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Abstract

We construct a covariant functor from a category of Abelian principal bundles over globally hy-
perbolic spacetimes to a category of ∗-algebras that describes quantized principal connections. We
work within an appropriate differential geometric setting by using the bundle of connections and we
study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties
of our functor are investigated in detail and, similar to earlier works, it is found that due to topological
obstructions the locality property of locally covariant quantum field theory is violated. Furthermore,
we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant
Borchers-Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge
equivalence classes of principal connections. We introduce a topological generalization of the concept
of locally covariant quantum fields. As examples, we construct for the full subcategory of principal
U(1)-bundles two natural transformations from singular homology functors to the quantum field theory
functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that
the electric charges can be consistently set to zero, which yields another quantum field theory functor
that satisfies all axioms of locally covariant quantum field theory.

Keywords: locally covariant quantum field theory, quantum field theory on curved spacetimes, gauge
theory on principal bundles

MSC 2010: 81T20, 81T05, 81T13, 53Cxx

1 Introduction

The algebraic theory of quantum fields on Lorentzian manifolds has made tremendous developments since
the introduction of the principle of general local covariance by Brunetti, Fredenhagen and Verch [BFV03],
see also [FV12]. Mathematically, this principle states that any reasonable quantum field theory has to be
formulated by a covariant functor from a category of globally hyperbolic Lorentzian manifolds (spacetimes)
to a category of unital (C)∗-algebras, subject to certain physical conditions. Many examples of linear
quantum field theories satisfying the axioms of locally covariant quantum field theory have been constructed
in the literature, see e.g. [BGP07, BG11] and references therein. The mathematical tools which are used
in these constructions is the theory of normally hyperbolic and Dirac-type operators on vector bundles
over spacetimes together with the CCR and CAR quantization functors. In our previous work [BDS12] we
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have generalized these constructions to classes of operators on affine bundles over spacetimes. In addition
to these exactly tractable models, the techniques of locally covariant quantum field theory are essential
for the perturbative construction of interacting quantum field theories, see for example [BDF09], and the
generalization of the spin-statistics theorem from Minkowski spacetime to general spacetimes [Ver01].

One of the weak points of the current status of algebraic quantum field theory is our incomplete
understanding of the formulation of gauge theories. Even though there exist important results on the
quantization of electromagnetism [Dim92, Pfe09, DL12, DS13, SDH12], linearized general relativity
[FH12] and generic linear gauge theories [HS12], as well as on the perturbative quantization of interacting
gauge theories [Hol08, FR13], there are still open problems that deserve a detailed study. In particular,
there is up to now no satisfactory formulation of quantized electromagnetism for the following two reasons:
Firstly, applying canonical quantization techniques it has been found that electromagnetism violates the
locality axiom of locally covariant quantum field theory. This has been shown for the field strength algebra
in [DL12] and for the vector potential algebra in [SDH12]. The latter reference also gives an interpretation
of this feature in terms of Gauss’ law. Secondly, the differential geometric developments over the past
decades indicate that the natural language for formulating gauge theories of Yang-Mills type is that of
principal connections on principal G-bundles, which includes electromagnetism by choosing G = U(1).
Taking into account the principal bundle structure has far reaching consequences for the very principle
of general local covariance: Since principal connections can not be associated to spacetimes, but only
to principal bundles over spacetimes, the category of spacetimes in [BFV03] should be replaced by a
category of principal bundles over spacetimes. This notion of general local covariance for gauge theories of
Yang-Mills type appeared recently in the discussion of the locally covariant charged Dirac field [Zah12],
where however the principal connections were assumed to be non-dynamical background fields. Besides
this new notion of general local covariance in gauge theories of Yang-Mills type, the classical configuration
space is different to the one used in previous works: The set of principal connections does not carry a
vector space structure, but it is an affine space over the vector space of gauge potentials. The vector space
structure employed in the works [Dim92, Pfe09, DS13, SDH12] comes from a (necessarily non-unique)
fixing of some reference connection, which is unnatural in differential geometry and leads to the unnecessary
question of independence of the theory on this choice [Hol08].

We outline the structure of our paper: In Section 2 we fix the notations and review some aspects of the
theory of Abelian principal bundles and principal connections. This material is essentially well-known in the
differential geometry literature, but we require some details that go beyond standard textbook presentations
and hence are worth for being discussed. In particular, we need a full-fledged study of the bundle of
connections [Ati57] together with the action of principal bundle morphisms and the gauge group (the group
of vertical principal bundle automorphisms) defined on it. Sections of the bundle of connections, that is an
affine bundle over the base space, are in bijective correspondence with principal connection forms on the
total space, but they have the advantage of being fields on the base space and not on the total space. This has
far reaching consequences when one studies dynamical equations of connections and causality properties,
since the total space is not equipped with a Lorentzian metric.

In Section 3 we associate to any Abelian principal bundle a gauge invariant phase space for its principal
connections by extending ideas from [BDS12] and [HS12]. Our notion of gauge invariance is dictated by the
principal bundle and in the general case differs from the one employed in [Dim92, Pfe09, DS13, SDH12].
The phase space is not symplectic, but only a presymplectic vector space, whose radical contains topological
information to be discussed in Section 6.

We characterize explicitly the gauge invariant phase space and its radical in Section 4 by using Čech
cohomology. This leads to two interesting observations: Firstly, the gauge invariant phase space and its
radical for theories with a compact Abelian structure group exhibit a different structure with respect to their
counterparts with a non-compact Abelian structure group. Secondly, if the Abelian structure group contains
a compact factor, then the gauge invariant phase space is not separating on gauge equivalence classes of
principal connections. In particular, gauge non-equivalent flat connections can not be resolved. The reason
for this feature is that our gauge invariant phase space consists of affine functionals, but for Abelian structure
groups with compact factors the set of gauge equivalence classes of principal connections is in general no
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longer an affine space. This shows that in these cases the standard phase space of sections of the vector dual
of affine bundles introduced in [BDS12] has to be extended in order to be separating. Natural candidates
for this extension are Wilson loops, which are however too singular for a straightforward description in
algebraic quantum field theory. We hope to come back to this issue in future investigations.

The results above are combined in Section 5 to construct a covariant functor from a category of Abelian
principal bundles over spacetimes to a category of presymplectic vector spaces. Composing this functor
with the usual CCR-functor we obtain a quantum field theory functor that satisfies the causality property
and the time-slice axiom. However, the locality property of [BFV03] is violated, confirming that the results
of [DL12, SDH12] also hold true in our principal bundle geometric approach. This result was not obvious
from the beginning, since our concept of morphisms and configuration space is different from the ones in
earlier investigations.

In Section 6 we extend the concept of a locally covariant quantum field developed in [BFV03] to what
we call a ‘generally covariant topological quantum field’. By this we mean a natural transformation from a
functor describing topological information to the quantum field theory functor. For the full subcategory
of principal U(1)-bundles we provide two explicit examples where the functor describing topological
information is a singular homology functor. The natural transformations are then the coherent association of
observables that measure the Euler class of the principal bundle and the electric charge, that is a certain
cohomology class.

Following the electric charge interpretation of the previous section (see also [SDH12] for an earlier
account) we show in Section 7 that the electric charges can be consistently set to zero. This is physically
motivated since in pure electromagnetism, without the presence of charged fields, there can not be electric
charges. The resulting quantum field theory functor then satisfies in addition to the causality property and
the time-slice axiom also the locality property. With this we succeed in constructing a locally covariant
quantum field theory.

2 Geometric preliminaries

In this work all manifolds will be of class C∞, Hausdorff and second-countable. If not stated otherwise,
maps between manifolds are C∞.

2.1 Spacetimes

We briefly review some standard notions of spacetimes, see [BGP07, BG11, Wal12] for a more detailed
discussion.

Let M be a manifold that for later convenience we assume to be of finite type, i.e. M possesses a
finite good cover U = {Uα}α∈I , with I finite. A Lorentzian manifold is a triple (M, o, g), where M
is a manifold (of finite type), o is an orientation on M and g is a Lorentzian metric on M of signature
(−,+, . . . ,+). Given a time-orientation t on a Lorentzian manifold (M, o, g), we call the quadruple
(M, o, g, t) a spacetime. Let (M, o, g, t) be a spacetime and S ⊆ M be a subset. We denote the causal
future/past of S in M by J±M (S). Furthermore, JM (S) := J+

M (S) ∪ J−M (S). The subset S ⊆ M is
called causally compatible, if J±S ({x}) = J±M ({x})∩ S, for all x ∈ S. A Cauchy surface in a spacetime
(M, o, g, t) is a subset Σ ⊆M , which is met exactly once by every inextensible causal curve. A spacetime
(M, o, g, t) is called globally hyperbolic, if it contains a Cauchy surface.

2.2 Abelian principal bundles

We briefly review standard notions of principal bundles and refer to the textbook [KN96] for more details.

Definition 2.1. Let M be a manifold and G a Lie group. A principal G-bundle over M is a pair (P, r),
where P is a manifold and r : P ×G→ P , (p, g) 7→ rg(p) =: p g is a smooth right G-action, such that

(i) the right G-action r is free,

3



(ii) M = P/G is the quotient of the G-action r and the canonical projection π : P →M is smooth,

(iii) P is locally trivial, that is, there exists for every x ∈ M an open neighborhood U ⊆ M and a
diffeomorphism ψ : π−1[U ]→ U ×G, which is G-equivariant, i.e., for all p ∈ π−1[U ] and g ∈ G,
ψ(p g) = ψ(p) g, and fibre preserving, i.e. pr1 ◦ψ = π. The right G-action on U ×G is given by, for
all x ∈ U and g, g′ ∈ G, (x, g) g′ := (x, g g′) and pr1 : U ×G→ U denotes the canonical projection
on the first factor.

We call P the total space, M the base space, G the structure group and π the projection.

Definition 2.2. Let Mi be a manifold, Gi a Lie group and (Pi, ri) a principal Gi-bundle over Mi, i = 1, 2.
A principal bundle map is a pair of smooth maps F =

(
f : P1 → P2, φ : G1 → G2

)
, such that φ is a

homomorphism of Lie groups and f satisfies, for all p ∈ P1 and g ∈ G1, f(p g) = f(p)φ(g).

Remark 2.3. For every principal bundle map F =
(
f : P1 → P2, φ : G1 → G2

)
there exists a unique

smooth map f : M1 →M2, such that the following diagram commutes:

P1

π1

��

f
// P2

π2

��

M1

f
// M2

(2.1)

We now define a suitable category of Abelian principal bundles over spacetimes.

Definition 2.4. The category PrBuGlobHyp consists of the following objects and morphisms:

• An object in PrBuGlobHyp is a triple Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
, where (M, o, g, t) is a glob-

ally hyperbolic spacetime, G is a connected Abelian Lie group with bi-invariant pseudo-Riemannian
metric h and (P, r) is a principal G-bundle over M .

• A morphism between two objects Ξi, i = 1, 2, in PrBuGlobHyp is a principal bundle map F =
(
f :

P1 → P2, φ : G1 → G2

)
, such that φ : G1 → G2 is an isometry and f : M1 →M2 is an orientation

and time-orientation preserving isometric embedding with f [M1] ⊆ M2 causally compatible and
open.

Remark 2.5. The category PrBuGlobHyp is quite big in the sense that it contains principal bundles for
all possible connected Abelian structure groups. In physics it might be of interest to study only the case
G = U(1) which corresponds to electromagnetism. This can be achieved by restricting all functors that
we will construct in this paper to the full subcategory PrBuGlobHypG defined by the subcollection of
objects Ξ =

(
(M, o, g, t), (G, h), (P, r)

)
where G is fixed. We have decided to include a bi-invariant

pseudo-Riemannian metric h on the structure group G in the data of the category. This datum is equivalent
to an ad-invariant inner product (possibly indefinite) on the Lie algebra g of G, which is required to specify
the action functional and therewith a covariant Poisson bracket for the gauge theory.

Let M be a manifold, G a Lie group and (P, r) a principal G-bundle over M . For every manifold N
with a smooth left G-action ρ : G×N → N , (g, ξ) 7→ g ξ there exists a fibre bundle over M associated
to (P, r) with N as typical fibre: Consider the Cartesian product P × N and define the following right
G-action P × N × G → P × N , (p, ξ, g) 7→ (p g, g−1 ξ). Denote by PN := (P × N)/G the quotient
of this right G-action and define the map πN : PN → M , [p, ξ] 7→ π(p), which is well-defined since
π(p g) = π(p), for all p ∈ P and g ∈ G. The data (PN ,M, πN , N) specifies a fibre bundle (the local
trivialization is shown to exist in [KN96]), which we call the (N, ρ)-associated bundle to (P, r).

Of particular relevance for us is the case where N is the Lie algebra g of the Lie group G and ρ is the
adjoint action ad : G× g→ g. The (g, ad)-associated bundle is called the adjoint bundle of the principal
bundle (P, r) and we denote it also by

(
ad(P ),M, πg, g

)
. We notice that the metric h on the Lie group G

specifies a fibre metric on the adjoint bundle

ad(P )×M ad(P )→M × R , ([p, ξ], [p′, ξ′]) 7→ (π(p), h(ξ, ξ′)) . (2.2)
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Lemma 2.6. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M . Then
ad(P ) = M × g, i.e. the adjoint bundle is trivial.

Proof. Since G is Abelian the adjoint action is trivial, which implies ad(P ) = (P × g)/G = P/G× g =
M × g.

Any principal bundle map F =
(
f : P1 → P2, φ : G1 → G2

)
induces a vector bundle map(

Fad(P ) : ad(P1)→ ad(P2), f : M1 →M2

)
between the corresponding adjoint bundles, where

Fad(P ) : ad(P1)→ ad(P2) , [p, ξ] 7→ [f(p), φ∗(ξ)] (2.3)

and φ∗ : g1 → g2 denotes the push-forward. Since φ is an isometry this vector bundle map preserves the
fibre metrics. By Lemma 2.6 we have that for Abelian structure groups ad(Pi) = Mi × gi, i = 1, 2, and
thus (2.3) reads

FM×g : M1 × g1 →M2 × g2 , (x, ξ) 7→ (f(x), φ∗(ξ)) . (2.4)

We will now show that the association of the adjoint bundle is functorial.

Definition 2.7. The category VeBuGlobHyp consists of the following objects and morphisms:

• An object in VeBuGlobHyp is a pair
(
(M, o, g, t), (V,M, πV, V )

)
, where (M, o, g, t) is a globally

hyperbolic spacetime and (V,M, πV, V ) is a vector bundle over M .

• A morphism between two objects
(
(Mi, oi, gi, ti), (Vi,Mi, πiV, Vi)

)
, i = 1, 2, in VeBuGlobHyp is a

vector bundle map
(
f : V1 → V2, f : M1 →M2

)
, such that f |x : V1|x → V2|f(x) is a vector space

isomorphism, for all x ∈ M1, and f : M1 → M2 is an orientation and time-orientation preserving
isometric embedding with f [M1] ⊆M2 causally compatible and open.

Lemma 2.8. There is a covariant functor Ad : PrBuGlobHyp→ VeBuGlobHyp. It is specified on objects
by Ad(Ξ) =

(
(M, o, g, t), (ad(P ),M, πg, g)

)
and on morphisms by Ad(F ) = (Fad(P ), f), with Fad(P )

given in (2.3).

Proof. Let Ξ be an object in PrBuGlobHyp, then Ad(Ξ) =
(
(M, o, g, t), (ad(P ),M, πg, g)

)
is an object

in VeBuGlobHyp. Let F be a morphism in PrBuGlobHyp, then Ad(F ) = (Fad(P ), f) is a morphism in
VeBuGlobHyp, since the push-forward φ∗ of the isometry φ is a vector space isomorphism.

