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An accurate risk assessment for fatigue damage is of visgntial importance in today’s gas turbine engineering. The
importance for the design and service of today’s turbomand of LCF-life of an engineering componentis often defined
chinery components. We present an approach for quantifyibg the initiation of a crack of a certain size. LCF is mostly
the probability of crack initiation due to surface driverwe surface driven so that an LCF crack initiates on the compo-
cycle fatigue (LCF). This approach is based on the theory aent’s surface. In the case of polycrystalline metal théngra
failure-time processes and takes inhomogeneous stress fitructure has a great influence on the LCF failure mechanism
and size effects into account. The method has been impidiich is of stochastic nature. This can result in a statitic
mented as a finite-element postprocessor which uses quadseatter of a factor of 10 between the highest and lowest load
ture formulae of higher order. Results of applying this newycles to crack initiation, even under lab conditions.
approach to an example case of a gas-turbine compressor

disk are discussed. Standard design approaches often derive a predicted

component life with respect to LCF from the average life
times of the most loaded points on the component plus safety
INTRODUCTION factors which account for the scatter band, size effects and
Due to the necessity for a more flexible service of gagncertainties in the stress and temperature fields. However
turbines, Iow-cycle fatigue (LCF) design has become of ethis method can have a lack of sufficient accuracy which can
result in designs that are too conservative or too optimisti
for example. In particular, the Coffin-Manson-Basquin equa
*Address all correspondence to this author. Second affifiatinstitute tion and Wohler curves play an essential role in reliapilit
of Computational Science, Universita della Svizerra atadi, Lugano, Ti- €stimations regarding fatigue. Moreover, size effectsshav
cino 6900 Switzerland Email: sebastian schmitz@hsi c



a significant influence on fatigue life and are mostly corprobability for LCF crack initiation with respect to the num

sidered by safety factors. For more detailed discussionslodr N of load cycles. In the design process one can decide

fatigue confer [1], [2], [3] and [4]. which numbeN is acceptable corresponding to the assigned
In this work we focus on LCF in conjunction with poly-risk. Another important quantity of the LCF model is the

crystalline metals and in particular on the number of loddcal crack initiation density. This field shows how much

cycles until crack initiation. We present a local and probaach region of the surface contributes to the overall exggect

bilistic model for LCF according to [5] and [6] which we usenumber of crack initiations and leads to critical as well@s t

to estimate the risk for LCF crack initiation on a comprespossibly overengineered parts of the component.

sor disk. Here, the reaction of a component to cyclic loads This paper combines some aspects of materials engi-

is taken into account via a linear elastic finite element-analeering, reliability statistics and FEA. In the first sentige

ysis (FEA) and via Neuber shakedown, see [7], [8] and [9¢onsider linear elasticity, Neuber shakedown, fatigudyana

respectively. sis and we present the local and probabilistic model for LCF.
Because LCF cracks are small in the initiation phade Section 2 we first focus on FEA. Then, we discuss nu-

they will only influence stress fields on micro- andmerical integration and important functions of our present

mesoscales and so it is reasonable to assume that crack &pproach. The last section shows results of applying our

mation in one region of the component’s surface is not influnethod to an example case of a gas-turbine compressor disk.

enced by the crack forming process on another part. Thus

crack formation can be considered as a problem of spatial

statistics [10]. Then, [5] and [6] infer that hazard rates fo; A LOCAL AND PROBABILISTIC MODEL FOR

crack initiation have to be integrals over some local func- | cg

tion depending on the local stress or strain fields. Theegfor | this section we discuss results of linear isotropic elas-

hazard rates for the component can be expressed by a gidfty, Neuber shakedown and fatigue analysis. The last sub
face integral over some crack formation intensity functiogection presents the local and probabilistic model for LCF

depending on local fields. The latter can also be regardedgsich is introduced and motivated in [5] and [6].
the density for the intensity measure of a Poisson point pro-

