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Abstract

We analyze the general risk-neutral valuation for counterparty risk embedded in a Credit
Default Swap (CDS) contract by adapting the recent findings of Brigo and Capponi to
allow for simultaneous defaults among the two parties and the underlying reference credit,
while the counterparty risk is considered bilaterally. For the default intensities we employ a
Markov copula model allowing for the possibility of a simultaneous default. The dependence
between defaults of three names in a CDS contract and the wrong-way risk will thus be
represented by the possibility of simultaneous defaults.

Using our numerical results we investigate the effect of considering simultaneous defaults
on the counterparty risk valuation of a CDS contract. Finally, we study a CDS contract
between Royal Dutch Shell and British Airways based on Lehman Brothers applying this
methodology, illustrating the bilateral adjustments inclusive of the possibility of simulta-
neous defaults in concrete crisis situations.

Keywords Credit Default Swaps, Counterparty Risk, Risk-neutral Credit Valuation Ad-
justment, Default Intensity, Default Correlation, Simultaneous Default, Markov Copula
Model.

1 Introduction

In the last few years the CDS market has grown rapidly, the corresponding notional expo-
sures had a peak around 60 trillion dollars in 2007 and despite the financial crisis. Maybe
this growth should be anticipated in advance, since the CDS index market(iTraxx) is deep;

1This research was supported by the European Union in the FP7-PEOPLE-2012-ITN Program under
Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE - Novel Methods
in Computational Finance).
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however, the single-name CDS market is illiquid and dwindling, so that the easiest way to
adjust the exposure to credit risk has been to make new contracts rather than cancelling
CDS agreements already in running. Besides, due to the fact that many financial contracts
are traded over the counter (OTC) so that the credit quality of the counterparty may be
important, the counterparty having worse credit rating will default with more possibil-
ity. This has become even more relevant in the recent years as financial institutions have
witnessed increasing downfalls, the case of Citigroup and Lehman Brothers is an evident
example. How is the default possibility treated? A risk premium will be required as a re-
ward for assuming the default risk when investing in default risky assets, so that the reliable
evaluation of counterparty risk becomes necessary. In last years, many authors investigated
the counterparty risk in the CDS contracts, e.g. [4], [6], [8] and [10].

A general arbitrage-free valuation framework for bilateral counterparty default risk was
introduced by Brigo and Capponi [7], see also [5,6]. They provided a general formula for the
bilateral risk credit valuation adjustment (BR-CVA) for portfolios exchanged between risky
counterparties. This bilateral adjustment has the great symmetry property which means that
the adjustment seen from the point of view of each other is exactly the opposite, namely
the parties will agree on the value of the counterparty risk adjustment. They showed that
the value of the BR-CVA is the same as the sum of the value of a long position in a
zero-strike put option and the value of a short position in a zero-strike call option, both
on the residual net value of the contract at the relevant default times. Brigo and Capponi
focused their attention on the application of this symmetric valuation to CDS contracts,
namely not only the counterparty as protection buyer but also the investor as protection
seller is subject to default risk. Besides, the default events among parties are correlated by
a trivariate copula function, but the simultaneous defaults among the counterparties are
not considered.

Indeed, a simultaneous default can happen in the real financial market. Mathematically
we define simultaneous defaults among the counterparties as that the default times of
them are exactly the same. But in the real world we already can say that they default
simultaneously if they filed for bankruptcy protection on one day or within a few days, e.g.
the collapses of Lehman Brothers and Merrill Lynch were just within two days (September
13-14, 2008). In reality, it is possible that the defaults among the counterparties do not
occur simultaneously, but if one’s default has triggered a jump in the default probability
of the other one (e.g. if they are very highly correlated), which might end up defaulting
only within a short time period. For example, the protection seller’s default could trigger
a jump in the default probability of the reference credit so that the protection buyer has
to suffer a loss. In this work we refer to this case also as simultaneous default.

Although the protection seller has to compensate the protection buyer when he has a
default, but this claim is not big as long as the default risk of the reference entity does
not jump substantially within the seller’s default time. But in the extreme case, where the
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default of the protection seller defaults simultaneously with the default of the reference
entity, the payment would be the same as the full insurance payment. In this work, we
adapt the valuation framework of Brigo and Capponi using the valuation methods in [3]
which can take simultaneous defaults into account, so that simultaneous defaults between
contract partners can be considered. We design, a new BR-CVA formula which includes the
case of simultaneous defaults, keeping the two properties of the original formula explained
above. One of them is the great symmetry property, the other one is to say the value of
the BR-CVA can be represented as the sum of the value of a long position in a put option
and the value of a short position in a call option.