For the identity idΞ =
(
idP : P → P, idG : G → G

)
we obtain idP = idM , φ∗ = idg and hence

by (2.3) it holds Ad(idΞ) = (idad(P ), idM ). For two morphisms F : Ξ1 → Ξ2 and F ′ : Ξ2 → Ξ3

in PrBuGlobHyp we obtain Ad(F ′ ◦ F ) =
(
(F ′ ◦ F )ad(P ), (f ′ ◦ f)

)
=
(
F ′ad(P ) ◦ Fad(P ), f

′ ◦ f
)

=
Ad(F ′) ◦ Ad(F ).

Remark 2.9. We can also associate functorially to any object Ξ in PrBuGlobHyp a vector bundle as in
VeBuGlobHyp equipped with the fibre metric (2.2) and to any morphism F in PrBuGlobHyp a vector
bundle map as in VeBuGlobHyp which preserves the fibre metrics. We refrain from introducing yet another
notation for a category of vector bundles with fibre metrics and remember this fact when necessary.

2.3 Principal connections

Connections on principal bundles constitute the fundamental degrees of freedom in gauge theories of
Yang-Mills type. In this subsection we will review the relevant definitions and properties following [KN96].

Definition 2.10. LetM be a manifold,G a Lie group and (P, r) a principalG-bundle overM . A connection
form on (P, r) is a g-valued one-form ω ∈ Ω1(P, g) satisfying:

(i) ω(Xξ
p) = ξ, for all ξ ∈ g and p ∈ P , where Xξ

p ∈ TpP is the fundamental vector at p corresponding
to ξ.
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(ii) r∗g(ω) = adg−1(ω), for all g ∈ G.

We denote the set of all connection forms by Con(P ).

Remark 2.11. Due to [KN96, Chapter II, Theorem 2.1] there exists a connection form, i.e. Con(P ) 6= ∅.

Definition 2.12. Let Ωk(P, g) be the vector space of g-valued k-forms, k = 0, . . . ,dim(P ).

(i) We call η ∈ Ωk(P, g) G-equivariant, if r∗g(η) = adg−1(η), for all g ∈ G.

(ii) We call η ∈ Ωk(P, g) horizontal, if η(Y1, . . . , Yk) = 0 whenever at least one Yi ∈ TpP is vertical,
i.e. π∗(Yi) = 0.

The vector space of G-equivariant and horizontal g-valued k-forms is denoted by Ωk
hor(P, g)eqv.

Proposition 2.13. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M .
Then there exists a linear isomorphism between Ωk

hor(P, g)eqv and Ωk(M, g), for all k = 0, . . . ,dim(M).

Proof. Let η ∈ Ωk
hor(P, g)eqv be arbitrary. We define an element η ∈ Ωk(M, g) by, for all X1, . . . , Xk ∈

TxM , x ∈M ,

η(X1, . . . , Xk) := η(Y1, . . . , Yk) , (2.5)

where Y1, . . . , Yk ∈ TpP are tangent vectors at p ∈ π−1[{x}], such that π∗(Yi) = Xi, for all i. Since η is
horizontal, η does not depend on the choice of such Yi. (We can in particular set Yi = Xi

↑ω
p as the horizontal

lift of Xi with respect to some connection.) Due to G-equivariance the construction does not depend on the
choice of p ∈ π−1[{x}].

Let now η ∈ Ωk(M, g) be arbitrary and consider the pull-back η := π∗(η) ∈ Ωk(P, g). This element is
G-equivariant, since, for all g ∈ G, r∗g(η) = (π ◦ rg)∗(η) = π∗(η) = η. It is also horizontal, since for all
Y1, . . . , Yk ∈ TpP with at least one vector vertical (this vector is annihilated by π∗) we have

η(Y1, . . . , Yk) = η
(
π∗(Y1), . . . , π∗(Yk)

)
= 0 . (2.6)

These two identifications provide the desired vector space isomorphism.

Lemma 2.14. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M . Let
us define the map

Φ : Con(P )× Ω1(M, g)→ Con(P ) , (ω, η) 7→ Φ(ω, η) = ω + η . (2.7)

Then
(
Con(P ),Ω1(M, g),Φ

)
is an affine space.

Proof. The one-form ω + η ∈ Ω1(P, g) is an element in Con(P ), since η is horizontal and G-equivariant.
The action (2.7) is free and transitive.

Definition 2.15. Let M be a manifold, G a Lie group and (P, r) a principal G-bundle over M . The
curvature is given by the following map

F : Con(P )→ Ω2
hor(P, g)eqv , ω 7→ F(ω) = dω +

1
2

[ω, ω]g , (2.8)

where d is the exterior differential and [·, ·]g denotes the Lie bracket on g. In case G is Abelian, the curvature
reads, for all ω ∈ Con(P ), F(ω) = dω, since the Lie bracket is trivial.

Remark 2.16. Let G be an Abelian Lie group. Applying Proposition 2.13 we can consider equivalently the
curvature as a map

F : Con(P )→ Ω2(M, g) , ω 7→ F(ω) = F(ω) = dω . (2.9)

As a consequence of the (Abelian) Bianchi identity dF(ω) = ddω = 0, for all ω ∈ Con(P ), we obtain that
F(ω) ∈ Ω2(M, g) is closed, for all ω ∈ Con(P ).
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Lemma 2.17. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M . The
map F : Con(P )→ Ω2(M, g) is an affine map with linear part FV : Ω1(M, g)→ Ω2(M, g) , η 7→ dη.

Proof. Let ω ∈ Con(P ) and η ∈ Ω1(M, g) be arbitrary, then

F(ω + η) = dω + dη = F(ω) + dπ∗(η) = F(ω) + π∗(dη) = F(ω) + dη . (2.10)

2.4 The Atiyah sequence

We present the Atiyah sequence only for Abelian principal bundles and refer to [Ati57] for the general case.
Let us consider the tangent bundle

(
TP, P, πTP ,Rdim(P )

)
over P . On the total space TP there is a right

G-action in terms of the push-forward of tangent vectors

r∗ : TP ×G→ TP , (Y, g) 7→ rg ∗(Y ) . (2.11)

For any Y ∈ TpP we have rg ∗(Y ) ∈ Tp gP and hence πTP ◦ rg ∗ = rg ◦ πTP , for all g ∈ G. In
other words, πTP : TP → P is G-equivariant. As a consequence, we can define the quotient bundle(
TP/G,P/G, π ◦ πTP ,Rdim(P )

)
, which is a vector bundle over M = P/G. We denote the projection of

this vector bundle by πTP/G := π ◦ πTP .

The push-forward of π : P → M gives a vector bundle map from the tangent bundle over P to the
tangent bundle

(
TM,M, πTM ,Rdim(M)

)
over M , i.e. the following diagram commutes:

TP

πTP
��

π∗ // TM

πTM
��

P
π // M

(2.12)

Since π ◦ rg = π, for all g ∈ G, and thus also π∗ ◦ rg ∗ = (π ◦ rg)∗ = π∗, for all g ∈ G, we can perform
the quotient by G and obtain the vector bundle map (denoted with a slight abuse of notation by the same
symbol):

TP/G

πTP/G

��

π∗ // TM

πTM

��

M
idM // M

(2.13)

There is also a vector bundle map from the adjoint bundle (remember that ad(P ) = M × g since G is
Abelian, cf. Lemma 2.6)

(
M × g,M, pr1, g

)
to
(
TP/G,M, πTP/G,Rdim(P )

)
:

M × g

pr1

��

ι // TP/G

πTP/G

��

M
idM // M

(2.14)

The map ι is defined by, for all (x, ξ) ∈M×g, ι(x, ξ) :=
[
Xξ
p

]
, whereXξ

p ∈ TpP is the fundamental vector
corresponding to ξ and p ∈ π−1[{x}] is arbitrary. Indeed, the map ι is well-defined, since for any other
p′ ∈ π−1[{x}] there exists a g ∈ G, such that p′ = p g and hence

[
Xξ
p′
]

=
[
Xξ
p g

]
=
[
rg ∗(X

adg(ξ)
p )

]
=[

rg ∗(X
ξ
p)
]

=
[
Xξ
p

]
, where we have again used that G is Abelian.

Consider now also the trivial vector bundle
(
M × {0},M, pr1, {0}

)
and the following two vector

bundle maps

M × {0}
pr1

��

α // M × g

pr1

��

M
idM // M

(2.15a)
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with α(x, 0) = (x, 0), for all x ∈M , and

TM

πTM

��

β
// M × {0}

pr1

��

M
idM // M

(2.15b)

with β(X) = (πTM (X), 0), for all X ∈ TM .

Composing (2.15a), (2.14), (2.13) and (2.15b) we obtain the following sequence of vector bundle maps
(we can drop the base space maps since they are all given by idM )

M × {0} α // M × g
ι // TP/G

π∗ // TM
β

// M × {0} . (2.16)

This is the Atiyah sequence [Ati57]. For completeness, we review the following

Proposition 2.18. The Atiyah sequence (2.16) is a short exact sequence.

Proof. First, we have to show that the composition of two subsequent maps is the trivial map, i.e. the vector
bundle map which restricted to all fibres is 0. For ι ◦ α this property holds true due to linearity. Let now
(x, ξ) ∈M × g, then π∗(ι(x, ξ)) = π∗(X

ξ
p) = 0, since Xξ

p is by construction a vertical vector. For β ◦ π∗
this property holds trivially.

Next, we have to prove exactness at every step: Let (x, ξ) ∈ M × g be such that ι(x, ξ) = [Xξ
p ] = 0.

This implies that Xξ
p = 0 and since X•p is a vector space isomorphism between g and vertical vectors

at p ∈ P we find ξ = 0. Let now [Y ] ∈ TP/G|x be such that π∗([Y ]) = 0. This implies that any
representative Y ∈ TpP (where p ∈ π−1[{x}]) is vertical and due to the aforementioned isomorphism there
exists a ξ ∈ g, such that ι(x, ξ) = [Xξ

p ] = [Y ]. For the last step let X ∈ TxM be such that β(X) = (x, 0).
This condition is satisfied for all X . Using a local trivialization of P we can lift X ∈ TxM to a vector
X̂ ∈ TpP (where p ∈ π−1[{x}]), such that π∗(X̂) = X . The equivalence class [X̂] ∈ TP/G|x is the
element which proves exactness at this step.

Similar to Lemma 2.8, one can show that all vector bundles appearing in the Atiyah sequence (2.16) are
assigned by a covariant functor from PrBuGlobHyp to VeBuGlobHyp. We do not repeat all the steps in this
proof and just give an explicit expression for the induced maps: Let F =

(
f : P1 → P2, φ : G1 → G2

)
be a morphism between two objects Ξi =

(
(Mi, oi, gi, ti), (Gi, hi), (Pi, ri)

)
, i = 1, 2, in PrBuGlobHyp.

Then the induced vector bundle maps (covering f ) are given by

FM×{0} : M1 × {0} →M2 × {0} , (x, 0) 7→ (f(x), 0) , (2.17a)

FM×g : M1 × g1 →M2 × g2 , (x, ξ) 7→ (f(x), φ∗(ξ)) , (2.17b)

FTP/G : TP1/G1 → TP2/G2 , [Y ] 7→ [f∗(Y )] , (2.17c)

FTM : TM1 → TM2 , X 7→ f∗(X) . (2.17d)

Notice further that for αi, ιi, πi ∗, βi denoting the vector bundle maps in the Atiyah sequence (2.16) for the
object Ξi in PrBuGlobHyp, i = 1, 2, we obtain the commuting diagram:

M1 × {0}

FM×{0}
��

α1 // M1 × g1

FM×g

��

ι1 // TP1/G1

FTP/G
��

π1 ∗ // TM1

FTM
��

β1
// M1 × {0}

FM×{0}
��

M2 × {0}
α2 // M2 × g2

ι2 // TP2/G2
π2 ∗ // TM2

β2
// M2 × {0}

(2.18)
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2.5 The bundle of connections

We show that the affine space of connections
(
Con(P ),Ω1(M, g),Φ

)
constructed in Lemma 2.14 is

isomorphic to the affine space of sections of an affine bundle over M .

Consider the bundle
(
Hom(TM, TP/G),M, πHom(TM,TP/G),HomR(Rdim(M),Rdim(P ))

)
of homo-

morphisms, that is a vector bundle. Sections of this bundle are in bijective correspondence with vector
bundle maps

(
λ : TM → TP/G, idM : M →M

)
. We say that such a vector bundle map is a splitting of

the Atiyah sequence (2.16), if π∗ ◦ λ = idTM . These splittings can be described equivalently by sections
of a subbundle of Hom(TM, TP/G).

Definition 2.19. The bundle of connections
(
C(P ),M, πC(P ), A

)
is the subbundle of the homomorphism

bundle
(
Hom(TM, TP/G),M, πHom(TM,TP/G),HomR(Rdim(M),Rdim(P ))

)
specified by the submanifold

C(P ) :=
{
λ ∈ Hom(TM, TP/G) : π∗ ◦ λ = idTM

}
.

Remark 2.20. The typical fibre A is the set of all linear maps L ∈ HomR(Rdim(M),Rdim(P )) satisfying
π̃∗ ◦ L = idRdim(M) , where π̃∗ ∈ HomR(Rdim(P ),Rdim(M)) is given in a basis {ei ∈ Rdim(M) : i =
1, . . . ,dim(M)} and {Ea ∈ Rdim(P ) : a = 1, . . . ,dim(P )} by

π̃∗(Ea) =

{
ei , for a = i ∈ {1, . . . ,dim(M)} ,
0 , else .

(2.19)

Notice that A is an affine space modeled on HomR(Rdim(M),Rdim(P )−dim(M)), which is the typical fibre
of the homomorphism bundle Hom(TM,M × g).

We define affine bundles following [KMS93, Chapter 6.22] and [BDS12].

Definition 2.21. An affine bundle is a triple
(
M, (A,M, πA, A), (V,M, πV, V )

)
, where M is a manifold,

(A,M, πA, A) is a fibre bundle over M and (V,M, πV, V ) is a vector bundle over M , such that

(i) for all x ∈M , the fibre A|x is an affine space modeled on V|x,

(ii) the typical fibre A is an affine space modeled on the typical fibre V ,

(iii) for all x ∈M , there exists a local bundle chart (U,ψ) of (A,M, πA, A) and a local vector bundle chart
(U,ψV) of (V,M, πV, V ), such that, for all y ∈ U , ψ|y : A|y → A is an affine space isomorphism
with linear part ψ|yV = ψV|y : V|y → V . We call the triple (U,ψ, ψV) a local affine bundle chart.

Proposition 2.22. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over
M . The bundle of connections

(
C(P ),M, πC(P ), A

)
is an affine bundle modeled on

(
Hom(TM,M ×

g),M, πHom(TM,M×g),HomR(Rdim(M),Rdim(g))
)
.

Proof. Using the vector bundle embedding ι (see (2.16)) we can consider Hom(TM,M × g) as a vector
subbundle of the homomorphism bundle Hom(TM, TP/G). By definition, the bundle of connections is
also a subbundle of Hom(TM, TP/G). The vector space structure on the fibres of Hom(TM, TP/G)
induces an affine space structure on the fibres of C(P ) with underlying vector space given by the fibres of
Hom(TM,M × g). By Remark 2.20, the typical fibre A is an affine space modeled on the typical fibre
HomR(Rdim(M),Rdim(g)) of Hom(TM,M × g). The local vector bundle charts of Hom(TM, TP/G)
induce the required local affine bundle charts.