cess (PPP) in time and space, confer [11] and [12]. In [3] the
role of the PPP is also emphasized in that context. 1.1 Linear Isotropic Elasticity and Neuber Shakedown
Following [5] and [6] we model the hazard rates with a  In this work we consider designs made from single-
rather conservative approach by means of intensity mesisuplased polycrystalline metal. Usually metallic materizsl
of Weibull type. Note that scale-shape distributions amy venot consist of one single crystal but of different crysteli
common in reliability statistics, confer [13]. Furtherrepr regions which are called grains. These grains have an or-
we assume that the scale variablg: is of the same func- der of magnitude typically in the micrometer and millimeter
tional form as the usual Coffin-Manson-Basquin equatiosgale. The continuum mechanical approach assumes that the
confer [5], [1] and (6) below. This results in a Weibull distr considered sizing scale is large compared to the inter-atom
bution for the numbeN of cycles of first crack initiation on distances. Thus the material is considered to be smeared and
the component as well. all quantities are continuous. In general, single crydiaise
In contrast to [3] this purely phenomenological approachnisotropic properties. In polycrystals the orientatidthe
avoids detailed modeling at the meso scale which faciltatgrains is randomly distributed. If the grains are suffidignt
calibration with experiments. Both approaches have the us@all compared to the component’s size, the anisotropic ef-
of Weibull distributions in common. From a materials engifects of the grains average out and an approximately isiatrop
neering point of view the model of [5] and [6] has the signifmaterial can be assumed.
icant advantage — compared to standard methods in fatigue In the following, we employ the continuum mechanical
— of bypassing the standard specimen approach and consigproach and assume isotropic material behavior at scales
ering size effects. Besides LCF-test results with standarglgnificantly larger than the grain size and assume suffi-
ized specimens, different strain-controlled LCF resu#ta ¢ ciently small deformations. Thus, linear isotropic eleisi
be used together for the calibration of the model such as &&n be applied to describe the behavior of components from
sults from specimens with different geometries or under digingle-phased polycrystalline metal under external logdi
ferentinhomogeneous strain fields. and plasticity can be considered by Neuber shakedown. In
In order to numerically compute the Weibull distribu-this section we present theoretical backgrounds and glosel
tion, quadrature formulae are employed for the corresporidilow Section 2 of [5] which is based on [16] and [1]. Note
ing integration. As locations of stress concentrationsltesthat our example case of a compressor disk is subject to a
in higher nonlinearities in the integrand we use quadratun@mogeneous temperature field so that we do not consider
formulae of higher orders. For this purpose we interpolatbermoelasticity.
the field values according to principles of mesh and finite- Let Q be a domain which represents the component
element generation, confer [8], [14] and [15]. shape filled with a deformable medium such as polycrys-
Having obtained the Weibull shape and scale pararalline metal which is initially at equilibrium. Moreovedetv
eter from calibration and from numerical integration, rebe the normal on the surfad® of Q, letf be an external load
spectively, the corresponding distribution function giethe and letu be the three-dimensional displacement fielddin



Finally, let 0Qp,0Qn be a partition of the boundary where  Finally, we present the method of Neuber shakedown,
0Qp is clamped and 0@Qy a normal loadg is imposed. confer [18] and [1]. Leto$ denote the von Mises stress
Then, according to [8] the mixed boundary value problenvhich is obtained only from linear elastic computations and

(BVP) of linear isotropic elasticity is described by: let oy be the von Mises stress which also considers plastic-
ity. Here,oy is called elastic-plastic von Mises stress. If lin-
0.0%u)+f=0 inQ (1) e elasticity leads to stress values greater than the iadater

yield strength, Neuber shakedown will estimate correspond
, . T . ing elastic-plastic stress values. An energy-consematio
with 6%(u) = A(0-w)l +p(Du+ Ou™) and with boundary angat; is the foundation of Neuber's approach. It resulés in

conditionsu = 0 0n9Qp ando®(u) -v =g ondQn. Here, rejationship between the elastic von Mises stresand the
A and p are the Lame coefficients. The linearized Stra'@lastic-plastic von Mises stress:

rate tensor®(u) is defined as®(u) = %(Du +0u’), ie.

€ =3 (3—3}' + %—L)‘(ij) fori, j = 1,2,3. Numerical solutions of (K; 08)? of o (ov)l/n.

the BVP can be computed by an FEA, confer [16], [8] and E YT E K
Section 2 below. _ _
The knowledge of the threshold between elastic arfd€re, the Ramberg-Osgood approach is also ukeds the

plastic deformations is very important as plastic deform&0tch factor, which is set to one dj is obtained from the
tions can allude to an imminent residual fracture. AccaydinBVP (1) where notches are incorporated in the boundary def-
to [1] this threshold is often described by so-called yieid ¢ inition. Given the elastic comparison stress we can thus

teria. In this work we use the von Mises yield criterion whicl¢@lculate the elastic-plastic von Mises stress by solvég (
is given by Thereby, we are able to obtaépfrom (4). Note that we also

write o, = SD1(a®).