In the CDS contracts, the CDS price contains information about the joint default risk of
the contract partners, see [12]. Hence, CDS Spreads supposed contain a certain amount
of the implicit information about simultaneous defaults. For this reason, we employ the
Markov Copula Model with simultaneous defaults in [2] for default intensities, including
of the simultaneous intensities. This model can be simulated and calibrated only based on
CDS Spreads. Applying this model the dependence between defaults of three names in a
CDS contract will be represented by the possibilities of simultaneous defaults, if we choose
the correlations between intensity processes as zero. With numerical results we want to
study the effect of considering simultaneous defaults on the valuation of counterparty risk.

The outline of this paper is as follows. In the next section we give the BR-CVA formula for
a CDS which takes account of simultaneous defaults. Section 3 is devoted to the underlying
model of stochastic default intensity with the specification and the simulation. Section 4
gives the numerical computation of that BR-CVA formula. In Section 5 numerical results
are presented and discussed. In Section 6 we apply the methodology to compute the mark-
to-market value of a concrete CDS contract between British Airways, Lehman Brothers
and Royal Dutch Shell. Finally, Section 7 concludes this work. The proofs are provided in
the appendix.

2 Pricing Counterparty Risk of a CDS contract

2.1 General Set-Up

We consider a standard running CDS contract on which the protection payment and re-
coveries are paid exactly at the times of default. Respectively, we label by C, I and R the
counterparty, the investor and the underlying reference entity. Each of the three names
may default before the maturity of the CDS contract, and we denote by τC , τI and τR
their respective default times. These times are modeled as non-negative random variables
given in a probability space (Ω,G,Gt,Q), where Q is the risk neutral measure. We define
the enlarged filtration Gt := Ft ∨ Ht ∀t ∈ R+ to model the whole information in the mar-
ket, where the right-continuous and complete sub-filtration Ft represents all the observable
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market quantities and Ht = σ ({τR ≤ u} ∨ {τC ≤ u} ∨ {τI ≤ u} : u ≤ t) denotes the right-
continuous filtration generated by the default events of three names under contract. In
particular, the random times τj , j = C, I,R are Gt stopping time for t ∈ R+. Next, we
define the first default time as the minimum of τC , τI and τR : τ = τC ∧τI ∧τR. In addition,
we define the first default time of the two counterparties : τ̂ = τC ∧ τI .

2.2 Pricing Formula

In this paper, all cash flows and the prices are considered from the perspective of the
investor as protection seller.

Definition 2.1. We define the discounted payoff of a CDS with a default-free counterparty
at time t as:

Π(t, T ) :=D(t, τR)(τR − Tγ(τR)−1)PI{Ta<τR<Tb} +
b∑

i=a+1

D(t, Ti)αiPI{τR≥Ti}

−D(t, τR)LRI{Ta<τR≤Tb},

(1)

where t ∈ [Tγ(t)−1, Tγ(t)), i.e. Tγ(t) is the first date among the T ′is that follows t, and where
αi is the year fraction between Ti−1 and Ti. D(t, T ) is the stochastic discount factor at time t
for maturity T. We assume the Loss Given Default Lj to be deterministic and Lj = 1−Rj ,
where the recovery Rate Rj , for j = C, I,R is also assumed to be deterministic and the
notional is set to one. The periodic premium rate is denoted by P.

Definition 2.2. We denote by St the price of a counterparty risk-free CDS contract ma-
turing at time T and

St = E {Π(t, T )|Gt} , t ∈ [0, T ], (2)

where E denotes the expected value under the risk neutral measure.

Now, we are in position to define the discounted payoff for a CDS contract with any credit
event, i.e. that is the CDS contract that also accounts for the counterparty risk associated
with the two counterparties of the contract. For this goal we adapt the conventions of so
called close-out cash flows in [3] as follows.

We define the following events ordering the default times of three names in the CDS contract
between valuation t and maturity T :

A = {t < τ = τR ≤ T}, D = {t < τ = τC = τI ≤ T},
B = {t < τ = τC ≤ T}, E = {t < τ̂ = τR ≤ T},
C = {t < τ = τI ≤ T}.

(3)
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Definition 2.3. The discounted payoff of a counterparty-risky CDS contract at time t can
be written as:

ΠA(t, T ) :=IAD(t, τ)(−LR)

+ IB

[
D(t, τ)

(
RC(Sτ − I{τ=τR}LR)+ − (Sτ − I{τ=τR}LR)−

)]
+ IC

[
D(t, τ)

(
(Sτ − I{τ=τR}LR)+ −RI(Sτ − I{τ=τR}LR)−

)]
+ ID

[
D(t, τ)

(
−(Sτ − I{τ=τR}LR)

)]
+ IE [D(t, τ)LR]

+D(t, τ)(τ − Tγ(τ)−1)PI{Ta<τ<Tb} +

b∑
i=a+1

D(t, Ti)αiPI{τ≥Ti},

(4)

where the term I{τ=τR}LR represents the exposure in case when the reference entity simul-
taneously default with any other default times.