By [BDS12, Lemma 2.20], the set of sections Γ∞(M, C(P )) of the bundle of connections is an affine
space modeled on theC∞(M)-module Γ∞(M,Hom(TM,M×g)). The latter is isomorphic (as aC∞(M)-
module) to the g-valued one-forms on M , i.e. Ω1(M, g). Hence,

(
Γ∞(M, C(P )),Ω1(M, g), Φ̃

)
is an affine

space, with action Φ̃ : Γ∞(M, C(P ))× Ω1(M, g)→ Γ∞(M, C(P )) given by, for all λ ∈ Γ∞(M, C(P )),
η ∈ Ω1(M, g) and X ∈ TxM , x ∈M ,(

Φ̃(λ, η)
)
(X) := λ(X) + ι

(
x, η(X)

)
. (2.20)
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Proposition 2.23.
(
Γ∞(M, C(P )),Ω1(M, g), Φ̃

)
and

(
Con(P ),Ω1(M, g),Φ

)
(cf. Lemma 2.14) are iso-

morphic as affine spaces.

Proof. Let ω ∈ Con(P ) be arbitrary. We define an element λω ∈ Γ∞(M, C(P )) by, for all X ∈ TxM ,
x ∈M ,

λω(X) := [X↑ωp ] , (2.21)

where p ∈ π−1[{x}] and X↑ωp ∈ TpP denotes the horizontal lift at p with respect to ω. By definition we
have that π∗

(
λω(X)

)
= X . The equivalence class [X↑ωp ] is independent on the choice of p, since for any

other p′ ∈ π−1[{x}] there exists a g ∈ G, such that p′ = p g and hence X↑ωp′ = X↑ωp g = rg ∗(X
↑ω
p ). The

last equality follows from the G-equivariance of the horizontal subspaces, π∗(rg ∗(X
↑ω
p )) = X and the

uniqueness of the horizontal lift.

Let now λ ∈ Γ∞(M, C(P )) and Y ∈ TpP with p ∈ π−1[{x}], x ∈ M , be arbitrary. By the splitting
lemma, the element [Y ] ∈ TP/G|x can be decomposed uniquely as [Y ] = ι(x, ξ) + λ(X) = [Xξ

p ] + λ(X),
where ξ ∈ g and X ∈ TxM . For the fixed element p ∈ π−1[{x}], there exist unique representatives
Xξ
p ∈ TpP of [Xξ

p ] and X↑p ∈ TpP of λ(X), such that Y = Xξ
p +X↑p . We define ωλ ∈ Ω1(P, g) by setting

ωλ(Y ) = ωλ(Xξ
p +X↑p ) = ξ . (2.22)

Condition (i) of Definition 2.10 is satisfied. Furthermore, ωλ is G-equivariant (since G is Abelian this means
G-invariant), for all Y ∈ TpP ,(

r∗g(ωλ)
)
(Y ) = ωλ

(
rg ∗(Y )

)
= ωλ(Xξ

p g +X↑p g) = ξ = ωλ(Y ) . (2.23)

This shows that ωλ ∈ Con(P ). The maps defined above provide a bijection between Con(P ) and
Γ∞(M, C(P )).

We now show that they are also affine space isomorphisms. Let ω ∈ Con(P ), η ∈ Ω1(M, g) and
consider ω′ := Φ(ω, η) = ω + η ∈ Con(P ). The corresponding element λω′ ∈ Γ∞(M, C(P )) is defined
by, for all X ∈ TxM , λω′(X) = [X↑ω′p ], with p ∈ π−1[{x}] arbitrary. Using that X↑ω′p = X↑ωp +Xξ

p for
some ξ ∈ g, we find

0 = ω′
(
X
↑ω′
p

)
= ω(X↑ω′p ) + η(X↑ω′p ) = ω(X↑ωp +Xξ

p) + η(X) = ξ + η(X) , (2.24)

hence ξ = −η(X). We obtain

λΦ(ω,η)(X) = [X↑ω′p ] = [X↑ωp +Xξ
p ] = λω(X) + [Xξ

p ]

= λω(X) + ι(x, ξ) = λω(X)− ι(x, η(X))

=
(
Φ̃(λω,−η)

)
(X) , (2.25)

which shows that the isomorphism λ• : Con(P )→ Γ∞(M, C(P )) , ω 7→ λω is an affine space isomorphism
with linear part Ω1(M, g)→ Ω1(M, g) , η 7→ −η.

Corollary 2.24. The map (denoted with a slight abuse of notation by the same symbol as the map in Lemma
2.17)

F : Γ∞(M, C(P ))→ Ω2(M, g) , λ 7→ F(λ) := F(ωλ) (2.26)

is an affine differential operator in the sense of [BDS12, Section 3] with linear part FV : Ω1(M, g) →
Ω2(M, g) , η 7→ −dη.

Proof. Combining Proposition 2.23 and Lemma 2.17 we obtain, for all λ ∈ Γ∞(M, C(P )) and η ∈
Ω1(M, g),

F
(
Φ̃(λ, η)

)
= F(ωeΦ(λ,η)

) = F(Φ(ωλ,−η)) = F(ωλ)− dη = F(λ)− dη . (2.27)
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2.6 Morphisms and gauge transformations of connections

In this subsection we study in detail how morphisms in PrBuGlobHyp act on the bundle of connections.
This will eventually lead to a functor from PrBuGlobHyp to a category AfBuGlobHyp of affine bundles.
Finally, we focus on a special class of morphisms, namely that of gauge transformations.

We have seen in (2.17) that all vector bundles in the Atiyah sequence are obtained by covariant
functors from PrBuGlobHyp to VeBuGlobHyp. Let us also consider the homomorphism bundles entering
the bundle of connections, i.e.

(
Hom(TM, TP/G),M, πHom(TM,TP/G),HomR(Rdim(M),Rdim(P ))

)
and(

Hom(TM,M × g),M, πHom(TM,M×g),HomR(Rdim(M),Rdim(g))
)
. Given two objects Ξi, i = 1, 2, and

a morphism F : Ξ1 → Ξ2 in PrBuGlobHyp we can induce from (2.17) the vector bundle maps (covering
f : M1 →M2)

FHom(TM,TP/G) : Hom(TM1, TP1/G1)→ Hom(TM2, TP2/G2) ,

λ 7→ FTP/G ◦ λ ◦ F−1
TM , (2.28a)

FHom(TM,M×g) : Hom(TM1,M1 × g1)→ Hom(TM2,M2 × g2) ,

η 7→ FM×g ◦ η ◦ F−1
TM . (2.28b)

Explicitly, (2.28a) maps λ ∈ Hom(TM1, TP1/G1)|x to FHom(TM,TP/G)(λ) = FTP/G|x ◦ λ ◦ FTM |−1
x ∈

Hom(TM2, TP2/G2)|f(x), which is well-defined since FTM |x is a vector space isomorphism. Restricting
the vector bundle maps (2.28a) and (2.28b) to fibres provides vector space isomorphisms, since by the
hypotheses of Definition 2.4 also FTP/G|x and FM×g|x are vector space isomorphisms, for all x ∈M1. As
a consequence, these homomorphism bundles are obtained by covariant functors from PrBuGlobHyp to
VeBuGlobHyp.

Also the bundle of connections of Proposition 2.22 is obtained functorially.

Definition 2.25. The category AfBuGlobHyp consists of the following objects and morphisms:

• An object in AfBuGlobHyp is a triple
(
(M, o, g, t), (A,M, πA, A), (V,M, πV, V )

)
, where (M, o, g, t)

is a globally hyperbolic spacetime and (A,M, πA, A) is an affine bundle over M modeled on the
vector bundle (V,M, πV, V ).

• A morphism between two objects
(
(Mi, oi, gi, ti), (Ai,Mi, πiA, Ai), (Vi,Mi, πiV, Vi)

)
, i = 1, 2, in

AfBuGlobHyp is a fibre bundle map
(
f : A1 → A2, f : M1 →M2

)
, such that f |x : A1|x → A2|f(x)

is an affine space isomorphism, for all x ∈ M1, and f : M1 → M2 is an orientation and time-
orientation preserving isometric embedding with f [M1] ⊆M2 causally compatible and open.

Remark 2.26. Every morphism (f, f) in AfBuGlobHyp determines a unique vector bundle map between
the underlying vector bundles (that is a morphism in VeBuGlobHyp) by taking fibre-wise the linear part. We
call this vector bundle map with a slight abuse of notation the linear part of (f, f) and denote it by (fV , f).

Proposition 2.27. There is a covariant functor C : PrBuGlobHyp→ AfBuGlobHyp. It associates to any
object Ξ in PrBuGlobHyp the bundle of connections (cf. Proposition 2.22). To any morphism F : Ξ1 → Ξ2

in PrBuGlobHyp the functor associates the restriction of the vector bundle map (2.28a) to the bundles of
connections. The linear part is (2.28b)

Proof. The nontrivial step is to show that (2.28a) restricts to a morphism between the bundles of connections.
We define the induced fibre bundle map (covering f )

FC(P ) : C(P1)→ Hom(TM2, TP2/G2) ,

λ 7→ FTP/G ◦ λ ◦ F−1
TM (2.29)

and obtain, for all λ ∈ C(P1),

π2∗ ◦ FC(P )(λ) = π2∗ ◦ FTP/G ◦ λ ◦ F−1
TM = FTM ◦ π1∗ ◦ λ ◦ F−1

TM

= FTM ◦ F−1
TM = idTM2 , (2.30)
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where we used in the second equality (2.18) and in the third equality that λ is a splitting of the Atiyah
sequence. This implies that FC(P ) : C(P1)→ C(P2) is a fibre bundle map covering f .

It remains to show that the restrictions FC(P )|x : C(P1)|x → C(P2)|f(x) are affine space isomorphisms,
for all x ∈M1. We obtain, for all λ ∈ C(P1)|x and η ∈ Hom(TM1,M1 × g1)|x,

FC(P )

(
λ+ ι1 ◦ η

)
= FTP/G ◦ (λ+ ι1 ◦ η) ◦ F−1

TM = FC(P )(λ) + ι2 ◦ FM×g ◦ η ◦ F−1
TM

= FC(P )(λ) + ι2 ◦ FHom(TM,M×g)(η) , (2.31)

where in the second equality we have used again (2.18) and in the last one (2.28b). Fibre-wise invertibility
follows from the fibre-wise invertibility of (2.28a) and (2.28b).

Remark 2.28. A morphism F : Ξ1 → Ξ2 in PrBuGlobHyp acts via pull-back on sections of the bundle of
connections, F ∗ : Γ∞(M2, C(P2))→ Γ∞(M1, C(P1)) , λ 7→ F ∗(λ) = F−1

C(P ) ◦ λ ◦ f . A short calculation
shows compatibility with the affine space structure (2.20), for all λ ∈ Γ∞(M2, C(P2)) and η ∈ Ω1(M2, g2),

F ∗
(
Φ̃2(λ, η)

)
= Φ̃1

(
F ∗(λ), f∗(φ−1

∗ (η))
)
, (2.32)

where f∗ is the pull-back of differential forms along f : M1 →M2 and φ−1
∗ (η) ∈ Ωk(M2, g1) is defined

by, for all X1, . . . , Xk ∈ TxM2, x ∈M2,
(
φ−1
∗ (η)

)
(X1, . . . , Xk) := φ−1

∗
(
η(X1, . . . , Xk)

)
.

We now study in detail a special, however very important, class of morphisms.

Definition 2.29. Let M be a manifold, G a Lie group and (P, r) a principal G-bundle over M . A gauge
transformation is a G-equivariant diffeomorphism f : P → P , such that f = idM . We denote by Gau(P )
the group of all gauge transformations of (P, r), where the group operation is given by the usual composition
of morphisms.

Notice that whenever Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
is an object in PrBuGlobHyp, a gauge transfor-

mation f ∈ Gau(P ) is an automorphism F = (f, idG) in the same category.

Lemma 2.30. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M .
Then there is a group isomorphism between Gau(P ) and C∞(M,G), where the latter group is equipped
with the point-wise group operation.

Proof. Let f ∈ Gau(P ) be arbitrary. Then there exists a unique f̃ ∈ C∞(P,G), such that f(p) = p f̃(p),
for all p ∈ P . Since f is G-equivariant and G is Abelian we obtain that f̃ is G-invariant, i.e. f̃(p g) = f̃(p),
for all g ∈ G and p ∈ P . Hence, it canonically induces a unique f̂ ∈ C∞(M,G) on the quotientM = P/G.
Vice versa, for any f̂ ∈ C∞(M,G) we define an element f ∈ Gau(P ) by f(p) = p f̂(π(p)), for all p ∈ P .
This bijection is a group isomorphism, since for all f1, f2 ∈ Gau(P ) and p ∈ P ,(

f1 ◦ f2

)
(p) = f1

(
p f̂2(π(p))

)
= f1(p) f̂2(π(p))

= p f̂1(π(p)) f̂2(π(p)) = p (f̂1 f̂2)(π(p)) . (2.33)

By Remark 2.28 we obtain that a gauge transformation f ∈ Gau(P ) acts on λ ∈ Γ∞(M, C(P )) via

f∗(λ) = f−1
TP/G ◦ λ , (2.34)

where we have used that fTM = idTM and f = idM for f ∈ Gau(P ). Notice that, for all λ ∈
Γ∞(M, C(P )) and η ∈ Ω1(M, g), f∗

(
Φ̃(λ, η)

)
= Φ̃

(
f∗(λ), η

)
, i.e. gauge transformations have trivial

linear parts.

The next proposition provides a characterization of the action of gauge transformations on Γ∞(M, C(P ))
in terms of the Abelian group action Φ̃ of elements in Ω1(M, g).
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Proposition 2.31. Let M be a manifold, G an Abelian Lie group and (P, r) a principal G-bundle over M .
For any f ∈ Gau(P ) and λ ∈ Γ∞(M, C(P )) the following identity holds true

f∗(λ) = Φ̃
(
λ, f̂−1 ∗(µG)

)
, (2.35)

where µG ∈ Ω1(G, g) is the Maurer-Cartan form on G and f̂ ∈ C∞(M,G) is obtained from f via Lemma
2.30.

Proof. Let X ∈ TxM , x ∈ M , be arbitrary. Let us fix any p ∈ π−1[{x}] and pick from the equivalence
class λ(X) ∈ TP/G|x the unique element Y ∈ TpP . We have by definition λ(X) = [Y ] and furthermore
it holds true that π∗(Y ) = X , since λ is a splitting of the Atiyah sequence. From (2.17) and (2.34) we
obtain

(
f∗(λ)

)
(X) =

[
f−1
∗ (Y )

]
. In order to compute f−1

∗ (Y ) ∈ Tf−1(p)P let us define f̂ ∈ C∞(M,G)
according to Lemma 2.30 and introduce the map κp : G → P , g 7→ p g. We obtain by using f−1(p) =
p f̂−1(π(p)) = p f̂−1(x),

f−1
∗ (Y ) = r bf−1(x)∗

(Y ) +
(
κp ∗ ◦ f̂−1

∗ ◦ π∗
)
(Y )

= r bf−1(x)∗
(Y ) + κp ∗

(
f̂−1
∗ (X)

)
= r bf−1(x)∗

(Y ) +X
bf−1 ∗(µG)(X)
f−1(p)

, (2.36)

where the second term after the last equality denotes the fundamental vector at f−1(p) corresponding to
f̂−1 ∗(µG)(X) ∈ g. It follows that(

f∗(λ)
)
(X) = [r bf−1(x)∗

(Y ) +X
bf−1 ∗(µG)(X)
f−1(p)

]

= λ(X) + ι
(
x, f̂−1 ∗(µG)(X)

)
=
(
Φ̃(λ, f̂−1 ∗(µG))

)
(X) , (2.37)

which concludes the proof since X ∈ TxM was arbitrary.