(®)

1
\/5 [(01—-02)2+ (01— 03)?+(02—03)?| =k, (2) 1.2 Fatigue and the Coffin-Manson-Basquin Equation
Fatigue describes the damage or failure of material un-
wherekeg is the critical value of the criterion anah, 02,03 der cyclic Ioadmg,_confer [1], [20] and_ [2].' Major examples
. -7 7> of cases where fatigue occurs are activation and deactivati
are the principal stresses. Here, the left-hand side is pro-

portional to the elastic strain energy of distortion. If thoperations, e.g. of motor vehicles and of gas turbines, and

criterion is applied to uniaxial tensile tests the relasioip Oﬁcili?:gcl):?a\tlgrtee??;?IL;JQI; dMﬁ;egiLnggfgiigmum-
ke = Rp/+/3 is obtained, wherR, is the critical value of the pny 9 Y

o . o : er of cycles until a material fails under cyclic loading. In
only nonzero principle stress in a uniaxial tensile teste Th, . Y . . y Y
. . : his work, we will consider a compressor component of a
von Mises stress is defined as

gas turbine subject to surface driven low-cycle fatiguek)L.C
For backgrounds on surface driven LCF failure mechanism
oy = \/% (01— 02)2+ (01— 03)2+ (02— 03)2].  (3) \;V:S [r4e]spect to polycrystalline metal we refer to [1], [23] [
We now consider important methods of fatigue analysis
Thus, the previous criterion can be writtenms= Rp and be  and closely follow Section 3 of [5] and [1]. In fatigue speci-
used to predict yielding of metal under any loading conditiomen testing the number of cycles until failure is determined
from results of uniaxial tensile tests. If the tests are strain controlled so-calleéd- N diagrams —

In the following we introduce the Ramberg-Osgoodee Figure 1 — are created, where the relationship between
equation, confer [17]. It can be used to locally derive straithe strain amplitude, and numbeNN; of cycles until crack
levels from scalar comparison stresses such as the von Miggigiation is called Wohler curve. Usually, the range otles
stress. These strain levels determine strain-contradiegife is subdivided into low-cycle fatigue (LCF) and high-cycle f
life. The Ramberg-Osgood equation establishes stresigrstitigue (HCF). LCF loads are often strain controlled, whereas
curves of metals near their yield points. It is very acClHCF loads are mainly stress controlled so that correspgndin
rate in the case of smooth elastic-plastic transitions whig— N diagrams are analyzed.
can be observed for metals that harden with plastic defor- For the purpose of analysis the strain amplitiegds
mations, for example. IK denotes the cyclic strain hardensybdivided into an elastic and plastic part wheye: £¢' +&f
ing coefficient anch the cyclic strain hardening exponentthg, i14s.  In the LCE range the plastic paﬁ' dominates,
Ramberg-Osgood equation is given by whereas in the HCF range the elastic g8tplays a greater
role. Introducing the parameters fatigue strengjthand fa-
tigue strength exponettwe present the so-called Basquin

Oy oy\ /n
=2 (3 )
with Young’ moduluE = %ﬁf“) The equation definesthe !Confer[19]for details on Neuber shakedown in conjunctigitequiv-

alent stresses. As an alternative to this method one cositdusle Glinka's

comparison straie,, where we also write, = RO(0y). method, confer e.g. [9]



€a(l0g) initiation here identified with failure of a system or com-
ponent. If P denotes the underlying probability measure
Fn(n) =P(N < n) is the cumulative distribution function and
fn(n) = dRy(n)/dnthe density function. The survival func-
tion is defined bySy(n) = P(N > n) = 1— Fy(n) and the
hazard function by

PN<N<n+AnN>n)  fy(n)

pl h(n) = lim )
€a () ANn—0 An 1—Fn(n)
Ni(log) confer [13].his also called hazard rate or instantaneous fail-
Fig. 1. EN-DIAGRAM OF A STANDARDIZED SPECIMEN. ure rate function. For a small Stm the eXpreSSiOh(n) -An