• B : When the counterparty defaults, at default time τ , the value of the CDS until
maturity Sτ − I{τ=τR}LR is computed. If that is negative, the investor closes out the
position by paying the defaulting counterparty this price. If the value is positive, the
investor closes out the position and only receives a fraction RC of this value from his
counterparty. Therefore, in this case, we can define the close-out payment as

RC(Sτ − I{τ=τR}LR)+ − (Sτ − I{τ=τR}LR)−.

• C : In case of an investor default, if the value of CDS until maturity Sτ − I{τ=τR}LR

is positive, the counterparty closes out the position by paying this price in full. If this
value is negative, the counterparty only receives a fraction RI of this value to close
out the position. Hence, the close-out payment is defined as

(Sτ − I{τ=τR}LR)+ −RI(Sτ − I{τ=τR}LR)−.

• D : If the investor and the counterparty default simultaneously, then compute the
value of CDS like in case B und C, that is Sτ − I{τ=τR}LR, and if it is negative,
the counterparty receives a fraction RI of this value; however, if it is positive, the
investor receives a fraction RC of this value. Together, we set the close-out payment
for this case as

−(Sτ − I{τ=τR}LR).

• E : If the investor or the counterparty default simultaneously with the reference entity,
investor receives a fraction RC of the remaining recovery amount, (−LR)+, when the
counterparty defaults. Similarly, if the investor defaults, the counterparty receives a
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portion RI of the remaining recovery amount, (−LR)−. The close-out payment in
joint default including the reference entity has the form,

LR.

Definition 2.4. We denote by SAt the price of a counterparty-risky CDS contract maturing
at time T , i.e.

SAt = E{ΠA(t, T )|Gt}, t ∈ [t, T ]. (5)

Definition 2.5. The bilateral credit valuation adjustment (CVA) on a CDS contract ma-
turing at time T is defined as

BV At = St − SAt , (6)

for every t ∈ [0, T ].

Proposition 2.1. At valuation time t, the bilateral CVA on a CDS contract maturing at
time T can be written as

BV At =E
{
IB ·LC ·D(t, τ) ·

(
Sτ − I{τ=τR}LR

)+ |Gt}
− E

{
IC ·LI ·D(t, τ) ·

(
Sτ − I{τ=τR}LR

)− |Gt} , (7)

for every t ∈ [0, T ].

The proof can be found in the Appendix.

Remark 2.1. The above discussion shows that the BVA equals the sum of the value of a
long position in a zero-strike call option on the residual price of CDS and the value of a
short position in a zero-strike put option on the residual price of CDS. The option only
gives contribution, if the corresponding party default earlier.

Remark 2.2. Similar to the counterparty pricing formula in [7] the formula (7) has the
great advantage of being symmetric. This property means that the BVA from the view of
the counterparty is exactly the opposite of the investor (−BV At), this is to say that the
parties agree on the value of the BVA. Besides, from (7) we can conclude that the value
of this BVA can be negative and positive, the sign depends on which party is more risky to
default.

The following remark is directed towards the numerical evaluation.
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Remark 2.3. From (1) and (2) we can compute Sτ as

Sτ = I{τR>τ}

{
P

[
−
∫ Tb

max{Ta,τ}
D(τ, t)(t− Tγ(t)−1)dQ(τR > t|Gτ )

+

b∑
i=max{a,j}+1

αiD(τ, Ti)Q(τR > Ti|Gτ )

]

+ LR

[∫ Tb

max{Ta,τ}
D(τ, t)dQ(τR > t|Gτ )

]}
.

(8)

For the corresponding computation we refer to [11].

3 The Multivariate Markov Default Model

In this section we propose an underlying stochastic model following [2] and [1]. To this
end, we define a Markov Copula model of multivariate default times with factor processes
y = (yC , yI , yR) and the corresponding default indicator processes H = (HC , HI , HR) for
a CDS contract which will have the following key features

(i) The pair (y,H) is Markov in its natural filtration,

(ii) Each pair (yj , Hj) is a Markov process,

(iii) At every instant, either each name on CDS contracts defaults individually or simul-
taneously with other names.

Remark 3.1. The Property (i) allows us to address in a dynamic and theoretically con-
sistent way the issues of pricing and hedging credit derivates. Property (ii) grants a quick
valuation of single-name CDS contracts and independent calibration of each pair (yj , Hj),
whereas (iii) will allow us to account for a dependence between defaults of each name.