3 The phase space for an object

Let Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be an object in PrBuGlobHyp,

(
C(P ),M, πC(P ), A

)
the associated

bundle of connections and Γ∞(M, C(P )) its sections. We denote the vector dual bundle (see [BDS12,
Definition 2.15]) by

(
C(P )†,M, π†C(P ), A

†) and its compactly supported sections by Γ∞0 (M, C(P )†). The
aim of this section is to construct a gauge invariant phase space for dynamical principal connections on Ξ.

Maxwell’s equations are described in our setting by the affine differential operator

MW := δ ◦ F : Γ∞(M, C(P ))→ Ω1(M, g) , λ 7→ MW(λ) = δF(λ) , (3.1a)

where δ is the codifferential and F is the curvature affine differential operator, see Corollary 2.24. The
linear part of MW is given by (cf. Corollary 2.24)

MWV : Ω1(M, g)→ Ω1(M, g) , η 7→ MWV (η) = δFV (η) = −δdη . (3.1b)

Due to [BDS12, Theorem 3.5], the affine differential operator MW is formally adjoinable to a differential
operator MW∗ : Ω1(M, g∗)→ Γ∞(M, C(P )†), with g∗ denoting the dual of the Lie algebra g. Explicitly,
MW∗ is determined (up to the ambiguities to be discussed below) by the condition, for all λ ∈ Γ∞(M, C(P ))
and η ∈ Ω1

0(M, g∗),

〈η,MW(λ)〉 :=
∫
M
η ∧ ∗

(
MW(λ)

)
=
∫
M

vol
(
MW∗(η)

)
(λ) , (3.2)

where ∗ denotes the Hodge operator and vol the volume form. We will always suppress the duality pairing
between g∗ and g in order to simplify the notation.
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As it is proven in [BDS12, Theorem 3.5], the formal adjoint differential operator MW∗ : Ω1
0(M, g∗)→

Γ∞0 (M, C(P )†) is not unique. Uniqueness is restored if we quotient out the trivial elements1

Triv :=
{
a1 ∈ Γ∞0 (M, C(P )†) : a ∈ C∞0 (M) satisfies

∫
M

vol a = 0
}
, (3.3)

i.e. if we consider the operator MW∗ : Ω1
0(M, g∗) → Γ∞0 (M, C(P )†)/Triv. By 1 ∈ Γ∞(M, C(P )†) we

denote the canonical section which associates to every x ∈ M the normalized constant affine map in
the fibre C(P )†|x. The quotient by Triv does not influence the linear part of MW∗(η): Indeed, for all
η ∈ Ω1

0(M, g∗), λ ∈ Γ∞(M, C(P )) and η′ ∈ Ω1(M, g),∫
M

vol
(
MW∗(η)

)(
Φ̃(λ, η′)

)
=
〈
η,MW

(
Φ̃(λ, η′)

)〉
=
〈
η,MW(λ)− δdη′

〉
=
∫
M

vol
(
MW∗(η)

)
(λ) +

〈
−δdη, η′

〉
(3.4)

implies that the linear part is MW∗(η)V = −δdη, for all η ∈ Ω1
0(M, g∗).

The next step is to restrict to those elements in Γ∞0 (M, C(P )†)/Triv that describe gauge invariant
observables. It is enlightening to introduce the vector space of classical affine observables {Oϕ : ϕ ∈
Γ∞0 (M, C(P )†)/Triv}, where Oϕ is the functional on the configuration space Γ∞(M, C(P )) defined by

Oϕ : Γ∞(M, C(P ))→ R , λ 7→ Oϕ(λ) =
∫
M

vol ϕ
(
λ
)
. (3.5)

Let f̂−1 ∈ C∞(M,G) ' Gau(P ) be an element in the gauge group (cf. Lemma 2.30). As we have
shown in Proposition 2.31, the gauge transformations on Γ∞(M, C(P )) are given by λ 7→ Φ̃

(
λ, f̂∗(µG)

)
.

Demanding invariance of Oϕ under gauge transformations, i.e. Oϕ
(
Φ̃
(
λ, f̂∗(µG)

))
= Oϕ(λ) for all λ ∈

Γ∞(M, C(P )) and f̂ ∈ C∞(M,G), leads to the following condition for the linear part ϕV ∈ Ω1
0(M, g∗) of

ϕ ∈ Γ∞0 (M, C(P )†)/Triv, for all f̂ ∈ C∞(M,G),〈
ϕV , f̂

∗(µG)
〉

= 0 . (3.6)

This motivates us to define the following vector space

E inv :=
{
ϕ ∈ Γ∞0 (M, C(P )†)/Triv :

〈
ϕV , f̂

∗(µG)
〉

= 0 , ∀f̂ ∈ C∞(M,G)
}
, (3.7)

which serves as a starting point to construct the phase space.

Lemma 3.1. a) For all ϕ ∈ E inv the linear part ϕV ∈ Ω1
0(M, g∗) is coclosed, i.e. δϕV = 0.

b) All ϕ ∈ Γ∞0 (M, C(P )†)/Triv satisfying ϕV = δη for some η ∈ Ω2
0(M, g∗) are elements in E inv.

Proof. Proof of a): As G is by hypothesis a connected Abelian Lie group it is isomorphic to Tk × Rl,
see e.g. [Ada69, Theorem 2.19]. Denoting by xi, i = 1, . . . , l, Cartesian coordinates on Rl and by φj ,
j = 1, . . . , k, angles on Tk, the Maurer-Cartan form reads µG =

∑k
j=1 dφj ⊗R t

j +
∑l

i=1 dxi ⊗R t
k+i,

where dφj denotes the dual 1-form of the vector field ∂φj (we follow the usual abuse of notation and denote
these forms by dφj , even though they are not exact!).

Let χ ∈ C∞(M, g) and consider the element of the gauge group specified by f̂χ := exp ◦χ ∈
C∞(M,G), where exp : g→ G denotes the exponential map. The pull-back of the Maurer-Cartan form

1By trivial we mean that the corresponding classical affine observables (3.5), i.e. functionals on the configuration space
Γ∞(M, C(P )), vanish.
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then reads f̂∗χ(µG) = dχ. Let ϕ ∈ E inv be arbitrary. Due to (3.7) the linear part ϕV of ϕ satisfies, for all
χ ∈ C∞(M, g),

0 =
〈
ϕV , f̂

∗
χ(µG)

〉
= 〈ϕV , dχ〉 = 〈δϕV , χ〉 , (3.8)

which implies δϕV = 0.

Proof of b): For all f̂ ∈ C∞(M,G),〈
ϕV , f̂

∗(µG)
〉

=
〈
δη, f̂∗(µG)

〉
=
〈
η,df̂∗(µG)

〉
=
〈
η, f̂∗(dµG)

〉
= 0 , (3.9)

since the Maurer-Cartan form of Abelian Lie groups is closed.

Corollary 3.2. Let us define the vector spaces

Emin :=
{
ϕ ∈ Γ∞0 (M, C(P )†)/Triv : ϕV ∈ δΩ2

0(M, g∗)
}
, (3.10a)

Emax :=
{
ϕ ∈ Γ∞0 (M, C(P )†)/Triv : ϕV ∈ Ω1

0,δ(M, g∗)
}
. (3.10b)

Then the following inclusions of vector spaces hold true

Emin ⊆ E inv ⊆ Emax . (3.11)

Remark 3.3. This corollary provides us with a lower and upper bound on the vector space E inv. Notice
that in case M has a trivial first de Rham cohomology group H1

dR(M, g) = {0} (which implies that the
dual cohomology group is trivial H1

0 dR∗(M, g∗) := Ω1
0,δ(M, g∗)/δΩ2

0(M, g∗) = {0}), the lower and upper
bounds coincide, i.e. Emin = E inv = Emax. In general, the explicit characterization of E inv is rather
complicated and will be postponed to Section 4.

The equation of motion MW(λ) = 0 is implemented at a dual level on E inv by considering the
quotient vector space E inv/MW∗

[
Ω1

0(M, g∗)
]
. To construct a presymplectic structure on this space let

us consider the Hodge-d’Alembert operators �(k) := δ ◦ d + d ◦ δ : Ωk(M, g∗) → Ωk(M, g∗), that are
normally hyperbolic operators. The corresponding unique retarded/advanced Green’s operators are denoted
by G±(k) : Ωk

0(M, g∗) → Ωk(M, g∗) and the causal propagators are defined by G(k) := G+
(k) − G

−
(k) :

Ωk
0(M, g∗)→ Ωk(M, g∗). We notice the relations

�(k) ◦ d = d ◦�(k−1) , �(k) ◦ δ = δ ◦�(k+1) , (3.12a)

which imply

G±(k) ◦ d = d ◦G±(k−1) , G±(k) ◦ δ = δ ◦G±(k+1) . (3.12b)

The G-invariant pseudo-Riemannian metric h on the Lie group G determines an ad-invariant inner product
(possibly indefinite) on the Lie algebra g and hence a vector space isomorphism (denoted with a slight
abuse of notation by the same symbol) h : g→ g∗. We denote by h−1 : g∗ → g the inverse vector space
isomorphism. Using also the pairing 〈 , 〉 we define for all η, η′ ∈ Ωk(M, g∗) with compact overlapping
support the non-degenerate (indefinite) inner product〈

η, η′
〉
h

:=
〈
η, h−1(η′)

〉
. (3.13)

We notice that �(k) is formally self-adjoint with respect to 〈 , 〉h and hence G(k) is formally skew-adjoint
with respect to 〈 , 〉h for all elements in Ωk

0(M, g∗) (that is the domain of G(k)).

Proposition 3.4. Let Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be an object in PrBuGlobHyp. Then the vector

space E := E inv/MW∗
[
Ω1

0(M, g∗)
]

can be equipped with the presymplectic structure

τ : E × E → R , ([ϕ], [ψ]) 7→ τ([ϕ], [ψ]) =
〈
ϕV , G(1)(ψV )

〉
h
. (3.14)

In other words,
(
E , τ

)
is a presymplectic vector space.
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Proof. We have to proof that τ is well-defined, i.e. that for every ϕ = MW∗(η), η ∈ Ω1
0(M, g∗), we have〈

ϕV , G(1)(ψV )
〉
h

= 0 and
〈
ψV , G(1)(ϕV )

〉
h

= 0 for the linear parts ψV of all elements ψ ∈ E inv. Lemma
3.1 implies that δψV = 0. The first property holds true:〈

ϕV , G(1)(ψV )
〉
h

=
〈
MW∗(η)V , G(1)(ψV )

〉
h

= −
〈
δdη,G(1)(ψV )

〉
h

= −
〈
η, δdG(1)(ψV )

〉
h

= −
〈
η, (�(1) − dδ)

(
G(1)(ψV )

)〉
h

=
〈
η,dG(0)(δψV )

〉
h

= 0 . (3.15)

The second property follows analogously, since G(1) is formally skew-adjoint with respect to 〈 , 〉h. From
the latter property it also follows that τ is antisymmetric.

Remark 3.5. The presymplectic structure (3.14) can be derived from a Lagrangian form by generalizing the
method of Peierls [Pei52] to gauge theories. This generalization has already been studied in [Mar93] and it
was put on mathematically solid grounds recently in [SDH12] for the vector potential of U(1)-connections.
Since in our approach the configuration space Γ∞(M, C(P )) is different, we have to adapt the relevant
arguments to our setting: Let us consider the Lagrangian form L[λ] := −1

2h
(
F(λ)

)
∧ ∗
(
F(λ)

)
and

its perturbation by an element ϕ ∈ E inv, i.e. Lϕ[λ] := L[λ] + volϕ(λ). The Euler-Lagrange equation
corresponding to Lϕ is given by MW(λ) + h−1(ϕV ) = 0, where ϕV ∈ Ω1

0(M, g∗) is the linear part of ϕ.
Let us take any λ ∈ Γ∞(M, C(P )) satisfying MW(λ) = 0. The goal is to construct the retarded/advanced
effect of ϕ on this solution. Let Σ± ⊂ M be two Cauchy surfaces (with Σ+ being in the future of Σ−)
such that supp(ϕV ) ⊆ J−M

(
Σ+
)
∩ J+

M

(
Σ−
)

(this means that ϕV has support in the spacetime region
between Σ+ and Σ−). We are looking for a λ±ϕ ∈ Γ∞(M, C(P )) satisfying the equation of motion
MW(λ±ϕ ) + h−1(ϕV ) = 0 and λ±ϕ |J∓M (Σ∓) = Φ̃

(
λ, f̂∗±(µG)

)
|J∓M (Σ∓) for some f̂± ∈ C∞(M,G). The

latter condition states that λ±ϕ agrees up to a gauge transformation with λ in the past/future of Σ∓. Since
Γ∞(M, C(P )) is an affine space over Ω1(M, g) we find a unique η±ϕ ∈ Ω1(M, g) such that λ±ϕ = Φ̃(λ, η±ϕ ).
The equations of motion for λ and λ±ϕ then imply −δdη±ϕ + h−1(ϕV ) = 0 and the asymptotic condition
reads

(
η±ϕ − f̂∗±(µG)

)∣∣
J∓M (Σ∓)

= 0 for some f̂± ∈ C∞(M,G). Since any η±ϕ ∈ Ω1(M, g) is gauge

equivalent to a coclosed one-form, we can assume without loss of generality that η±ϕ satisfies δη±ϕ = 0, and
hence the equation of motion reads �(1)η

±
ϕ = h−1(ϕV ). For the support condition η±ϕ |J∓M (Σ∓) = 0 (that is

contained in the asymptotic condition above) the unique solution of this equation is η±ϕ = G±(1)

(
h−1(ϕV )

)
=

h−1
(
G±(1)(ϕV )

)
. All solutions of the equation −δdη±ϕ + h−1(ϕV ) = 0 subject to the asymptotic condition(

η±ϕ − f̂∗±(µG)
)∣∣
J∓M (Σ∓)

= 0, for some f̂± ∈ C∞(M,G), are obtained by gauge transformations of

η±ϕ = h−1
(
G±(1)(ϕV )

)
. Let now ψ ∈ E inv and consider the gauge invariant functional Oψ as in (3.5).

The retarded/advanced effect of ϕ ∈ E inv on Oψ is defined by E±ϕ
(
Oψ
)
(λ) := Oψ(λ±ϕ ) − Oψ(λ) =〈

ψV , η
±
ϕ

〉
=
〈
ψV , h

−1
(
G±(1)(ϕV )

)〉
=
〈
ψV , G

±
(1)(ϕV )

〉
h
. Notice that this expression is well-defined

since Oψ is gauge invariant. The presymplectic structure (3.14) is given by the difference of the retarded
and advanced effect, i.e. τ([ψ], [ϕ]) = E+

ϕ

(
Oψ
)
(λ)−E−ϕ

(
Oψ
)
(λ), which agrees with the idea of Peierls

[Pei52].

We come to the characterization of the radical N ⊆ E of the presymplectic structure τ . An element
[ψ] ∈ E is in N if and only if, for all [ϕ] ∈ E , τ

(
[ϕ], [ψ]

)
= 0. In this section we will only provide a lower

and upper estimate for the vector space N . The explicit characterization will be content of Section 4.

Lemma 3.6. a) Let [ψ] ∈ N be arbitrary. Then any representative ψ ∈ E inv is such that ψV = δα for
some α ∈ Ω2

0,d(M, g∗).

b) Let ψ ∈ E inv be such that ψV = δdγ with γ ∈ Ω1
tc(M, g∗) and dγ ∈ Ω2

0(M, g∗). Then [ψ] ∈ N .
The subscript tc denotes forms of timelike compact support.