is an approximation for the propensity of an object or sys-
o tem to fail in the next time stefAn, given survival to time
equationeg = - (2N)° for the elastic part, wher€ is n. For a large numbem(n) of items in operation at tima
Young's modulus. Regarding the LCF range the Coffirthe productm(n) - h(n) is approximately the number of fail-
Manson equatiomgI = €} (2N;)¢ describes the denominatingures per unit time. Defining the cumulative hazard function
plastic part, where the parametefsndc are called fatigue H(n) = [g'h(t)dt one can show that the survival function sat-
ductility and fatigue ductility exponent, respectivelyorfa  isfiesSy(n) = 1— Fy(n) = exp(—H(n)). This shows that a
detailed discussion of the physical origin of this equatien model ansatz for the hazard function leads to a correspgndin
refer to [4]. The combination of the previous equations seadlistribution functionFy.
to the Coffin-Manson-Basquin (CMB) equation Now, we introduce the crucial assumption for the local
and probabilistic model for LCF of [5] in the case of poly-
| | of - crystalline metal. Consider LCF failure mechanism on the
Ea=¢; +€§ = E(ZNi) +€5(2N)°. (6) component which is represented by the dom@inWe as-
sume that the surface zone that is affected from the crack ini
The parameters can be calibrated according to the test datition process of a single LCF crack is small with respect to
see Figure 1 — by means of maximum likelihood methods, féfte surface of the component. This surface zone corresponds
example. Confer [21], [13], [20] and Subsection 3.1 below!o faces of a few grains. As long range order phenomena are
Structural design concepts with respect to LCF oftewnusual in polycrystalline metal, we pass to the following
consider the component’s surface position of highest stregssumption:
and then analyze the Wohler curve which corresponds to thesumption (L)
conditions at that surface position. Mostly safety facames In any surface regioA C 0Q the corresponding hazard rate
imposed to account for the stochastic nature of fatigue, siba is a local functional of the elastic displacement figloh
effect€ and for uncertainties in the stress and temperatuifeat particular region with
fields. Note that sometimes several surface positions &fhig
est_ stress are_considered wh_ich depends on th(_a component. ha(n) = / p(n; Ou, C2u) dA @)
This concept is called safe-life approach to fatigue design A
and is often used in engineering as well as very similar meth-
ods, confer [1]. Here, Ou is the Jacobian matrix and?u the Hessian of
Note that several extensions exist to the CMB equatidh Note that the loads that we consider in the given con-
(6). In particular, when approaching the HCF region, medfXxt (mainly elastic plastic stresses and strains) caneadids
stress effects are of increasing importance. The modifieessed as functions afu. The integrang is called hazard
Morrow equation is one approach that would consider suélgnsity function.
effects. For further discussions confer [2]. Assumption (L) is also called the property of spatial
additivity of hazard rates. A motivation of (L) and more
detailed backgrounds can be found in [5]. For mathemati-
cal simplicity, we restrict ourselves to the case where only
fhe dependence on elastic strains (or equivalently sge&se
"ken into account.
In the case of inhomogeneous strain fields assumption
) implies h(n) = [ p(n; ) dA for some hazard density

1.3 From Reliability Statistics to Probabilistic LCF

Now, we introduce the local and probabilistic model fo
LCF as presented in [5] and [6] which can be derived fro
reliability statistic, confer [13].

We model failure-time processes on continuous scal
although time in our context is a number of load cycleg i p. Because offn(n) = 1— exp(—H(n)) = 1 —

and thereby an integer number. LKt denote a contin- g, 4 ) we obtain for the probability of failure in
uous random variable which represents the time of Crage ntil cyclen:

n
.8
2Note that different geometries of test specimens lead tterdift Fn(n) = 1—exp<—/0 /()Q p(t;e )dAdt) . (8)
Wohler curves, confer [2].



The ansatz (8) can also be derived by the Poisson point ptbem by means of usual maximum likelihood methods, con-
cess withp(n; €®(x)) as the intensity measure. For details ofer Section 3, [21] and [13]. Furthermore, note that volume
point processes we refer to [11] and [12]. The advantage arfiven fatigue could be considered as well by replacing the
the point process is that also the probability of a given nursurface integral in (12) with a volume integral whose inte-
ber of cracks initiations iA C 0Q within n load cycles can grand only differs by different material parameters. For a
be computed via discussion of volume driven fatigue such as HCF confer [1].

With respect to materials engineering, the local and
probabilistic model for LCF has significant advantages com-
pared to the safe-life approach to fatigue design: The model
bypasses the standard specimen approach and takes size ef-
for z= f(;‘ [ap(t;€%)dAdt But if cracks have grown suffi- fects into account, i.e. results from arbitrary geometuies
ciently large they will mutually influence their local stees der LCF failure mechanism can be employed to calibrate
fields and thus the approach will break down. our model and every position of the surface of an engineer-

We now establish a link to deterministic LCF analysiéng part is considered by a surface integral which does not
via CMB equation (6) which leads to an appropriate choideeed information on Wohler curves of a specific specimen.
for the hazard density functign We assume that the numberThereby inhomogeneous stress fields are taken into account.
N of cycles to crack initiation are Weibull distributed which

can be realized by the choice of a Weibull hazard ansatz
2 FINITE ELEMENT ANALYSIS AND POSTPRO-

m n m-1 CESSING
p(n;x) = p(n;€8(x)) = Noo€50)) (N (se(x))> . In this section we describe our finite-element postpro-
det det (10) CeSSOr which computes the distribution function with respe
Here,mis the Weibull shape anbige(e®) the Weibull scale to fatigue life. Firs_t, we briefly _intro_duce iqto concepts
parameter which is supposed to depend on the elastic strgigiig'sZzetﬂ'eWﬁs?'srgﬁsssnourme”cal integration and back-
tensore®(x)of the BVP (1). Combining (8) and (10) leads to? postp '
the following model of [5]:

P(number of crack initiations oA = q) = eZ§ 9)