Towards these properties, we define henceforth the default intensities

λj(t) = yj(t) + aj , t ≥ 0, j = C, I,R, (9)

where aj is a constant, and where each yj is a Cox-Ingersoll-Ross (CIR) process given by

dyj(t) = κj(µj − yj(t))dt+ σj

√
yj(t)dWj(t), j = C, I,R. (10)

The parameters of each collection (κj , µj , νj , yj(0)) are positive deterministic constants
and we assume that each Wj is a standard Brownian motion process under the risk neutral
measure.
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Remark 3.2. We assume that the processes Wj are independent with each other, under
this assumption the specification as defined in (9) has Markov consistency. This is to say
the intensities of surviving names would not be affected by past defaults and the model
dependence between defaults is only represented by the possibility of common jumps.

3.1 The Model Specification

We define a certain number of groups Ml ⊆ {C, I,R} := MCDS of contract parties who
could like to default simultaneously, for l ∈ {{C, I}, {C,R}, {I,R}, {C, I,R}} := L and we
simply set Ml = l. However, λMl

can not only be interpreted as intensity of all parties
in l defaulting simultaneously. For example, the reference credit R will default with Ml =
{C,R} as long as he is still alive, if the investor I is already defaulted. Then for the default
intensity we have the following:

• the counterparty C defaults with intensity λ{C} + λ{C,I} + λ{C,R} + λ{C,I,R} as long
as he is still alive,

• the investor I defaults with intensity λ{I} + λ{C,I} + λ{I,R} + λ{C,I,R} as long as he
is still alive,

• the reference credit R defaults with intensity λ{R}+λ{C,R}+λ{I,R}+λ{C,I,R} as long
as he is still alive,

• the counterparty C and the reference credit R default together with intensity λ{C,R}+
λ{C,I,R} as long as they are still alive,

• the counterparty C and the investor I default together with intensity λ{C,I}+λ{C,I,R}
as long as they are still alive,

• the investor I and the reference credit R default together with intensity λ{I,R} +
λ{C,I,R} as long as they are still alive,

• the counterparty C , the investor I and the reference credit R default together with
intensity λ{C,I,R} as long as they are still alive.

Regarding with this specification we first set the non-negative bounded intensity functions
ãj(t) as

ãj(t) =
∑

{l∈L;j∈l}

λl(t), (11)

but the calibration scheme will be computationally costly. It is thus useful to devise parsi-
monious model parameterizations. For instance, we use constant joint default intensities,
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setting λl(t) = λl and thus for aj in (9) we have

aj =
∑

{l∈L;j∈l}

λl, j ∈MCDS . (12)

The default intensities for every j ∈MCDS as defined in (9) can thus be written as

λj(t) = yj(t) +
∑

{l∈L;j∈l}

λl, t ≥ 0. (13)

We define the following integrated quantities which will be used in the remainder,

Λj(t1, t2) :=

∫ t2

t1

λj(s)ds, Yj(t1, t2) :=

∫ t2

t1

yj(s)ds, Λl(t1, t2) :=

∫ t2

t1

λl(s)ds, (14)

and

Λj(t) :=

∫ t

0
λj(s)ds, Yj(t) :=

∫ t

0
yj(s)ds, Λl(t) :=

∫ t

0
λl(s)ds, (15)

where j ∈MCDS and l ∈ L.

It is obvious from (6) and (7) that we need the following conditional survival probabilities
to compute the counterparty risk adjustment as defined in (8)

Q(τR > t|GτC ), (16)

and
Q(τR > t|GτI ). (17)

Based on the above constructed model this two survival probabilities can be calculated by
the following propositions.

Proposition 3.1.

Q(τR > t|GτC ) = E {exp (−ΛR(τR, t)) |GτC} (18)

= E

exp

−YR(τR, t)−
∑

{l∈L;R∈l}

Λl(τR, t)

 |GτC
 . (19)

Proposition 3.2.

Q(τR > t|GτI ) = E {exp (−ΛR(τR, t)) |GτI} (20)

= E

exp

−YR(τR, t)−
∑

{l∈L;R∈l}

Λl(τR, t)

 |GτI
 . (21)

The two propositions follow directly from the Markov probabilities, cf. [2].
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3.2 Model Simulation

As described in [2] this model above allows a common shock model such that the simula-
tion of a random time τ is quite fast. Given the previously simulated trajectories of the
CIR processes yj for j ∈ MCDS , one essentiallly needs to simulate IID (Independent and
identically) exponential random variables ξĵ , for ĵ ∈ L ∪MCDS . Then one computes, for
every l ∈ L,

τ̂l := inf{t > 0; Λl(t) ≥ ξl} (22)

and for every j ∈MCDS ,
τ̂j := inf{t > 0; Yj(t) ≥ ξj}. (23)

Next we set for every j ∈MCDS

τj = τ̂j ∧ (
∧

{l∈L;j∈l}

τ̂l). (24)

4 Numerical Evaluation of the BVA Adjustment

In this section we perform a numerical evaluation of the BVA as defined in (7) based on
Monte-Carlo simulations.