Proof. Proof of a): By hypothesis [ψ] satisfies, for all [ϕ] ∈ E ,

τ
(
[ϕ], [ψ]

)
=
〈
ϕV , G(1)(ψV )

〉
h

= 0 . (3.16)
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By Corollary 3.2 we have that Emin ⊆ E inv and thus it is necessary for [ψ] to fulfill, for all η ∈ Ω2
0(M, g∗),

0 =
〈
δη,G(1)(ψV )

〉
h

=
〈
η,G(2)(dψV )

〉
h
. (3.17)

This implies that G(2)(dψV ) = 0 and hence due to the fact that G(2) is the causal propagator of a normally
hyperbolic operator we obtain dψV = �(2)(α) for some α ∈ Ω2

0(M, g∗). Applying d to this equation
shows that dα = 0, i.e. α ∈ Ω2

0,d(M, g∗). Applying δ and using that δψV = 0 (cf. Lemma 3.1) we find
�(1)(ψV ) = �(1)(δα). This implies ψV = δα and completes the proof.

Proof of b): Let now ψ ∈ E inv be as specified above. Then we obtain, for all [ϕ] ∈ E ,

τ
(
[ϕ], [ψ]

)
=
〈
ϕV , G(1)(δdγ)

〉
h

=
〈
ϕV , δdG(1)(γ)

〉
h

=
〈
ϕV , (�(1) − dδ)

(
G(1)(γ)

)〉
h

= −
〈
ϕV ,dδG(1)(γ)

〉
h

= −
〈
δϕV , δG(1)(γ)

〉
h

= 0 , (3.18)

where in the second equality we have used that the domain of G(1) can be extended to Ω1
tc(M, g∗) [SDH12]

and in the last equality that δϕV = 0.

Corollary 3.7. Let us define the vector spaces

Nmin :=
{
ψ ∈ E inv : ψV ∈ δ

(
Ω2

0(M, g∗) ∩ dΩ1
tc(M, g∗)

)}/
MW∗

[
Ω1

0(M, g∗)
]
, (3.19a)

Nmax :=
{
ψ ∈ E inv : ψV ∈ δΩ2

0,d(M, g∗)
}/

MW∗
[
Ω1

0(M, g∗)
]
. (3.19b)

Then the following inclusions of vector spaces hold true

Nmin ⊆ N ⊆ Nmax ⊆ Emin ⊆ E ⊆ Emax . (3.20)

Remark 3.8. The radical N of the theory under consideration is in general different from that of affine
matter field theories, see [BDS12, Proposition 4.4]. Even though the constant affine observables [a1], with
a ∈ C∞0 (M), are contained in N , in general they do not exhaust all elements. The lower bound on N
given in Corollary 3.7 coincides with the radical obtained in [SDH12] (up to the constant affine observables
which are not present in this paper since it does not exploit the complete geometric structure of the bundle
of connections).

Remark 3.9. IfM has compact Cauchy surfaces the vector spaceNmin is trivial. That this is not generically
the case is shown by the following explicit example: Let us consider the case in which G = R (implying
g∗ = R) and M is diffeomorphic to R2 × Sm−2, where m > 2 and Sm−2 denotes the m− 2-sphere (we
suppress this diffeomorphism in the following). Any Cauchy surface Σ ⊆M is diffeomorphic to R× Sm−2.
Since H1

0 dR(R) = R is nontrivial, we can find an α ∈ Ω1
0,d(R) that is not exact. Let us introduce Cartesian

coordinates (t, x) on the R2 factor of M . We denote by αt ∈ Ω1
0,d(M) the pull-back of α along the

projection to the time direction t and by αx ∈ Ω1
0,d(M) the pull-back of α along the projection to the space

direction x. We define η := αt ∧ αx. The support property of α and the compatibility between d and the
pull-backs entail that η ∈ Ω2

0,d(M). Furthermore, since H1
dR(M) = {0}, there exists a β ∈ C∞(M) such

that αx = −dβ, which implies η = d(β αt), where β αt ∈ Ω1
tc(M). We now show that η /∈ dΩ1

0(M): Let
νSm−2 be the normalized volume form on Sm−2 and let pr : M → Sm−2 be the projection from M to Sm−2.
Notice that the integral

∫
M η ∧ pr∗(νSm−2) =

( ∫
R α
)2 6= 0, since α is not exact. If there would exist a

γ ∈ Ω1
0(M), such that η = dγ, then by Stokes’ theorem the integral vanishes, which is a contradiction.

Hence, η = d(β αt), with β αt ∈ Ω1
tc(M), defines a nontrivial element in H2

0 dR(M). Furthermore, δη
is a representative of a nontrivial class in Nmin: Indeed, suppose that there exists γ ∈ Ω1

0(M) such that
δη = δdγ. Using that η is closed and of compact support, this equation entails �(2)(η) = �(2)(dγ) which
yields the contradiction η = dγ, since �(2) is a normally hyperbolic operator.
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4 Explicit characterization of E inv and N

So far we have obtained for the vector spaces E inv and N only upper and lower bounds, see Corollary 3.2
and Corollary 3.7. The goal of this section is to provide an explicit characterization of E inv and N . For this
we have to understand more explicitly how the gauge group Gau(P ) ' C∞(M,G) acts on Γ∞(M, C(P )).
Due to Proposition 2.31 this amounts to characterizing the Abelian subgroup{

f̂∗(µG) : f̂ ∈ C∞(M,G)
}
⊆ Ω1(M, g) . (4.1)

In the proof of Lemma 3.1 we have shown that, for every χ ∈ C∞(M, g), the map f̂χ := exp ◦χ ∈
C∞(M,G) leads to f̂∗χ(µG) = dχ. Furthermore, since the exterior differential commutes with the pull-back
f̂∗ and µG is closed, we have that f̂∗(µG) ∈ Ω1

d(M, g). This implies the inclusions of Abelian groups

dC∞(M, g) ⊆
{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
⊆ Ω1

d(M, g) (4.2)

and taking the quotient by dC∞(M, g) we are led to consider the Abelian subgroup

AG :=
{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
/dC∞(M, g) ⊆ H1

dR(M, g) . (4.3)

Lemma 4.1. Let us consider the following equivalence relation on the gauge group C∞(M,G)

ĝ ∼ ĥ :⇔ ∃χ ∈ C∞(M, g) such that ĝ = ĥ f̂χ , (4.4)

where f̂χ = exp ◦χ ∈ C∞(M,G). Then C∞(M,G)/∼ is an Abelian group and the following map is an
isomorphism of Abelian groups

C∞(M,G)/∼ → AG , [f̂ ] 7→ [f̂∗(µG)] . (4.5)

Proof. C∞(M,G)/∼ is an Abelian group with group operation given by [f̂ ] [ĝ] := [f̂ ĝ]. The map (4.5) is
obviously a map of Abelian groups and it is well-defined, since for f̂ f̂χ we have (f̂ f̂χ)∗(µG) = f̂∗(µG) +
dχ. Surjectivity holds by definition of AG and injectivity is shown as follows: Let [f̂ ] ∈ C∞(M,G)/∼ be
such that [f̂∗(µG)] = 0. This implies that for any representative f̂ the pull-back is exact, f̂∗(µG) = dχ for
some χ ∈ C∞(M, g). Considering the representative f̂ f̂−χ of the same class, we can set without loss of
generality χ = 0, i.e. f̂∗(µG) = 0. This implies, for all X ∈ TM , 0 =

(
f̂∗(µG)

)
(X) = µG

(
f̂∗(X)

)
and

since the Maurer-Cartan form is non-degenerate we obtain, for all X ∈ TM , f̂∗(X) = 0. It follows that
f̂ : M → G is the constant map and hence [f̂ ] is the identity of the group C∞(M,G)/∼.

Remark 4.2. Due to this lemma the Abelian group AG characterizes exactly the gauge transformations
which are not of exponential form exp ◦χ, for some χ ∈ C∞(M, g).

Since any connected Abelian Lie group is isomorphic to Tk × Rl, the map f̂ ∈ C∞(M,G) is given by
a k + l-tuple of maps

(
f̂1, . . . , f̂k+l

)
, where f̂i ∈ C∞(M,T), for i = 1, . . . , k, and f̂i ∈ C∞(M,R), for

i = k+1, . . . , k+l. The Abelian groupC∞(M,G)/∼ factorizes into the direct product
(
C∞(M,T)/∼

)k×(
C∞(M,R)/∼

)l, where ∼ denotes respectively the equivalence relation of Lemma 4.1 for G = T and
G = R. Furthermore, the Lie algebra g ofG is given by the direct sum of k copies of the Lie algebra iR of T
and l copies of the Lie algebra R of R, i.e. g = (iR)⊕k ⊕ R⊕l . This allow for a splitting of the cohomology
group into a direct sum H1

dR(M, g) = H1
dR(M, iR)⊕k ⊕H1

dR(M,R)⊕l . The Abelian group AG is thus
given by a direct sum of Abelian groups AG = A⊕kT ⊕ A

⊕l
R (remember that the direct product and direct

sum of groups over a finite index set yield the same group). In this way the problem of characterizing AG is
reduced to the problem of characterizing AT and AR.

Proposition 4.3. AR = {0}.

Proof. Since the Maurer-Cartan form µR = dx is exact (x is a Cartesian coordinate function on G = R),
for any f̂ ∈ C∞(M,G) the one-form f̂∗(µR) = df̂∗(x) is also exact. This implies AR = {0}.
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To characterize AT we require techniques from Čech cohomology which we are going to review now,
see [BT82, §10] for more details. Let A be a presheaf of Abelian groups on M and U := {Uα}α∈I
a finite good cover, i.e. I is finite and all non-empty intersections Uα1...αn := Uα1 ∩ · · · ∩ Uαn are
diffeomorphic to Rdim(M). The existence of a finite good cover is part of our assumptions on M . A
p-cochain {ηα0...αp}α0<···<αp ∈ Cp(U ,A) is a collection of elements ηα0...αp ∈ A(Uα0...αp), for all
α0 < α1 < · · · < αp. For not having to keep track of the index orderings we follow the usual antisymmetry
convention to define ηα0...αp for all α0, α1, . . . , αp. The Čech differential δ̌ : Cp(U ,A)→ Cp+1(U ,A) is
given by, for all {ηα0...αp} ∈ Cp(U ,A),

(δ̌η)α0...αp+1 =
p+1∑
i=0

(−1)i ηα0...α̂i...αp+1 , (4.6)

where on the right hand side the restriction of ηα0...α̂i...αp+1 to Uα0...αp+1 is suppressed. The cohomology of
the complex

C0(U ,A) δ̌ // C1(U ,A) δ̌ // C2(U ,A) δ̌ // · · · (4.7)

is denoted by Ȟ∗(U ,A) and called the Čech cohomology of the cover U with values in A.

For our purposes we shall require only the first Čech cohomology group Ȟ1(U ,A) for the constant
presheaves A = iR and A = 2πiZ. In these cases, on account of [BT82, Theorem 8.9 and Theorem 15.8],
Ȟ1(U ,A) does not depend on the choice of the good cover U . Furthermore, due to Z ↪→ R there exists a
canonical injection of Abelian groups

Ȟ1(U , 2πiZ)→ Ȟ1(U , iR) , [{ηαβ}] 7→ [{ηαβ}] , (4.8)

which we are going to suppress in the following. By [BT82, Theorem 8.9] there exists for any good
cover U an isomorphism H1

dR(M, iR) ' Ȟ1(U , iR). We also require an explicit expression for this
isomorphism: Let [η] ∈ H1

dR(M, iR) be arbitrary and take any representative η ∈ Ω1
d(M, iR). Restricting

η to the open subsets Uα of the good cover, η|Uα ∈ Ω1
d(Uα, iR), there exist χα ∈ C∞(Uα, iR), such

that η|Uα = dχα. Notice that χα is not unique, since we can add arbitrary constant functions cα ∈ iR
on Uα, i.e. η|Uα = d(χα + cα) = dχα. On double intersections Uαβ we have to satisfy the condition
dχα|Uαβ = dχβ|Uαβ , which implies that ηαβ := χα − χβ = const ∈ iR on Uαβ . It is easy to see
that (δ̌η)αβγ = 0 and hence [{ηαβ}] defines an element in Ȟ1(U , iR). This element does not depend
on the choice of χα, since for χ′α = χα + cα with cα = const ∈ iR, we find that η′αβ = χ′α − χ′β =
ηαβ + cα − cβ = ηαβ + (δ̌c)αβ . Furthermore, this element does not depend on the choice of representative
in the class [η] ∈ H1

dR(M, iR), since for η′ = η + dζ, with ζ ∈ C∞(M, iR), χ′α = χα + ζ|Uα and
hence on Uαβ , η′αβ = χ′α − χ′β = χα − χβ + ζ|Uαβ − ζ|Uαβ = ηαβ . For constructing the inverse
of this map let us take a partition of unity {ψα}α∈I subordinated to the good cover {Uα}α∈I . Let
[{ηαβ}] ∈ Ȟ1(U , iR) be arbitrary and take some representative {ηαβ}. Let us define χα :=

∑
β∈I ηαβψβ ∈

C∞(Uα, iR) and consider the local one-forms dχα ∈ Ω1
d(Uα, iR). On the double intersections Uαβ we

find χα − χβ =
∑

γ∈I(ηαγ − ηβγ)ψγ = ηαβ
∑

γ∈I ψγ = ηαβ , where in the second equality we have used
that (δ̌η)αβγ = ηβγ − ηαγ + ηαβ = 0. It follows that dχα|Uαβ = dχβ|Uαβ and hence the collection of local
forms dχα defines a global closed one-form η ∈ Ω1

d(M, iR) and an element [η] ∈ H1
dR(M, iR). The latter

element does not depend on the choice of representative in [{ηαβ}], since for {η′αβ} = {ηαβ + cα − cβ}
we obtain χ′α =

∑
β∈I η

′
αβψβ = χα + cα −

∑
β∈I cβγβ = χα + cα + ζ|Uα , where ζ ∈ C∞(M, iR). This

implies that dχ′α = dχα+ dζ|Uα and hence η′ = η+ dζ . The two maps presented above are one the inverse
of the other and thus they provide the desired isomorphism.

Proposition 4.4. AT ' Ȟ1(U , 2πiZ).

Proof. Consider an arbitrary element [f̂∗(µT)] ∈ AT ⊆ H1
dR(M, iR) and a representative f̂ ∈ C∞(M,T).

Let us restrict f̂ to the open subsets Uα of the good cover, f̂ |Uα ∈ C∞(Uα,T). Then f̂∗(µT)|Uα =
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f̂ |∗Uα(µT) = dχα are exact local one-forms, with χα ∈ C∞(Uα, iR). In the proof of Lemma 4.1 we have
shown that this implies f̂ |Uα = exp ◦(χα + cα), for some cα ∈ iR. Redefining χα by χα + cα we can
set without loss of generality cα = 0. Since f̂ is a global function we have to satisfy the consistency
conditions in the double intersections f̂ |Uαβ = exp ◦χα|Uαβ = exp ◦χβ|Uαβ . This implies that on Uαβ ,
ηαβ := χα − χβ = const ∈ 2πiZ. Hence, [f̂∗(µT)] ∈ AT defines an element [{ηαβ}] ∈ Ȟ1(U , 2πiZ) ⊆
Ȟ1(U , iR). This element is independent on the representative f̂ we choose.

Let us now take an arbitrary element [{ηαβ}] ∈ Ȟ1(U , 2πiZ) ⊆ Ȟ1(U , iR) and a representative {ηαβ}.
The Čech-de Rham isomorphism provides us with local functions χα :=

∑
β∈I ηαβψβ ∈ C∞(Uα, iR).