(Local and Probabilistic Model for LCF) 2.1 Finite Element Analysis and Lagrange Elements
Let the scale fieldNget(X) = Nget€a(X)), X € 0Q, be the so- In order to numerically solve the BVP (1) of linear elas-
lution of the CMB equation (6) ticity on a three-dimensional polyhedréhwe apply FEA,

where a so-called weak formulation is considered on a finite-
o b . dimensional space of functions, confer [8], [15] and [14].
ga(X) = E(ZNdEt(X)) + €% (2Nget(X))", (11)  This function space and the geomefyare described by a
mesh of finite elements, where each element consists of a
wheree,(x) is computed frome®(x) via3 linear isotropic three-dimensional compact and connectedrsand of a fi-

elasticity, from the von Mises stress,(x), from ga(x) = Nite set of basis functiors = {1, ..., Yn,,} associated to a
SD1(0,(x)/2) according to Neuber shakedown and fronget of nodeday, ..., ang} in T. In the following{T,M} de-
the Ramberg-Osgood equation wita(x) = RO(Ta(X)). notes a finite element and the functiongbére called shape

Then, the local and probabilistic model for LCF is given bjunctions. The FEA solution of the BVP (1) restrictedTo
the cumulative distribution function Is then a certain linear combination of the shape functions.

Very popular finite elements are the Lagrange finite el-
< n m s \™m1 ements which are contained in most FEA packages. In our
Fn(n) =1—exp| — / / — (—) dAds) . (12) example case of a compressor disk we will use Abaqus 6.9-2
70 Jaq Neet \ Noet and Lagrange elements of Serendipity class (C3D20) where

. ) . the shape functions are of the form
for n > 0 and somen > 1, which yields the probability for

LCF crack initiation in the intervgl, n]. _ N PR P
The shape parameterdetermines the scatter of the dis- Wix) = Ogiléiagz Giviois X170 (13)
tribution where small values fon > 1 correspontito a large i1+i2+i3<3
scatter and where the limit — oo is the deterministic limit.
Note that the Weibull hazard function can be easily replacéar coefficientsn;, j, i, determined bypi(a;) = ;.
by any other differentiable hazard function with scale para Now, principles of mesh and finite element generation
eterNget. are briefly introduced, where we closely follow [8].
The CMB parameters of the model are not the same as (Mesh)
obtained from fitting standard specimen data. We calibratdie mesh of a domai® is given by the union of com-
pact and connected se{Im}i<m<n, With Q= L_Jm;'l Tm
and all interiors nonempty and pairwise disjoinht de-
3Confer Sections 1.1 and 1.2. noting the greatest distance of two pointsTinwe define
40 < m< 1is not realistic for fatigue. Kn = {Tm}1<meng Whereh = max{hr | T € {Tm}1<meng }-



3D Finite Element Constructions: Tetrahedrons and Bricks

The starting point for the construction of meshes is a
geometric reference cell from which the different sets are
generated.

(Generated Mesh, Reference Cell)

A meshxy, of a domaim is called generated if there exists a
diffeomorphisnd Y+ for everyT € xp and a fixed set such
thatY(T) = T. The seff is called reference cell.

Now, we define the so-called geometric transformation
which can provide the previous diffeomorphism, confer [8]:

(Geometric Transformation)

Let {T,M} be a finite element with shape functions
{P1,...,Qn,,} and let {ay,...,an,} be three-dimensional ©0 o 60 @0
nodes. Then the geometric transformation denotes the maf; > GEOMETRIC TRANSFORMATION AND INTEGRATION

POINTS ON THE UNIT TRIANGLE AND RECTANGLE.

0.1) 01 (11
- Integration Point

= Y(X) = > aBi(%). (14)

In most cases a mesh generator produces a liagf
timesNe nodes such agaf’, .., an, f1<m<ng- Here,Neis 2 2 postprocessing
the number of elements again. The vecta§', ..., a}) eo}
are also defined as the geometric nodes ofnttta element. Recall that the local and probabilistic model for LCF is
If Ym is the geometric transformation corresponding to thgiven by the cumulative distribution function (12). In the
reference cell and to{af",.. 8Nt Withm=1,... . Ngs we  following we address numerical integration and explain how
setTy = Ym(T)- So we obtainm elements and can write the linearized strain fielef(x),x € Q, is computed by means
down the following definition: of linear elastic results from FEA with Lagrange elements.
(Geometric Reference Finite Element)

If a finite element{T,Mgeo} is used for mesh generation by ~ The surface integral in (12) is numerically computed
means of given nodes by quadrature formulae. Note that we can also numerically

compute volume integrals, where in (1X) is replaced by
m m Q. This can be of higher interest if we extent our model
{af, "'7angeo}1§m§Nel’ (15)  to volume driven failure mechanism such as HCF. Because
locations of stress concentrations will have a major cbuatri
tion to our probability functional we have to consider highe
nonlinearities in the integrand by our numerical approach.
Therefore, we will use quadrature formulae of higher order.