First we need to generate the sample paths of the CIR processes, the simulation can be
terminated using the fact that the distribution of y(t) given y(s) as defined (10), for some
s < t is, up to a scale factor, a noncentral chi-square distribution, see [11]. Alternatively,
we can model this sample paths using the paths of the standard Brownian motion.

4.1 The generation of Break-even Spreads

Furthermore, we assume deterministic interest rates such that the default time τ and the
discount factor D(0, t) are independent. We know that the survival probabilities associated
with a CIR intensity process are given by

Q(τR > t) : = E
[
e−YR(t)

]
= PCIR(0, t),

(25)

where PCIR(0, t) denotes the price at time 0 of a zero coupon bond maturing at time t
under a stochastic interest rate dynamics given by the CIR process [11] and given by

P (t, T ) := A(t, T )e−B(t,T )y(t), (26)

10
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where

A(t, T ) : =

[
2h exp{(κ+ h)(T − t)/2}

2h+ (κ+ h)(exp{(T − h)h} − 1)

] 2κµ

σ2

, (27)

B(t, T ) : =
2(exp{(T − t)h} − 1)

2h+ (κ+ h)(exp{(T − h)h} − 1)
, (28)

h : =
√
κ2 + 2σ2. (29)

We return now to defining CDS premium rate P which can be computed by zeroing (8)
in P as break-even spreads.

We assume deterministic recovery rates and as well loss given defaults, so we set the loss
given defaults of the low, medium and high risk entity are respectively to LGDlow =
0.6, LGDmedium = 0.65 and LGDhigh = 0.7.

We show in Table 2 the premium rate P in basis points using the assumed deterministic
Loss Given Defaults and collections of the parameters in Table 1, each collection of the
parameters may take extreme values corresponding to a low, a medium or a high credit
risk, where the Loss Given Defaults of the extremely entity is also set to be 0.6.

Credit Risk Level κ µ σ y0
Extremely low 0.9 0.001 0.005 0.00001

Low 0.9 0.001 0.01 0.001

Medium 0.8 0.02 0.1 0.01

High 0.5 0.05 0.3 0.04

Table 1: Collection of parameters for initializing the CIR processes.

Maturity Extremely low Low Risk Medium Risk High Risk

1y 2 6 85 293

2y 3 6 97 298

3y 4 6 105 301

4y 4 6 110 302

5y 5 6 113 302

6y 5 6 115 303

Table 2: Break-even spreads in basis points generated using the collections of the parameters
of the CIR processes in Table 1.
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4.2 Market Intensities

Before producing the default times using the intensities we first have to determine the
constant aj for j = C, I,R in the model defined in (12). For modeling interest rates, the
condition

2κµ > σ2 (30)

has to be imposed to ensure that the origin is inaccessible to the process (10), such that
we can assure that the interest rates remain positive. To model the default intensities with
CIR model we relax the condition (30) such that we will not limit the parameters generated
by the CIR model.

If we assume that the processes yj , j ∈ MCDS are always non-negative. Then due to the
definition (9) the constant aj defined in (12) must be chosen as

aj =
∑

{l∈L;j∈l}

λl ≤ λj , ∀j ∈MCDS (31)

For instance, we can set as in [1], for every l ∈ L,

λl = αl inf
j∈l

λj (32)

for some non-negative model dependence parameters αl such that
∑

l∈L αl ≤ 1. The value
of αl determines possibility of the simultaneous defaults between the parties in the group
l, a larger value refers to the higher possibility of simultaneous defaults.

We denote the market implied intensity (hazard rate) for name j with λ∗j which can be
bootstrapped from the individual CDS quotes reported in Table 2. The bootstrapping
procedure is model independent and performed assuming a piecewise linear hazard rate
function, cf. [11]. Now we can calibrate the constant aj for every j ∈ MCDS by choosing
appropriate model dependence parameters αl and setting

aj =
∑

{l∈L;j∈l}

λl ≤ λ∗j . (33)

From the CDS quotes of the higher risk the bootstrapped intensity λ∗j is larger, thus λl, j ∈ l
is larger due to (32). Besides, for the same the intensity λ∗j , a larger dependence parameter
αl constructs the larger λl, j ∈ l. Hence, with the same exponentially distributed trigger
variable the simultaneous default time of the group l is smaller (earlier) through (22), if αl
is larger and consequently the possibility of the simultaneous defaults between parties in
the group l is higher.
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4.3 Monte-Carlo Evaluation

To compute the BVA on a CDS contract we perform the following steps based on Monte-
Carlo simulations:

1. Produce default times τC , τI and τR using (22),(23) and (24).

2. In case of B (see (3)), this is to say the counterparty defaults first. We need to compute
the term inside the first expectation value which has positive sign. First we check, at
the default time of counterparty whether the reference credit also defaults, for the
case of a simultaneous default we just need the loss given default LR. Otherwise we
compute SτC given in (8), the survival possibility in SτC can be computed by (19).