Let us define also the local functions f̂α := exp ◦χα ∈ C∞(Uα,T). On double intersections we have
f̂α|Uαβ = exp ◦χα|Uαβ = exp ◦(χβ + ηαβ)|Uαβ = exp ◦χβ|Uαβ = f̂β|Uαβ , since ηαβ ∈ 2πiZ. Thus, we
can construct a global function f̂ ∈ C∞(M,T) and define an element [f̂∗(µT)] ∈ AT ⊆ H1

dR(M, iR).
This element does not depend on the choice of representative {ηαβ}. The two maps are one the inverse of
the other and provide the desired isomorphism.

Corollary 4.5. AG ' Ȟ1(U , 2πiZ)⊕k .

For providing an explicit characterization of E inv we use that by assumption M is of finite type with U
denoting a finite good cover. Following the arguments of [Voi07, Chapter 7.1.1] we obtain an isomorphism

Ȟ1(U , 2πiZ)⊗ R ' Ȟ1(U , iR) . (4.9)

In the generic case when M is not of finite type, this isomorphism receives corrections from the Ext and
Tor functors, see the universal coefficient theorems [BT82, §15]. Since most (if not all) physically relevant
globally hyperbolic spacetimes are of finite type (in particular M = Rm ×K with K compact is of finite
type), we are restricting ourselves to this case and thereby avoid the characterization of the Ext and Tor

parts.

Theorem 4.6. Let Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be any object in PrBuGlobHyp (G ' Tk × Rl). Then

the gauge invariant subspace E inv (3.7) is given by

E inv =
{
ϕ ∈ Γ∞0 (M, C(P )†)/Triv : ϕV ∈ δΩ2

0(M, iR)⊕k ⊕ Ω1
0,δ(M,R)⊕l

}
. (4.10)

Proof. By definition, E inv is the vector subspace of Γ∞0 (M, C(P )†)/Triv, such that the linear parts
annihilate {f̂∗(µG) : f̂ ∈ C∞(M,G)}. Due to Corollary 3.2 we have that E inv ⊆ Emax = {ϕ ∈
Γ∞0 (M, C(P )†)/Triv : ϕV ∈ Ω1

0,δ(M, g∗)} and hence we can pair the linear parts of elements ϕ ∈ E inv

with cohomology classes [η] ∈ H1
dR(M, g), 〈ϕV , [η]〉 =

∫
M ϕV ∧ ∗(η). The gauge invariance condition

amounts to 〈ϕV , AG〉 = {0}, for all ϕ ∈ E inv, and by Corollary 4.5 this is equivalent to〈
ϕV , Ȟ

1(U , 2πiZ)⊕k
〉

= {0} . (4.11)

Since H1
dR(M, iR) ' Ȟ1(U , iR) ' Ȟ1(U , 2πiZ) ⊗ R and since the map 〈ϕV , 〉 : H1

dR(M, g) → R is
linear, (4.11) implies that, for all ϕ ∈ E inv,〈

ϕV , H
1
dR(M, iR)⊕k

〉
= {0} . (4.12)

As a consequence of Poincaré duality, ϕV ∈ δΩ2
0(M, iR)⊕k⊕Ω1

0,δ(M,R)⊕l which completes the proof.

Remark 4.7. Notice that if G ' Tk × Rl contains a nontrivial compact factor (i.e. k > 0), the vector
space of gauge invariant classical affine functionals {Oϕ : ϕ ∈ E inv} (cf. (3.5)) does not separate all gauge
equivalence classes of connections: Given two connections λ1, λ2 ∈ Γ∞(M, C(P )) with the same curvature,
then there exists η ∈ Ω1

d(M, g) such that λ2 = Φ̃(λ1, η). Let us assume that [η] ∈ H1
dR(M, iR)⊕k ⊆

H1
dR(M, g), but [η] 6∈ AG such that λ1 and λ2 are not gauge equivalent (this exists e.g. forM ' Rm−1×T).

Then by (4.12) we obtain, for all ϕ ∈ E inv, Oϕ(λ2) = Oϕ(λ1) + 〈ϕV , η〉 = Oϕ(λ1). The origin of this
pathology is the fact that AG is only an Abelian group and not a vector space (cf. Corollary 4.5). Performing
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the quotient of the configuration space Γ∞(M, C(P )) by the gauge transformations that are of exponential
form (that are all for k = 0) we obtain again an affine space. However, performing the quotient of the
resulting affine space by the Abelian group AG we obtain no affine space anymore (compare this with the
quotient R/Z ' T). The gauge invariant classical affine functionals {Oϕ : ϕ ∈ E inv} do not take into
account the nontrivial topology of the full gauge invariant configuration space. For this reason one should
enlarge the algebra of gauge invariant observables constructed in this paper to include additional elements
which can separate all gauge equivalence classes of connections. A natural candidate are Wilson loops, but,
being too singular objects localized on curves, they cannot be added easily to the present formalism used in
algebraic quantum field theory. We hope to come back to this issue in our future investigations.

To conclude this section we characterize the radical N of the presymplectic vector space
(
E , τ

)
of

Proposition 3.4.

Theorem 4.8. Let Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be any object in PrBuGlobHyp (G ' Tk × Rl). Then

the radical N of
(
E , τ

)
is given by

N =
{
ψ ∈ E inv : h−1(ψV ) ∈ δΩ2

0,d(M, iR)⊕k ⊕ δ
(
Ω2

0(M,R) ∩ dΩ1
tc(M,R)

)⊕l}/MW∗
[
Ω1

0(M, g∗)
]
.

(4.13)

Proof. Let [ψ] be an element of the vector space on the right hand side of (4.13). Any representative ψ is
such that h−1(ψV ) = δη + δdζ for some η ∈ Ω2

0,d(M, iR)⊕k and ζ ∈ Ω1
tc(M,R)⊕l . By Theorem 4.6 any

ϕ ∈ E inv is such that ϕV = δα+ β for some α ∈ Ω2
0(M, iR)⊕k and β ∈ Ω1

0,δ(M,R)⊕l . As a consequence,

τ([ϕ], [ψ]) =
〈
ϕV , G(1)

(
h−1(ψV )

)〉
=
〈
δα,G(1)(δη)

〉
+
〈
β,G(1)(δdζ)

〉
=
〈
α,dδG(2)(η)

〉
+
〈
β, δdG(1)(ζ)

〉
= −

〈
α, δdG(2)(η)

〉
−
〈
β,dδG(1)(ζ)

〉
= 0 , (4.14)

hence the vector space on the right hand side of (4.13) is contained in the radical N . To show that it
is equal to the radical let ψ ∈ E inv be any element satisfying, for all ϕ ∈ E inv, τ([ϕ], [ψ]) = 0. Using
again the decomposition ϕV = δα+ β for some α ∈ Ω2

0(M, iR)⊕k and β ∈ Ω1
0,δ(M,R)⊕l , as well as the

decomposition h−1(ψV ) = δη + δε, where η ∈ Ω2
0,d(M, iR)⊕k and ε ∈ Ω2

0,d(M,R)⊕l (which is possible
due to Corollary 3.7), this condition yields

0 = τ([ϕ], [ψ]) =
〈
δα,G(1)(δη)

〉
+
〈
β,G(1)(δε)

〉
=
〈
β,G(1)(δε)

〉
. (4.15)

By (4.15) and Poincaré duality there exists a γ ∈ C∞(M,R)⊕l , such that G(1)(δε) = dγ. Applying the
codifferential to this equation we find that γ satisfies the wave equation δdγ = �(0)(γ) = 0, hence by
[SDH12] there exists a θ ∈ C∞tc (M,R)⊕l such that γ = G(0)(θ). Plugging this into the equation above
yields G(1)(δε) = dγ = G(1)(dθ), which implies δε = dθ+�(1)(ζ) for some ζ ∈ Ω1

tc(M,R)⊕l . Applying
d and using that ε is closed we obtain ε = dζ, which shows that any element in the radical is contained in
the vector space on the right hand side of (4.13).

5 The phase space functor and CCR-quantization

In this section we show that the association of the presymplectic vector space
(
E , τ

)
in Proposition 3.4

to objects Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
in PrBuGlobHyp is functorial. We are going to construct a

covariant functor PhSp : PrBuGlobHyp→ PreSymp, where the latter category is that of presymplectic
vector spaces with compatible morphisms, that are however not assumed to be injective (see the definition
below). We will then derive some important properties of the functor.

Definition 5.1. The category PreSymp consists of the following objects and morphisms:

• An object in PreSymp is a tuple
(
E , τ

)
, where E is a (possibly infinite dimensional) vector space over

R and τ : E × E → R is an antisymmetric bilinear map (a presymplectic structure).
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• A morphism between two objects
(
E1, τ1

)
and

(
E2, τ2

)
in PreSymp is a linear map L : E1 → E2 (not

necessarily injective) , which preserves the presymplectic structures, i.e. τ2(L(v), L(w)) = τ1(v, w),
for all v, w ∈ E1.

Before constructing the phase space functor PhSp we require two lemmas characterizing the compati-
bility of Maxwell’s affine differential operator MW, the Hodge-d’Alembert operators �(k) and their Green’s
operators G±(k) with morphisms in PrBuGlobHyp.

Lemma 5.2. Let Ξi, i = 1, 2, be two objects and F : Ξ1 → Ξ2 a morphism in PrBuGlobHyp. Then the
following diagram commutes:

Γ∞(M2, C(P2))

F ∗

��

MW2 // Ω1(M2, g2)

f∗◦φ−1
∗

��

Γ∞(M1, C(P1))
MW1 // Ω1(M1, g1)

(5.1)

F ∗ is defined in Remark 2.28, f∗ is the usual pull-back along the induced map f : M1 → M2 and
φ−1
∗ : g2 → g1 is the inverse of the push-forward of φ : G1 → G2.

Proof. Let λ ∈ Γ∞(M2, C(P2)) be arbitrary and let ωλ ∈ Con(P2) be the associated connection form
(cf. Proposition 2.23). Then ωF ∗(λ) = f∗

(
φ−1
∗ (ωλ)

)
∈ Con(P1), where on the right hand side f∗ denotes

the usual pull-back of forms along f : P1 → P2. For the curvatures Fi : Con(Pi)→ Ω2
hor(Pi, gi)

eqv we
obtain, for all λ ∈ Γ∞(M2, C(P2)),

F1

(
ωF ∗(λ)

)
= d1ωF ∗(λ) = d1f

∗(φ−1
∗ (ωλ)

)
= f∗

(
φ−1
∗ (d2ωλ)

)
= f∗

(
φ−1
∗ (F2(ωλ))

)
. (5.2)

This implies for the associated curvature affine differential operators F i : Γ∞(Mi, C(Pi))→ Ω2(Mi, gi),

F1 ◦ F ∗ = f∗ ◦ φ−1
∗ ◦ F2 . (5.3)

Using that by hypothesis f : M1 →M2 is an isometric and orientation preserving embedding, we obtain for
the codifferentials δ1 ◦ f∗ = f∗ ◦ δ2 and, hence, for the Maxwell operators MW1 ◦ F ∗ = f∗ ◦ φ−1

∗ ◦MW2,
which shows the commutativity of the diagram (5.1).

Lemma 5.3. Let Ξi, i = 1, 2, be two objects and F : Ξ1 → Ξ2 a morphism in PrBuGlobHyp.

a) The following diagram commutes for all k:

Ωk(M2, g
∗
2)

f∗◦φ∗
��

�2 (k)
// Ωk(M2, g

∗
2)

f∗◦φ∗
��

Ωk(M1, g
∗
1)

�1 (k)
// Ωk(M1, g

∗
1)

(5.4)

φ∗ : g∗2 → g∗1 is the pull-back of φ : G1 → G2.

b) The Green’s operators satisfy G±1 (k) = f∗ ◦ φ∗ ◦ G±2 (k) ◦ f∗ ◦ φ
−1 ∗, where f∗ denotes the push-

forward of compactly supported forms along f : M1 →M2 and φ−1 ∗ : g∗1 → g∗2 is the pull-back of
φ−1 : G2 → G1.

Proof. Notice that the operators �i (k) act as the identity on g∗i . The commutative diagram (5.4) is then a
consequence of f∗ ◦d2 = d1 ◦f∗, which holds for any smooth map f : M1 →M2, and of f∗ ◦δ2 = δ1 ◦f∗,
which holds since f is an isometric and orientation preserving embedding.

To prove b) first notice that f∗
(
f∗(η)

)
= η, for all η ∈ Ωk

0(f [M1], g∗2) ⊆ Ωk
0(M2, g

∗
2), and that

f∗
(
f∗(η)

)
= η, for all η ∈ Ωk

0(M1, g
∗
1). Let us define G̃±1 (k) := f∗ ◦ φ∗ ◦ G±2 (k) ◦ f∗ ◦ φ

−1 ∗. We show
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that G̃±1 (k) are retarded/advanced Green’s operators for �1 (k) and thus by uniqueness it follows the claim

G̃±1 (k) = G±1 (k). Due to the diagram (5.4) and the above properties of f∗ and f∗ we obtain

�1 (k) ◦ G̃±1 (k) = �1 (k) ◦ f∗ ◦ φ∗ ◦G±2 (k) ◦ f∗ ◦ φ
−1 ∗

= f∗ ◦ φ∗ ◦�2 (k) ◦G±2 (k) ◦ f∗ ◦ φ
−1 ∗ = idΩk0(M1,g∗1) (5.5a)

and on Ωk
0(M1, g

∗
1)

G̃±1 (k) ◦�1 (k) = f∗ ◦ φ∗ ◦G±2 (k) ◦ f∗ ◦ φ
−1∗ ◦�1 (k)

= f∗ ◦ φ∗ ◦G±2 (k) ◦�2 (k) ◦ f∗ ◦ φ
−1 ∗ = idΩk0(M1,g∗1) . (5.5b)

Thus, G̃±1 (k) are Green’s operators for �1 (k). They are retarded/advanced Green’s operators, since for all

η ∈ Ωk
0(M1, g

∗
1),

supp
(
G̃±1 (k)(η)

)
⊆ f−1

[
J±M2

(
f [supp(η)]

)]
= J±M1

(
supp(η)

)
, (5.6)

where in the second step we have used that f [M1] ⊆M2 is by hypothesis causally compatible.

Definition 5.4. Let Ξi, i = 1, 2, be two objects and F : Ξ1 → Ξ2 a morphism in PrBuGlobHyp. Fur-
thermore, let F ∗ : Γ∞(M2, C(P2)) → Γ∞(M1, C(P1)) be the affine map constructed in Remark 2.28.
We define the linear map F∗ : Γ∞0 (M1, C(P1)†)/Triv1 → Γ∞0 (M2, C(P2)†)/Triv2 by duality, for all
ϕ ∈ Γ∞0 (M1, C(P1)†)/Triv1 and λ ∈ Γ∞(M2, C(P2)),∫

M2

vol2
(
F∗(ϕ)

)
(λ) =

∫
M1

vol1 ϕ
(
F ∗(λ)

)
. (5.7)

Theorem 5.5. There is a covariant functor PhSp : PrBuGlobHyp→ PreSymp. It associates to any object
Ξ in PrBuGlobHyp the object PhSp(Ξ) =

(
E , τ

)
in PreSymp which has been constructed in Proposition

3.4. Given a morphism F : Ξ1 → Ξ2 between two objects Ξi, i = 1, 2, in PrBuGlobHyp the functor
associates a morphism in PreSymp as follows

PhSp(F ) : PhSp(Ξ1)→ PhSp(Ξ2) , [ϕ] 7→ [F∗(ϕ)] , (5.8)

where the linear map F∗ is given in Definition 5.4.