its geometric transformationg, and settingim = Ym(T A) for
m=1,...,Ng, it is called the geometric reference finite ele:
ment.
(Generation of Lagrange Elements)
Finally, we consider the generation of Lagrange elements
{T.M} from a reference Lagrange elemef, I'I} Here, of a finite element which contributes to the boundaryof
{& }1<i<n,, denotes the Lagrange nodes {)T I'I} and
S and then sum up each of that integral values. Moreover, the
{{1,...,Pn,,} the corresponding shape functions which arg
geometric transformation (14) can be used as a chart to-trans
assigned to the nodes \la(&;) = &;;. In this casdl = I'Igeo ) . .
and given nodega™, ...a™ }1-mon, provide a meship form each face integration on the corresponding map area
, 177 “geo] 2SMS el _ which is the unit triangle in case of tetrahedrons or the unit
with reference celll, geometric transformation¥t and rectangle in case of bricks. Also see Figure 2, where exem-
setsT = Y7(T). The nodes ofl satisfya = Y7 (&) for pjary geometric transformations and integration poines ar
i =1,...,nsh In order to construdtl consider for functions gepicted. For more details on surface integration consider
vthe map the comments to (22) below and the term of integration over
submanifolds as described in [22], for example. Substituti
Vi—s @r(V) =vo Yt (16) for multiple variables is employed in case of volume inte-
grals and thus the element integrals are transformed to the

S . . ) unit tetrahedron or unit brick.
which is linear and invertible. Then, the shape functiors ar

given by = {g:*(p)| p € M}. (Quadrature of Order K)
LetK be an integration domain, let thenumberso, . .. NOR
be denoted as weights and thepoints&s,...,§, € K as

5A diffeomorphisms is continuously differentiable map wadsverse integr?tion p_OimS (quadrature points). The nggh_ts and in
exists and is continuously differentiable as well. tegration points are called quadrature of orlleif k is the

Since Q is a polyhedron which consists of finite ele-
Ments we can conduct the integration of (12) on every face



Table 1. QUADRATURE ONTHEINTERVALK = [a,b]WITHM= & c T Letx be the coordinates that describe the locations
(a+b)/2ANDd=b—a of Tj. Because of the geometric transformation we have
Y5, (%) for somek € T. Recall the form of the linearized
strain rate tensor:

Kq lgq| Int. Pointsg, Weightsoy
¥ 3 ei00=2 (Mo M), ije(ns)
1 1 m _ 6~ 1] - 2 aXJ OX. ) 7] )& 9
3 2] mxy 15
5 3/ mid./3 53 with u; components of displacement vectorin order to ex-
2V5 18- press the strain completely in coordinatesf the reference
m 1—886 element{T,lM}, one has to consider the chain rule and to
z ~ implement
7 4 mx3(\/a5+2v30/35) (1-1,/2)5 P
23 1,1 /5)\% . Nsh
med(ya5-280/35) (d+hyE)s  QWmovilig S, My icpngy g
0% & 0K
hich follows from (18)) and
largest integer such that (whi W (18))
a(Y%), Rsh oQ .
Iq ( AT_-I)I (SZ) = (ak)| Lljk (),z)a 1] € {17 273} (20)
/ p(x)dx='S wp(&) forall 0 & 0%
K =1
(17)  (20) leads to the Jacobiativy, (X) of the geometric transfor-
€Py= i, i XX g, real b mationY of (14).
Perk ogilzidgk 7L d |l Considering material parameters such as Young’s mod-
igt--tig<k ulusE and Poisson’s ratie, we can now compute with re-

spectto the coordinatése T the stress tensor, the von Mises
With respect to intervalfa, b] Table 1 shows correspondingStress (3), the elastic-plastic von Mises strgaccording to
weights and integration points. Confer Table 8.1. and &2. Neuber shakedown (5), the comparison stegiaccording to
[8] as well, where Table 8.2 contains quadrature formulae f§1€ Ramberg-Osgood equation (4) and finaljy; according
triangles. Note that a quadrature on an interval can be ud@dhe CMB approach (11). _
to obtain a quadrature on a rectan¢geb] x [c,d] by sub- Recalling (12), we explain the computation &§(n):
dividing the multidimensional integral into one-dimensip L€t 7ij be thej-th face of the-th element foi = 1,..., Ngj
integrals. This results into the four integration pointgteg  @ndj = 1,...,Ne, whereNg is the number of faces of the
unit rectangle in Figure 2. Similarly we obtain quadraturgonsidered elementtype. L&}, oo be 1 if 7ij is a subset of
formulae for bricks and thus can numerically integrate ovéie surfac@Q with area greater than 0, otherwise let it be 0.
volumes of finite elements. For volume quadratures on tetrBben,
hedrons and quadratures of higher orders we again refer to
Section 8 in [8]. n m s \m1 1 \"
. . .. . m
Considering the finite element generation, we use the/ / N \N dAds=n / <) dA
: . 30 Ndet \ Ndet a0 \ Naet