3. In the event of C (see (3)) we need the term inside the second expectation value which
with negative sign, the computation is similar to the last step.

4. Finally, we produce the BVA by discounting and averaging.

5 Numerical Results

We study a five years CDS contract on a reference entity traded by an investor and a
counterparty, where both the investor and the counterparty are defaultable. We assume
the payment dates to be every three months and the loss given default of the three names are
taken from a market provider and are fixed to 60%. Besides, we set the three names having
different levels of credit risk which are specified by the collections of the parameters in
Table 1. The parameters αl, l 6= {C,R} are assumed to be the same and equal with 0.01. We
compute the BVAs for each following scenario by varying the parameter α{C,R}. We denote
the BVA as a purchaser and a seller of the protection respectively by BV Ap and BV As, the
results are described in basis points. In the results below the number between parentheses
represents the Monte-Carlo standard error.

We assume the following scenarios:

• Scenario 1. The investor has low credit risk, the reference entity has high credit risk
and the counterparty has medium credit risk. This situation is the most common in
the real market.

• Scenario 2. The investor has low credit risk, the reference entity has medium credit
risk and the counterparty has high credit risk. We are facing a risky counterparty in
this case.

• Scenario 3. The investor has high credit risk, the reference entity has medium credit
risk and the counterparty has low credit risk. The investor is most risky itself.
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• Scenario 4. Both investor and counterparty have medium credit risk, while the refer-
ence entity has high credit risk (Risky Reference I).

• Scenario 5. Both investor and counterparty have low credit risk, while the reference
entity has high credit risk (Risky Reference II).

Table 3: The values of the BVA for the different scenarios.
Scenario Base Scenario Risky Counterparty Risky Investor Risky Ref I Risky Ref II

(α{C,R}) BV Ap BV Ap BV Ap BV Ap BV Ap

BV As BV As BV As BV As BV As

0.01 7.0 (0.1) 6.5 (0.1) -0.6 (0.0) 2.9 (0.1) 0.2 (0.0)
4.1 (0.0) 0.7 (0.0) -6.3 (0.1) -2.9 (0.1) -0.1 (0.0)

0.03 12.5 (0.2) 12.5 (0.2) -0.4 (0.0) 8.3 (0.1) 0.4 (0.0)
4.0 (0.0) 0.5 (0.0) -6.3 (0.1) -3.1 (0.1) -0.1 (0.0)

0.05 18.4 (0.2) 19.1 (0.2) -0.0 (0.1) 14.1 (0.2) 0.8 (0.1)
3.9 (0.0) 0.3 (0.0) -6.3 (0.1) -3.1 (0.1) -0.1 (0.0)

0.1 32.6 (0.3) 35.1 (0.3) 0.8 (0.1) 28.0 (0.2) 1.5 (0.1)
3.6 (0.0) 0.0 (0.0) -6.5 (0.1) -3.6 (0.1) -0.1 (0.0)

0.15 46.0 (0.4) 50.8 (0.4) 1.6 (0.1) 41.5 (0.4) 2.3 (0.1)
3.2 (0.0) -0.1 (0.0) -6.5 (0.1) -4.2 (0.1) -0.1 (0.0)

0.2 59.7 (0.4) 66.4 (0.4) 2.2 (0.1) 54.8 (0.4) 2.8 (0.1)
2.9 (0.0) -0.3 (0.0) -6.4 (0.1) -4.6 (0.1) -0.1 (0.0)

0.25 74.4 (0.5) 83.1 (0.5) 3.3 (0.1) 69.3 (0.5) 4.0 (0.1)
2.6 (0.0) -0.3 (0.0) -6.5 (0.1) -5.1 (0.1) -0.1 (0.0)

Table 3 clearly shows the effect of the wrong way risk. For example, if one looks at the
second column, one notices that as the possibility of the simultaneous defaults between
counterparty and reference credit gets larger, the BV Ap increases significantly due to (1)
the counterparty is the rikiest name (2) the higher represented positive correlation makes
the spread of the reference entity larger at the counterparty default, thus the option on the
residual price of CDS for the investor as payer will be in the money and worth more, but at
the counterparty default the investor only gets a fraction of it proportional to the recovery
value of the counterparty and (3) at the simultaneous default of the counterparty and the
reference credit, that option must be deep into the money, but the payer investor only gets
a fraction of it proportional to the recovery value of the counterparty, more BV Ap takes
place.