Proof. First, we show that F∗ maps E inv
1 to E inv

2 . Let ϕ ∈ E inv
1 be arbitrary, i.e. for all f̂ ∈ C∞(M1, G1),〈

ϕV , f̂
∗(µG1)

〉
1

= 0. By Remark 2.28 and Definition 5.4 we obtain F∗(ϕ)V = f∗

(
φ−1 ∗(ϕV )

)
and hence,

for all f̂ ∈ C∞(M2, G2),〈
F∗(ϕ)V , f̂∗(µG2)

〉
2

=
〈
ϕV , f

∗(f̂∗(φ−1
∗ (µG2))

)〉
1

=
〈
ϕV , (φ−1 ◦ f̂ ◦ f)∗(µG1)

)〉
1

= 0 . (5.9)

In the second equality we have used that φ∗
(
φ−1
∗ (µG2)

)
= µG1 , where φ∗ is the pull-back of forms along

φ : G1 → G2.

Next, we prove that (5.8) is well-defined, that is, for all η ∈ Ω1
0(M1, g

∗
1) we have F∗

(
MW∗1(η)

)
∈

MW∗2
[
Ω1

0(M2, g
∗
2)
]
. This property is a consequence of the following short calculation, for all λ ∈

Γ∞(M2, C(P2)),∫
M2

vol2
(
F∗
(
MW∗1(η)

))
(λ) =

〈
η,MW1

(
F ∗(λ)

)〉
1

=
〈
η, f∗

(
φ−1
∗ (MW2(λ))

)〉
1

=
〈
f∗(φ

−1 ∗(η)),MW2(λ)
〉

2
=
∫
M2

vol2
(
MW∗2

(
f∗(φ

−1 ∗(η))
))

(λ) , (5.10)

23



where in the second equality we have used Lemma 5.2.

It remains to be shown that the linear map PhSp(F ) in (5.8) preserves the presymplectic structures.
Let us take two arbitrary [ϕ], [ψ] ∈ E1. Then

τ2

(
[F∗(ϕ)], [F∗(ψ)]

)
=
〈
F∗(ϕ)V , G2 (1)

(
F∗(ψ)V

)〉
h2
. (5.11)

Using again that F∗(ϕ)V = f∗

(
φ−1 ∗(ϕV )) (and similar for ψ) yields

τ2

(
[F∗(ϕ)], [F∗(ψ)]

)
=
〈
f∗(φ

−1 ∗(ϕV )), G2 (1)

(
f∗(φ

−1 ∗(ψV ))
)〉

h2

=
〈
ϕV ,

(
f∗ ◦ φ∗ ◦G2 (1) ◦ f∗ ◦ φ

−1 ∗)(ψV )
〉
h1

=
〈
ϕV , G1 (1)(ψV )

〉
h1

= τ1([ϕ], [ψ]) . (5.12)

In the second equality we used that φ is an isometry and in the third equality Lemma 5.3 b).

Remark 5.6. The covariant functor PhSp : PrBuGlobHyp → PreSymp does not satisfy the locality
property stating that for any morphism F : Ξ1 → Ξ2 in PrBuGlobHyp the morphism PhSp(F ) is injective.
We will show this failure by giving a simple example in the full subcategory PrBuGlobHypU(1) where
G = U(1) ' T is fixed and we refer to Section 7 for a possible solution of this problem. Let Ξ2 be an
object in PrBuGlobHypU(1) such that (M2, o2, g2, t2) is the m-dimensional Minkowski spacetime (m > 2).
Let us denote by Ξ1 the object in PrBuGlobHypU(1) that is obtained by restricting all data of Ξ2 to the
causally compatible and globally hyperbolic open subset M1 := M2 \ JM2({0}), where {0} is the set of a
single point in Minkowski spacetime (cf. [BGP07, Lemma A.5.11]). Notice that M1 is diffeomorphic to
R2 × Sm−2, where Sm−2 is the m−2-sphere. The canonical embedding (via the identity) F : Ξ1 → Ξ2 is
a morphism in PrBuGlobHypU(1). Let us take any nonexact element in η ∈ Ω2

0,d(M1, g
∗), that exists since

by Poincaré duality Hm−2
dR (M1, g) ' H2

0 dR(M1, g
∗) and Hm−2

dR (M1, g) ' g ' iR since M1 is homotopy
equivalent to Sm−2. Applying the formal adjoint of the curvature affine differential operator we obtain a
nontrivial element

[
F1
∗(η)

]
∈ PhSp(Ξ1) (this element is contained in the radical N1, cf. Theorem 4.8).

Under the morphism PhSp(F ) we obtain by using (5.3)

PhSp(F )
([
F1
∗(η)

])
=
[
F∗
(
F1
∗(η)

)]
=
[
F2
∗(f∗(φ−1 ∗(η)

)]
=
[
F2
∗(dξ)

]
=
[
MW∗2(ξ)

]
= 0 . (5.13)

In the third equality we have used that f∗
(
φ−1 ∗(η)

)
∈ Ω2

0,d(M2, g
∗) is exact since M2 is the Minkowski

spacetime. By Remark 3.9 the same conclusion holds true for G = R and hence for generic G ' Tk × Rl.

Theorem 5.7. The covariant functor PhSp : PrBuGlobHyp→ PreSymp satisfies the classical causality
property:

Let Ξj , j = 1, 2, 3, be three objects and let Fi : Ξi → Ξ3, i = 1, 2, be two morphisms in PrBuGlobHyp,
such that f1[M1] and f2[M2] are causally disjoint in M3. Then τ3 acts trivially among the vector subspaces
PhSp(F1)

[
PhSp(Ξ1)

]
and PhSp(F2)

[
PhSp(Ξ2)

]
of PhSp(Ξ3). That is, for all [ϕ] ∈ PhSp(Ξ1)

and [ψ] ∈ PhSp(Ξ2),

τ3

(
PhSp(F1)([ϕ]),PhSp(F2)([ψ])

)
= 0 . (5.14)

Proof. From (5.8) and (3.14) it follows that

τ3

(
PhSp(F1)([ϕ]),PhSp(F2)([ψ])

)
=
〈
f1∗

(
φ−1 ∗

1 (ϕV )
)
, G3 (1)

(
f2∗

(
φ−1 ∗

2 (ψV )
))〉

h3

= 0 , (5.15)

since the supports supp
(
f1∗

(
φ−1 ∗

1 (ϕV )
))
⊆ f1[M1] and supp

(
G3 (1)

(
f2∗

(
φ−1 ∗

2 (ψV )
)))
⊆ JM3(f2[M2])

are by hypothesis disjoint.
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Theorem 5.8. The covariant functor PhSp : PrBuGlobHyp→ PreSymp satisfies the classical time-slice
axiom:

Let Ξi, i = 1, 2, be two objects and F : Ξ1 → Ξ2 a morphism in PrBuGlobHyp, such that f [M1] ⊆M2

contains a Cauchy surface of M2. Then

PhSp(F ) : PhSp(Ξ1)→ PhSp(Ξ2) (5.16)

is an isomorphism.

Proof. Let us define Ξ2|f [M1] :=
(
(f [M1], o2|f [M1], g2|f [M1], t2|f [M1]), (G2, h2), (P2|f [M1], r2)

)
, where

P2|f [M1] denotes the restriction of the principal G2-bundle (P2, r2) over M2 to f [M1] ⊆M2. Notice that
Ξ2|f [M1] is an object in PrBuGlobHyp and by definition of the morphisms in this category, F : Ξ1 →
Ξ2|f [M1] is an isomorphism. As a consequence of functoriality, we obtain an isomorphism in PreSymp

PhSp(F ) : PhSp(Ξ1)→ PhSp(Ξ2|f [M1]) . (5.17)

Hence, the proof would follow if we could show that in the hypotheses of this theorem the canonical map
PhSp(Ξ2|f [M1])→ PhSp(Ξ2) , [ϕ] 7→ [ϕ] is an isomorphism.

Let us first prove injectivity of the canonical map: Let [ϕ] ∈ PhSp(Ξ2|f [M1]) be such that when
interpreted via the canonical map as an element in PhSp(Ξ2) we have [ϕ] = 0. As a consequence, [ϕ] ∈
PhSp(Ξ2|f [M1]) has to be in the radicalN2|f [M1] and by Corollary 3.7 there exists for any representative ϕ
an η ∈ Ω2

0,d(f [M1], g∗2) such that ϕV = δ2η. Notice that due to the quotient in Corollary 3.7 the equivalence
class [ϕ] only depends on the cohomology class [η] ∈ H2

0 dR(f [M1], g∗2). By a theorem of Bernal and
Sánchez [BS05] and the hypothesis that f [M1] contains a Cauchy surface of M2 we have that f [M1] and
M2 are homotopy equivalent (notice also that dim(f [M1]) = dim(M2)). By Poincaré duality [η] specifies

a unique element in Hdim(M2)−2
dR (f [M1], g2), which by homotopy invariance of the de Rham cohomology

groups and a further instance of Poincaré duality specifies a unique element in H2
0 dR(M2, g

∗
2). Using the

fact that [ϕ] = 0 when regarded in PhSp(Ξ2) then implies that [η] is the trivial element, i.e. η = d2ζ for
some ζ ∈ Ω1

0(f [M1], g∗2). Thus, we can find a representative ϕ of the class [ϕ] ∈ PhSp(Ξ2|f [M1]) such
that ϕV = 0, i.e. ϕ = a12 with a ∈ C∞0 (f [M1]). Since [ϕ] lies in the kernel of the canonical map we
obtain 0 =

∫
M2

vol2 a =
∫
f [M1] vol2 a and thus [ϕ] = 0 in PhSp(Ξ2|f [M1]).

We now prove surjectivity of the canonical map: Let [ϕ] ∈ PhSp(Ξ2) be arbitrary and let ϕ be any
representative. By hypothesis, there is a Cauchy surface Σ2 in M2 that is contained in f [M1]. Then
Σ1 := f−1[Σ2] is a Cauchy surface in M1, since f : M1 → f [M1] is an isometry. Let us choose two
other Cauchy surfaces Σ±1 with Σ±1 ∩ Σ1 = ∅ in the future/past of Σ1 and let us denote by Σ±2 := f [Σ±1 ]
their images, which are Cauchy surfaces in M2 since f [M1] is causally compatible. Let χ+ ∈ C∞(M2)
be any function such that χ+ ≡ 1 on J+

M2
(Σ+

2 ) and χ+ ≡ 0 on J−M2
(Σ−2 ). We define χ− ∈ C∞(M2) by

χ+ + χ− ≡ 1 on M2. Then η := χ+G−(1)(ϕV ) + χ−G+
(1)(ϕV ) ∈ Ω1

0(M2, g
∗
2) is of compact support and

the linear part of ϕ′ := ϕ+ MW∗2(η), given by ϕ′V = ϕV − δ2d2η, vanishes outside of f [M1] (remember
that by Lemma 3.1 δ2ϕV = 0). The constant affine part of ϕ′ can be treated as in [BDS12, Theorem 5.6] by
adding a suitable element of Triv2 to ϕ′, which leads to a representative ϕ′′ of the same class [ϕ] that has
compact support in f [M1]. The class [ϕ′′] ∈ PhSp(Ξ2|f [M1]) proves surjectivity of the canonical map.

We quantize our theory by using the CCR-functor, which we are going to briefly review to be self-
contained.

Definition 5.9. The category ∗Alg consists of the following objects and morphisms:

• An object in ∗Alg is a unital ∗-algebra A over C.

• A morphism between two objectsAi, i = 1, 2, in ∗Alg is a unital ∗-algebra homomorphism κ : A1 →
A2 (not necessarily injective).
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The CCR-functor is the covariant functor CCR : PreSymp → ∗Alg which associates to any object
(E , τ) the unital ∗-algebra CCR(E , τ) = T (E)/I(E , τ). T (E) is the complex tensor algebra over E and
I(E , τ) is the two-sided ideal generated by the elements v ⊗C w − w ⊗C v − i τ(v, w) 1, for all v, w ∈ E .
To any morphism L : (E1, τ1) → (E2, τ2) in PreSymp the functor associates the morphism CCR(L) in
∗Alg which is defined on the tensor algebra by CCR(L)

(
v1 ⊗C · · · ⊗C vk

)
= L(v1) ⊗C · · · ⊗C L(vk),

for all k ≥ 1 and v1, . . . , vk ∈ E1. Since L preserves the presymplectic structures, this unital ∗-algebra
homomorphism canonically induces to the quotients.

Using the same arguments as in [BDS12, Theorem 6.3] it follows immediately from Theorem 5.7 and
Theorem 5.8 the following

Theorem 5.10. The covariant functor A := CCR ◦PhSp : PrBuGlobHyp→ ∗Alg satisfies:

(i) The quantum causality property:

Let Ξj , j = 1, 2, 3, be three objects and let Fi : Ξi → Ξ3, i = 1, 2, be two morphisms in
PrBuGlobHyp, such that f1[M1] and f2[M2] are causally disjoint in M3. Then A(F1)

[
A(Ξ1)

]
and A(F2)

[
A(Ξ2)

]
commute as subalgebras of A(Ξ3).

(ii) The quantum time-slice axiom:

Let Ξi, i = 1, 2, be two objects and F : Ξ1 → Ξ2 a morphism in PrBuGlobHyp, such that
f [M1] ⊆M2 contains a Cauchy surface of M2. Then

A(F ) : A(Ξ1)→ A(Ξ2) (5.18)

is an isomorphism.

6 Generally covariant topological quantum fields

According to [BFV03], a locally covariant quantum field is a natural transformation from a covariant functor
describing test sections to the covariant functor A. In this section we introduce the concept of generally
covariant topological quantum fields, that are natural transformations from a covariant functor describing
topological information to the functor A, and construct two examples which can be interpreted as magnetic
and electric charge. We have added the attribute ‘generally covariant’ in ‘generally covariant topological
quantum field’ in order to distinguish it from the usual notion of topological quantum field theory [Ati89].
For simplifying the discussion we restrict ourselves in this section to the full subcategory PrBuGlobHypU(1),
where the structure group is fixed to G = U(1) ' T. The covariant functor A of Theorem 5.10 is also
restricted, i.e. A : PrBuGlobHypU(1) → ∗Alg.

Definition 6.1. The category Vec consists of the following objects and morphisms:

• An object in Vec is a (possibly infinite dimensional) vector space V over R.

• A morphism between two objects Vi, i = 1, 2, in Vec is a linear map L : V1 → V2 (not necessarily
injective).

Composing A : PrBuGlobHypU(1) → ∗Alg with the forgetful functor from from ∗Alg to Vec we can
consider A as a covariant functor from PrBuGlobHypU(1) to Vec (with a slight abuse of notation we denote
this covariant functor again by A). The other covariant functors from PrBuGlobHypU(1) to Vec which enter
our construction of generally covariant topological quantum fields are those of smooth singular homology
with coefficients in the real vector space g∗ = iR (since the smooth and continuous singular homology are
isomorphic, the smooth singular homology only contains topological information). For being self-contained
we review briefly the relevant concepts: Let M be a manifold of finite type. A smooth singular p-simplex,
p ∈ N0, is a smooth map σ : ∆p →M , where ∆p is the standard p-simplex in Rp. The real vector space
generated by finite linear combinations of smooth singular p-simplices is denoted by Sp(M, g∗) and its
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elements
∑

finite aj σj , aj ∈ g∗, are called smooth singular p-chains with coefficients in g∗ = iR. We will
suppress the subscript finite in the following for a better readability. For all p > 0 there is a boundary
operator ∂p : Sp(M, g∗)→ Sp−1(M, g∗) satisfying ∂p ◦ ∂p+1 = 0. The homology of the complex

· · ·
∂p+2

// Sp+1(M, g∗)
∂p+1

// Sp(M, g∗)
∂p

// Sp−1(M, g∗)
∂p−1

// · · · (6.1)

is denoted by H∗(M, g∗) and called the singular homology with coefficients in g∗ = iR. Explicitly, the
p-th singular homology group is the real vector space Hp(M, g∗) = Ker(∂p)/Im(∂p+1).