coordinates of the nodes, the displacements of the nodes ang N m
the connectivity (information on which nodes belong to a _ m 2 < {6 / <i> dA]
specific element). Moreover, we have to employ the explicit ,;J; ! 7 \ Nget
form of the shape functionflo, ..., {n,, } of the reference
Lagrange elemenfT,lM}. Then, we obtain the geometric
transformation for every finite elemefit;, M, } according to

(21)

In case of bricks we integrate over the unit rectangle as map

(14) and the local displacements on evédyyaccording to area.

(16): L N
LVar [ (k) e e
. AKMJ o \Neatyy () VO848 (22)

X (U o Y7) (%) = 5 ukPi(X), (18)
k=1 with charts  via(s) = Y5(0,51,%).Y2(s) =
Y7 (1,81,%2), Vi3(S) = Y7 (81,0,%2), Via(S) =
with uy displacement vectors at each nodg §f N, }. Y7.(s1,1,%),Yis(s) = Y7.(s1,%,0),Vie6(s) = Y7(s1,%.1)
Now, the computation of the linearized strain rate tenséor s = (s1,%) € [0,1] x [0,1] and with the Gram de-

1 x|
g% is explained. We will express the fields in dependence términant gYi(s) = det(Oyij(s)" Oyij(s)), where Oy;;



is the Jacobian ofjj. In case of tetrahedrons we inte-  @s
grate over the unit trianglé as map area with charts %
Vir(s) = Y7(0,51,%) ¥2(s) = Y7(s1,0,%),Wi3(s) =
YT (s1,%,0),Via(s) = Y5 (s1,%,1—s1 — ). In case of
volume integral the Gram determinant (21) has to be replace
by |det(DYT)| and the integration is conducted over the
whole reference brick and tetrahedron, respectively.

Now, we use quadrature formu(é|,m)|:1’_,_’|q to nu-
merically compute the cumulative distribution functior2)1

Considering (21) and (22) leads to: \,
Fu(n) Fig. 3. FEA RESULTS OF ABAQUS 6.9-2 FOR THE VON MISES
STRESS FIELD OF THE COMPRESSOR DISK.
. Ne Ne lq 9% (&)
~1—exp| —n 6i.aQZl—-(o|
2, 2,572 2. Naedyy (€))"
n m
= 1—exp<— (ﬁ) ) , 3.1 FEA Model and Parameter Calibration
(23) In the following we consider two states of the compres-

sor disk: The shutdown state and the operating state. Before
. the gas turbine is activated the compressor disk is sulojecte
where we defined the scale value to a homogeneous temperature field but to no stresses. This
constitutes the shutdown state. In the operating stateiske d
~1/m is subjected to an inhomogeneous stress field. The tempera-
) (24) turefield is still homogeneous, but its value has increakied.
is assumed that the fields are stationary which is only an ap-
proximation regarding the real operating state of the disk.
. _ a conservative estimation the temperature field of the shut-
In case .Of bricks use Table 1 and in case of tetrahedrons -E%-WH state is set equal to that one of the final state, otherwis
ble 8.2 in [S]' Equation (23) ShOWS. _thgt the Weibull ha thermal mechanical fatigue (TMF) has to be considered. The
ard ans_atz n thg Io_cal and probabilistic LCF model lea ransition from the shutdown state to the operating statie an
to a Weibull distribution for the componefunder surface then back to the shutdown state is considered as one load cy-

driven and strain-controlled LCF failure mechanism. Heryo "1 js assumed that the shutdown and operating state stay
the scale valug is computed according to chosen finite el: e same during the cycles which is again only an approxi-
ement types and quadrature formula. As mentioned in S ation

section 1.3 the parameters of the Ramberg-Osgood, the CMB
equation and the shape parametdrave to be calibratedvia ~ An Abaqus FEA model has been created to predict the
LCF-test results. displacement and von Mises stress field of the compressor
In this work the main input for FEA postprocessing ar;gisk in the operating state. The model consists qf approx-
the coordinates and displacements of the nodes and the dgi@tely 10.000 Lagrange elements of the Serendipity class
nectivity. Moreover, values for the parameters of our mod€F3D20) which is given in (13). The compressor disk is sub-
must be given which depend on the considered materiicted to a homogeneous temperature field in the operating
Note that we do not employ additional information of FEsState whichis considered in the FEA model by corresponding
packages on which faces; contribute to the surfacaQ values for Young’s modulus and Poisson’s ratio. The shut-
with a non-vanishing area, so that we identify the surfadown state is already at our disposal as the d!spla_cement and
only via the main FEA output. This identification of the surStress fields are zero and the temperature field is set equal
face can numerically fail if finite elements are significgnt| 0 the homogeneous one of the operating state. Thus, the
distorted. But in most applications there are at most a few Btain input for our postprocessor are the coordinates of the
such distorted elements and their contribution to the dverfodes, the displacements of the nodes and the connectivity

probability of crack initiation can often be neglected. of the FEA model prediction which determine the approxi-
mation of the displacement field in the operating state and

the geometry of the disk.