The adjustments BV Ap in Scenario 1 (Base Scenario) and Scenario 2 (Risky Counterparty)
are similar, since the possibility of simultaneous defaults between the counterparty and the
reference entity are the same if one has medium credit risk and the other one has high
risk. The adjustments BV Ap in Scenario 2 are a little bit larger than the corresponding
adjustments in Scenario 1, because the counterparty in Scenario 2 is riskier. One looks the
adjustments BV As in Scenario 1 and Scenario 2, at the simultaneous default between the
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counterparty and the reference entity, the option for the investor as the receiver will be out
of the money, thus slight adjustments required. In particular, as the dependence parameter
α{C,R} is larger, less adjustments takes place, but the changes are very small.

In Scenario 3, the values of the adjustments BV Ap have only small changes. For the small
dependence parameter α{C,R} the adjustment is negative, because the investor is riskier.
However, as the dependence parameter α{C,R} get larger, this is to say that the possibility
of the simultaneous defaults between the counterparty and the reference is increasing, the
investor as payer even requires the adjustments although he is risky, see the last three rows
at the third column.

An interesting pattern emerges from the fourth column (Risky Ref I). Contrary to earlier
works, e.g. [7], one looks BV Ap at the fourth column, one finds that as the possibility
of the simultaneous defaults between counterparty and the reference entity is increasing,
the BV Ap increases significantly. The reason is, the counterparty has medium credit risk
while the reference entity has high risk, thus they have higher possibility for larger α{C,R} to
default simultaneously, then the investor needs adjustments to against this risk. However, if
the counterparty becomes safer while the reference entity is still riskier, then the possibility
of the simultaneous defaults between the counterparty and the reference entity will be lower,
thus less adjustments will take place as reported in the last column (Risky Ref II).

6 Application to a Market Contract

We apply the methodology to run through the example in [7]. Particularly, we calculate the
mark-to-market price of a five-year CDS contract between British Airways (counterparty)
and Royal Dutch Shell (investor) on the default of Lehman Brothers (reference entity).
Following [7] we consider two CDS contracts. In the first contract Royal Dutch Shell bought
a 5-year protection on Lehman Brothers from British Airways on January 5, 2006. In
the second contract, Royal Dutch Shell selled a 5-year protection to British Airways on
Lehman Brothers on January 5, 2006. We assume that British Airways as the counterparty
computed the mark-to-market value of the both contracts on May 1, 2008. We just take the
CDS quotes and the calibrated parameters for the CIR process dynamics from [7] which
are reported in Tables 4 and 5, respectively. More information about the calibration can
be found in [7].

Similar to the procedure by Brigo and Capponi in [7] we evaluate the mark-to-market value
as follows:

(1) We take the CDS quotes of the three names on January 5, 2006 in Table 4 and the
corresponding parameters of the CIR processes in Table 5, and then calculate the value
of the five-year risk-adjusted CDS contract which started at Ta = January 5, 2006 and
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Maturity Royal Dutch Shell Lehman Brothers British Airways

1y 4/24 6.8/203 10/151

2y 5.8/24.6 10.2/188.5 23.2/230

3y 7.8/26.4 14.4/166.75 50.6/275

4y 10.1/28.5 18.7/152.25 80.2/305

5y 11.7/30 23.2/145 110/335

6y 15.8/32.1 27.3/136.3 129.5/342

7y 19.4/33.6 30.5/130 142.8/347

8y 20.5/35.1 33.7/125.8 153.6/350.6

9y 21/36.3 36.5/122.6 162.1/353.3

10y 21.4/37.2 38.6/120 168.8/355.5

Table 4: Market spread quotes in basis points for Royal Dutch Shell, Lehman Brothers and
British Airways, the notation x/y indicates that x is the CDS spread on January 5, 2006,
while y denotes the CDS spread on May 1, 2008.

Credit risk levels
κ µ σ y0(2006/2008)

British Airways
0.0266/0.6773 0.2582/0.0782 0.0003/0.2242 0.00002/0.00001

(name ’C’)

Royal Dutch Shell
0.0394/0.1835 0.0219/0.0089 0.0192/0.0057 0.0001/0.003

(name ’I’)

Lehman Brothers
0.036/7.8788 0.0432/0.0208 0.0533/0.5722 0.0001/0.6611

(name ’R’)

Table 5: The CIR parameters of British Airways, Royal Dutch Shell and Lehman Brothers
calibrated to the market quotes of CDSs in Table 4.

16



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

terminated five years later at Tb = January 5, 2011 as:

SATa = STa −BV ATa (34)

where the PR = 23.2bp is the five-year spread quote of Lehman Brothers as the
reference credit at time Ta, as mentioned before STa is the value of the equivalent CDS
contract without risk adjustment. All the loss given defaults are set to 0.6.

