: let be given
an index-1 electric network model (for modeling of circuits see [6]). If such a
circuit is composed of two sub-networks of index-1, where the sub-networks
are coupled by LC-links, see Fig. 3, then we have differential coupling. The
decoupling can be realized by a source coupling, where the sub-network on
the inductor side (network 2) is represented by a current source and vice
versa the other sub-network by a voltage source, see Fig. 4. The voltage at
the capacitance is a differential variable (index-1) and the current through
the inductor is differential (index-1). Hence all coupling variables are differ-
entiable. In fact, one can also have a resistance in serial to the inductor, such
that the coupling is via an RLC-link. Since transmission lines can be modeled
by RLC-links, this is an immediate application. Therefore the results of Ex-
ample 10 apply. Moreover we can have multiple coupled systems in this way
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network 1 network 2

Figure 4: Decoupled networks.

and thus realize the differential-like coupling in Lemma 13 (Section 4.1.3).
This underlines the practical importance of differential couplings.

6. Conclusions

We employed the line of arguments from [2, 3], but with refined structure.
This allowed us to prove a higher convergence rate for particular coupled sys-
tems of two DAE systems. As a partial result we have proven a convergence
rate of O(H2) for coupled systems of two ODE systems. For more than
two coupled DAE subsystems (except for ODE-like coupling) we have shown
that the convergence rate drops to O(

√
H). For coupled systems of r > 2

ODE systems (or r > 2 coupled DAE systems with ODE-like coupling), we
have proven a different behaviour. Those systems observe a convergence rate
of f O(H

r
r−1 ). Thus for these system the convergence rate decreases with

increasing number r.
By an analytic example based on Prothero-Robinson, we were able to

prove that our estimations are sharp in the limit of the window size (H → 0).
There are also other factors, which influence the rate of convergence. One

aspect is the sequence of computation. Obviously it can modify the coupling
structure and thus the rate of convergences. E.g. in [1], it was shown,
that computational sequence of subsystems can be crucial for convergence
or divergence. Regarding the derivation of the error estimates, the Lipschitz
constants comprise the constants of our estimates in the end. Thus the rate
of convergences can also be influenced by these values (see also [3] for further
discussion and an example).

Furthermore the new results on the convergence rate have an important
impact on window size selection procedures. This will be the topic of future
research.
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Appendix A. Characteristic Polynomial for r DAE Subsystems

We derive the characteristic polynomial of K from Lemma 11 with cor-
responding eigenvalues λ. Let K̂ := 1

Ĉ
K with eigenvalues λ̂ = 1

Ĉ
λ. By

Laplacian expansion for the first and r + 1-th column of K̂, we obtain

χ(K̂) =
(
−λ̂
)2

det



H−λ̂ . . . . . . H
...

. . .
...

...
. . .

...

H . . . . . . H−λ̂

H2 H . . . H
...

. . . . . .
...

...
. . . H

H2 . . . . . . H2

1 . . . . . . 1
...

. . .
...

...
. . .

...
1 . . . . . . 1

H−λ̂ . . . . . . H
...

. . .
...

...
. . .

...

H . . . . . . H−λ̂


=:λ̂2 det (Mr−1)

We perform a block-Gaussian elimination which diagonalizes the last r − 2
equations:

det(Mr−1) = det
(
BMr−1B

−1
)
, with B =



1
. . .

1

−1
. . .

...
. . .

−1 1


,

where modification from identity in B is located in the r-th column,

=
(
−λ̂
)n−2

det


H − λ̂ . . . . . . H

...
. . .

...
...

. . .
...

H . . . . . . H − λ̂
1 . . . . . . 1

1H2 + (n− 2)H

2H2 + (n− 3)H
...

(n− 1)H2 + 0H
(n− 1)H − λ

 .
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Applying the same procedure again as

det(Mn−1) = det(DBMn−1B
−1D−1) with D =



1
. . .

1
−1 . . . −1 1

. . .

1


(modification from the identity is located in the (r−1)-th row), which trans-
fers the first r − 1 row to an upper triangular form. Hence we obtain:

χ
(
K̂1

)
=
(
−λ̂
)2r−2 ((

(r − 1)H − λ̂
)2 −

(
r
2

)
H2 −

(
r−1

2

)
H
)
.
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