3 LCF-LIFE ESTIMATION FOR A COMPRESSOR Finally, values for the material parameters of the LCF
DISK model must be transferred. For this purpose we first cali-
In this section we consider a linear elastic Abagus mod@fate the LCF model with respect to the disk material ac-

of a compressor disk, see Figure 3, and estimate its Weib@@rding to standardized LCF tests. Considering the cumu-

distribution with respect to LCF life by means of our postlative distribution functionFy(n) of (23) and defining) =

processor. (fagz NgerA)fl/m, we obtain for the corresponding density

_(e% dVIE)
n= (i;jzléﬁj’m I; (Naet(Vij (&))" @



function fy(n) the expression

=g 3(2) e (3)] 1o

We subsume the parameters of the model in a ve@tor
which includes the parameters of Ramberg-Osgood and of
CMB and the Weibull shape parametar The experimen-
tal data set forg strain-controlled LCF tests is given by g
{ni.&,0Qi}_; 4 Here,n is the number of cycles until
crack initiation and; is the strain on the gauge surfai@;.

We estimate (calibraté) by means of maximum likelihood.
The log-likelihood function is defined as

Probability of LCF Crack Initiation

2e-04 3e-04 4e-04

le-04

0e+00
1

I T T T T I
0.000 0.002 0.004 0.006 0.008 0.010

log (£ ({(,&,0Qi)}icqa...q)) [6])
d (26)
= 3 log(f(2,&)()[6). v

Fig. 4. WEIBULL DISTRIBUTION FOR LCF CRACK INITIATION
Let 8 denote the likelihood estimator, théris given by ON THE COMPRESSOR DISK.

= méa\x{log (£ ({(ri,&,0Q) }icqr..qr) [6]) } - &0

Having optimized (27) and found the estimafore can now

disk.

3.2 Results of the Probabilistic Approach to LCF
The mostimportant result of the numerical integration i-
our model is the scale parameteof the Weibull distribution
(23) which yields the probability for LCF crack initiatiomu
til cycle N. The corresponding Weibull shape parametés
already estimated by the calibration of the previous sactio Fig. 5. CRACK INITIATION DENSITY.
The Weibull distribution is shown in Figure 4 for low num-
bers of cycles compared th Here, failure is defined by the
initiation of the first LCF crack on the component and PoF  With respect to field data of already operating compres-
denotes probability of failure ard* multiples ofn. sor disks no failure has occurred so far. Our postprocessor
ForN* = 3.231-10 3 the PoF is 6142- 10 3%, for ex- predicts for that number of disks and service cycles a low
ample. If we consider that the compressor disk consists of BF. Note that the assumptions for the shutdown and final
disk segments, where one is shown in Figure 3, the probalsitate as well as the FEA model only approximate the real
ity for the initiation of the first LCF crack on the compres-operating conditions of these compressor disks. In particu
sors disk is ®70%. From a design perspective one deciddar, consider that the field data consists of informatiomfro
which PoF is acceptable and then chooses the correspondiiftgrent gas turbines whose service conditions can be very
number of allowable shutdown and service cycles. Figuredifferent. Moreover, uncertainties in the model paransfer
shows the crack initiation density Wt on the disk’s surface. —recall the previous section and confer the end of thissecti
This density corresponds to the local expectation value fetinfluence the real PoF of the compressor disk. Nevertheless
the number of crack initiations. One can see that the cratlle model is able to predict a low PoF.
initiation density is very much localized at the bearingflan As a computational validation item of our tool we in-
As we first compute the Weibull scale for every boundaryestigated whether the numerical integration converges re
face we can quantify this localization. In case of the prevgarding the order of the chosen quadrature. Since the FEA
ous value folN*, the 21 faces with the greatest crack initiamodel consists of nonlinear Lagrange elements of Serendip-
tion density have a combined PoF of already3.- 10 3% ity class the postprocessor employs quadratures of Table 1,
which is more than 90% of the PoF for all boundary faces.confer Subsection 2.2. We computed the Weibull sgdier




and [24]. This could accelerate computational optimizatio

Convergence of Quadrature efforts significantly.
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