Let now Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be an object in PrBuGlobHypU(1). The association of the

p-th singular homology group of M is a covariant functor Hp : PrBuGlobHypU(1) → Vec: To any object
Ξ in PrBuGlobHypU(1) the functor associates Hp(Ξ) = Hp(M, g∗). To any morphism F =

(
f : P1 →

P2, φ : G→ G
)

: Ξ1 → Ξ2 in PrBuGlobHypU(1) the functor associates

Hp(F ) : Hp(Ξ1)→ Hp(Ξ2) ,
[∑

aj σj

]
7→
[∑

φ−1 ∗(aj) (f ◦ σj)
]
. (6.2)

The singular cohomology is defined by duality, H∗(M, g) := HomR(H∗(M, g∗),R). Furthermore, by de
Rham’s theorem there exists a vector space isomorphism J : Hp

dR(M, g) → Hp(M, g) , [η] 7→ J ([η]),
where J ([η]) is the linear functional on Hp(M, g∗) defined by, for all

∑
aj σj ,

J ([η])
([∑

aj σj

])
=
∑

aj

∫
∆p

σ∗j (η) , (6.3)

where σ∗j is the pull-back of σj : ∆p → M and the duality pairing between g∗ and g is suppressed.
By Poincaré duality there also exists a vector space isomorphism K : Hp(M, g∗) → Hp

0 dR∗(M, g∗)
(by the subscript dR∗ we denote the cohomology groups of the codifferential δ) specified by, for all[∑

aj σj
]
∈ Hp(M, g∗) and [η] ∈ Hp

dR(M, g),〈
K
([∑

aj σj

])
, [η]
〉

= J ([η])
([∑

aj σj

])
. (6.4)

The pairing 〈 , 〉 : Hp
0 dR∗(M, g∗)×Hp

dR(M, g)→ R on the left hand side is that induced by the pairing
〈ζ, η〉 =

∫
M ζ ∧ ∗(η) of p-forms ζ ∈ Ωp

0(M, g∗) and η ∈ Ωp(M, g).

We now can construct our first example of a generally covariant topological quantum field, which by
Remark 6.3 below should be interpreted as magnetic charge (Euler class).

Theorem 6.2. Consider the two covariant functors H2,A : PrBuGlobHypU(1) → Vec. We associate to any
object Ξ in PrBuGlobHypU(1) the morphism in Vec

Ψmag
Ξ : H2(Ξ)→ A(Ξ) ,

[∑
aj σj

]
7→
[
F∗
(
K
([∑

aj σj

]))]
, (6.5)

where F∗ : Ω2
0(M, g∗) → Γ∞0 (M, C(P )†)/Triv is the formal adjoint of the curvature affine differential

operator (cf. Corollary 2.24). The collection Ψmag = {Ψmag
Ξ } is a natural transformation from H2 to A.

Proof. The map (6.5) is well-defined due the dual of the (Abelian) Bianchi identity d ◦F = 0. Furthermore,
since any representative of the class K

([∑
aj σj

])
is coclosed, the linear part of F∗

(
K
([∑

aj σj
]))

vanishes. Hence, F∗
(
K
([∑

aj σj
]))
∈ E inv is a representative of an element in N and the image of (6.5)

is contained in E ⊆ A(Ξ).
Let F : Ξ1 → Ξ2 be a morphism in PrBuGlobHypU(1). As a consequence of the dual of (5.3) and

f∗ ◦φ
−1 ∗ ◦K1 = K2 ◦H2(F ), which descends from (6.4), we obtain that the following diagram commutes:

H2(Ξ1)

H2(F )
��

Ψmag
Ξ1 // A(Ξ1)

A(F )
��

H2(Ξ2)
Ψmag

Ξ2 // A(Ξ2)

(6.6)

This proves that Ψmag = {Ψmag
Ξ } is a natural transformation.
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Remark 6.3. The interpretation of the natural transformation Ψmag is as follows: The classical affine
functional (3.5) corresponding to F∗

(
K
([∑

aj σj
]))

yields when evaluating on any λ ∈ Γ∞(M, C(P ))

OF∗(K([
P
aj σj ]))(λ) =

〈
K
([∑

aj σj

])
,F(λ)

〉
=
∑

aj

∫
∆2

σ∗j
(
F(λ)

)
. (6.7)

Via this identification the elements in the image of the map Ψmag
Ξ determine the cohomology class [F(λ)] ∈

H2
dR(M, g) and hence the Euler class of the principal U(1)-bundle. In physics [F(λ)] is called the magnetic

charge. This is a purely topological information, which explains our notation generally covariant topological
quantum field. After CCR-quantization, we should interpret the image of the map (6.5) as magnetic charge
observables, which can be assigned coherently to all objects in PrBuGlobHypU(1) since Ψmag is a natural
transformation. We note that the image of the map (6.5) lies in the center of the algebra A(Ξ), hence
magnetic charge observables are not subject to Heisenberg’s uncertainty relation and can be measured
without quantum fluctuations.

Motivated by [SDH12] we will now construct a generally covariant topological quantum field, which
by Remark 6.5 below should be interpreted as electric charge. For this we require a covariant functor
which associates to any object Ξ in PrBuGlobHypU(1) the singular homology group Hdim(M)−2(M, g∗) '
H

dim(M)−2
0 dR∗ (M, g∗). This functor exists since the set of morphisms {F : Ξ1 → Ξ2} is only nonempty

between objects Ξ1 and Ξ2 where M1 and M2 have the same dimension (cf. Definition 2.4). We shall denote
this covariant functor by H−2 : PrBuGlobHypU(1) → Vec.

Theorem 6.4. Consider the two covariant functors H−2,A : PrBuGlobHypU(1) → Vec. We associate to
any object Ξ in PrBuGlobHypU(1) the morphism in Vec

Ψel
Ξ : H−2(Ξ)→ A(Ξ) ,

[∑
aj σj

]
7→
[
F∗
(
∗
(
K
([∑

aj σj

])))]
. (6.8)

The collection Ψel = {Ψel
Ξ} is a natural transformation from H−2 to A.

Proof. The map (6.8) is well-defined, since for all χ ∈ Ωdim(M)−1
0 (M, g∗), F∗

(
∗(δχ)

)
= MW∗(∗(χ))

yields the trivial class in E ⊆ A(Ξ). For any η ∈ Ωdim(M)−2
0,δ (M, g∗) the linear part of F∗

(
∗(η)

)
is

F∗
(
∗(η)

)
V

= δ ∗(η), with ∗(η) ∈ Ω2
0,d(M, g∗). Hence, F∗

(
∗
(
K
([∑

aj σj
])))

∈ E inv is a representative
of an element in N and the image of (6.8) is contained in E ⊆ A(Ξ).

Let F : Ξ1 → Ξ2 be a morphism in PrBuGlobHypU(1). Using that f∗ ◦ φ
−1 ∗ ◦ ∗1 = ∗2 ◦ f∗ ◦ φ

−1 ∗

and the same arguments as in the proof of Theorem 6.2 we obtain that the following diagram commutes:

H−2(Ξ1)

H−2(F )

��

Ψel
Ξ1 // A(Ξ1)

A(F )

��

H−2(Ξ2)
Ψel

Ξ2 // A(Ξ2)

(6.9)

This proves that Ψel = {Ψel
Ξ} is a natural transformation.

Remark 6.5. Following Remark 6.3 we can interpret Ψel as a coherent assignment of electric charge
observables: The classical affine functional (3.5) corresponding to F∗

(
∗
(
K
([∑

aj σj
])))

yields when
evaluating on any solution λ ∈ Γ∞(M, C(P )) of the equation of motion MW(λ) = 0,

OF∗(∗(K([
P
aj σj ])))(λ) =

〈
K
([∑

aj σj

])
, ∗
(
F(λ)

)〉
=
∑

aj

∫
∆dim(M)−2

σ∗j
(
∗
(
F(λ)

))
. (6.10)

Via this identification the elements in the image of the map Ψel
Ξ determine the cohomology class

[
∗(F(λ))

]
∈

H
dim(M)−2
dR (M, g) that, via Gauss’ law, is the electric charge. Also in this case the image of the map (6.8)

lies in the center of the algebra A(Ξ), meaning that electric charge observables in the quantum theory are
not subject to Heisenberg’s uncertainty relation and can be measured without quantum fluctuations.
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7 The charge-zero functor and the locality property

In the previous section we have identified electric and magnetic charge observables in the algebra A(Ξ) =
CCR

(
PhSp(Ξ)

)
for any object Ξ in PrBuGlobHypU(1). While magnetic charge observables are certainly

very welcome in our framework since they can measure the topology of the principal bundle, electric charges
play a different role. By construction, the covariant functor A : PrBuGlobHypU(1) → ∗Alg models quantized
principal U(1)-connections without the presence of any charged fields. As a consequence, all electric charge
measurements should yield zero.2 We are going to implement this physical feature into our framework
by performing a different quotient in the presymplectic vector spaces

(
E , τ

)
of Proposition 3.4. It is then

rather straightforward to show that there is a covariant functor PhSp0 : PrBuGlobHypU(1) → PreSymp,
the charge-zero phase space functor, which associates these presymplectic vector spaces to objects in
PrBuGlobHypU(1). Interestingly, the functor PhSp0 satisfies, in addition to the classical causality property
and the classical time-slice axiom, the locality property stating that for any morphism F in PrBuGlobHypU(1)

the morphism PhSp0(F ) in PreSymp is injective. Due to Remark 5.6 this is not the case for the functor
PhSp constructed in Section 5. Composing the charge-zero phase space functor with the CCR-functor
we obtain a covariant functor A0 that satisfies all axioms of locally covariant quantum field theory, i.e. the
quantum causality property, the quantum time-slice axiom and injectivity of A0(F ) for any morphism F in
PrBuGlobHypU(1).

Let Ξ =
(
(M, o, g, t), (G, h), (P, r)

)
be an object in PrBuGlobHypU(1) and E inv the gauge invariant

vector space characterized in Theorem 4.6. Notice that the vector subspace F∗
[
Ω2

0,d(M, g∗)
]
⊆ E inv

contains MW∗
[
Ω1

0(M, g∗)
]

as a vector subspace as well as the electric charge observables of Theorem 6.4.
Hence, by considering the quotient E0 := E inv/F∗

[
Ω2

0,d(M, g∗)
]

we implement the equation of motion
and identify all electric charges with zero.

Lemma 7.1. Let Ξ be an object in PrBuGlobHyp.

a) Then E0 := E inv/F∗
[
Ω2

0,d(M, g∗)
]

can be equipped with the presymplectic structure

τ0 : E0 × E0 → R ,
(
[ϕ], [ψ]

)
7→ τ0

(
[ϕ], [ψ]

)
=
〈
ϕV , G(1)(ψV )

〉
h
. (7.1)

In other words,
(
E0, τ0

)
is a presymplectic vector space.

b) The radical N 0 of
(
E0, τ0

)
is

N 0 =
[{
ϕ ∈ E inv : ϕV = 0

}]
. (7.2)

Proof. This is a direct consequence of Theorem 4.8.

Similar to Theorem 5.5 we obtain that the association of these presymplectic vector spaces is functorial.

Theorem 7.2. There is a covariant functor PhSp0 : PrBuGlobHypU(1) → PreSymp. It associates to any
object Ξ in PrBuGlobHypU(1) the object PhSp0(Ξ) =

(
E0, τ0

)
in PreSymp which has been constructed

in Lemma 7.1. Given a morphism F : Ξ1 → Ξ2 between two objects Ξi, i = 1, 2, in PrBuGlobHypU(1) the
functor associates a morphism in PreSymp as follows

PhSp0(F ) : PhSp0(Ξ1)→ PhSp0(Ξ2) , [ϕ] 7→ [F∗(ϕ)] , (7.3)

where the linear map F∗ is given in Definition 5.4.

Proof. The proof follows by similar arguments as in the proof of Theorem 5.5.

By slightly modifying the proofs of Theorem 5.7 and Theorem 5.8 it is easy to show that the covariant
functor PhSp0 : PrBuGlobHypU(1) → PreSymp satisfies the classical causality property and the classical
time-slice axiom. In addition, we have have the following

2 We are very grateful to Jochen Zahn and Thomas-Paul Hack for comments which have led to this insight.
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Theorem 7.3. The covariant functor PhSp0 : PrBuGlobHypU(1) → PreSymp satisfies the locality
property:

Let F : Ξ1 → Ξ2 be any morphism in PrBuGlobHypU(1), then PhSp0(F ) is injective.

Proof. Notice that any element [ϕ] ∈ PhSp0(Ξ1) that satisfies [F∗(ϕ)] = 0 is necessarily contained
in the radical N 0

1 ⊆ PhSp0(Ξ1). Let us now assume that [ϕ] ∈ N 0
1 is such that [F∗(ϕ)] = 0. By

Lemma 7.1 b) there exists a representative ϕ ∈ Γ∞0 (M1, C(P1)†) of [ϕ] that is of the form ϕ = a11

with a ∈ C∞0 (M1). The push-forward along F of this representative is then F∗(a11) = f∗(a)12,
where f∗(a) ∈ C∞0 (M2) is the push-forward along f : M1 → M2. Since by hypothesis [F∗(ϕ)] = 0,
the representative f∗(a)12 is equivalent to an element in Triv2, i.e. for some η ∈ Ω2

0,d(M2, g
∗) and

b ∈ C∞0 (M2) satisfying
∫
M2

vol2 b = 0, we have f∗(a)12 = b12 + F2
∗(η). Comparing the linear parts

of both sides of the equality we obtain δ2η = 0, i.e. η ∈ Ω2
0,d(M2, g

∗) is both closed and coclosed. As a
consequence, �2 (2)(η) = 0, which due to normal hyperbolicity implies that η = 0. We find f∗(a) = b and
in particular 0 =

∫
M2

vol2 f∗(a) =
∫
M1

vol1 a. Thus, [ϕ] = [a11] = 0 since a11 ∈ Triv1.

Let us denote by PreSympinj the subcategory of PreSymp where all morphisms are injective. We have
shown above the existence of the covariant functor PhSp0 : PrBuGlobHypU(1) → PreSympinj. Since the
CCR-functor restricts to a covariant functor CCR : PreSympinj → ∗Alginj, where we have used the obvious
notation for the subcategory of ∗Alg with injective morphisms, we obtain by composition a covariant functor
A0 : PrBuGlobHypU(1) → ∗Alginj. The classical causality property and the classical time-slice axiom
extend via the CCR-functor to the quantum case, see e.g. [BDS12, Theorem 6.3]. The main result of this
section can be summarized as follows:

Theorem 7.4. The covariant functor A0 := CCR ◦ PhSp0 : PrBuGlobHypU(1) → ∗Alginj is a locally
covariant quantum field theory, i.e. A0 satisfies the quantum causality property, the quantum time-slice
axiom and the locality property.
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Annales Henri Poincaré [arXiv:1210.3457 [math-ph]].

[BFV03] R. Brunetti, K. Fredenhagen and R. Verch, “The Generally covariant locality principle: A New
paradigm for local quantum field theory,” Commun. Math. Phys. 237, 31 (2003) [math-ph/0112041].

30



[BG11] C. Bär and N. Ginoux, “Classical and Quantum Fields on Lorentzian Manifolds,” Springer Proc.
Math. 17, 359 (2011) [arXiv:1104.1158 [math-ph]].
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