(2) At Tc = May 1, 2008, Royal Dutch Shell as CDS payer (British Airways in the second
CDS contract) calculates the mark-to-market value of the CDS contract. We keep the
CIR parameters of Royal Dutch Shell and British Airways the same as the parameters
at time Ta and vary the volatility of the CIR process associated with Lehman Brothers,
while keeping the other parameters fixed. We use the CDS quotes on May 1, 2008 in
Table 4 for λ∗j in inequality (33) to compute aj so that the default intensity processes
will be recalculated.

(3) Using the recalculated default intensity processes we evaluate BV ATc which is the risk
adjustment of the CDS contract from time Tc for five years, namely until Ta = May 1,
2013. For the risk-adjusted value of the CDS contract starting at Tc and maturing at
Td we have

SATc = STc −BV ATc , (35)

whereas the five-year spread premium and the loss given defaults are kept.

(4) Finally, we calculate the mark-to-market CDS contract value as

MTMa,c(PR,LC,I,R) = SATc −
SATa

D(Ta, Tc)
. (36)

We display the mark-to-market value of the both contracts described above in Figure 2
and 1, respectively. The mark-to-market value of the CDS contract without risk adjustment
is also shown in the figures. Besides, we recall the results of this example by Brigo and
Capponi in [7] in the figures, e.g. we take the corresponding mark-to-market value of the
both contracts described above whereas the correlation among the three names is set equal
to 0.

Figure 1 reports the mark-to-market value of the CDS contract between British Airways as
payer and Royal Dutch Shell as seller on default of Lehman Brothers under the increasing
dependence parameter α{C,R}. We check the effect of the increasing possibility of simul-
taneous defaults between Lehman Brothers and British Airways on the value marked to
markt by British Airways.

That mark-to-marked value of the CDS contract without risk adjustment is 529.3 bps
due to the widening of the CDS spread of Lehman Brothers. The risk-adjusted mark-to-
marked values of the CDS contract are closed to 529.3 and less sensitivity to the dependence
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Value of the CDS contract by British Airways as the CDS payer
agreed on January 5, 2006 and marked−to−market on May 1, 2008

The dependence parameter α
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 (
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s
)

528.8(0.1)

528.8(0.1)

528.6(0.1) 528.6(0.1) 528.5(0.1) 528.6(0.1) 528.4(0.1)

529.3

Figure 1: Value of the CDS contract between Royal Dutch Shell and British Airways on
default of Lehman Brothers agreed on January 5, 2006 and marked-to-market by British
Airways as the CDS payer on May 1, 2008. The blue line is the mark-to-market CDS
contract value without risk adjustment and the red line denotes the mark-to-market values
of the CDS contract with the adjustment which allows the possibility of simultaneous
defaults. The dependence parameters α{C,I} = α{I,R} = α{C,I,R} = 0.01, while α{C,R} is
increasing. The numbers in round brackets represent the Monte-Carlo standard error.
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Value of the CDS contract by Royal Dutsch Shell as the CDS payer
agreed on January 5, 2006 and marked−to−market on May 1, 2008
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514.1(0.2)
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480(0.4)

463.7(0.5)

448.7(0.5)

529.3

Figure 2: Value of the CDS contract between Royal Dutch Shell and British Airways on
default of Lehman Brothers agreed on January 5, 2006 and marked-to-market by Royal
Dutch Shell as the CDS payer on May 1, 2008. The blue line is the mark-to-market CDS
contract value without risk adjustment and the red line denotes the mark-to-market values
of the CDS contract with the adjustment which allows the possibility of simultaneous
defaults. The dependence parameters α{C,I} = α{I,R} = α{C,I,R} = 0.01, while α{C,R} is
increasing. The numbers in round brackets represent the Monte-Carlo standard error.
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parameter α{C,R}. As British Airways is the payer and the dependence parameter α{I,R} is
relatively low (0.01), thus the British Airways BV Ap becomes negligible and consequently
the risk-adjusted mark-to-marked value of the CDS contract closed to its value without
risk adjustment, however the dependence parameter α{C,R} is increasing.

We consider the second contract, Royal Dutch Shell becomes CDS payer. Unlike the first
contract, we observe the significant sensitivity of the risk-adjusted mark-to-marked values
of the CDS contract to the dependence parameter α{C,R}. At the simultaneous default
between British Airways and Lehman Brothers, Royal Dutch Shell holds an option which
will be deep into the money, but Royal Dutch Shell can not be paid completely due to the
default of British Airways. While the possibility of simultaneous defaults between British
Airways and Lehman Brothers is increasing, the Royal Dutch Shell BV Ap becomes larger
and consequently the mark-to-marked value of the CDS contract for Royal Dutch Shell get
reduced as reported in Figure 2.

7 Conclusions

In this work, we discussed the calculating of the bilateral counterparty credit valuation
adjustment in the presence of simultaneous defaults. In order to consider the simultaneous
defaults we apply the Markov copula model, in which the dependence between defaults
and the representation of the wrong way risk by the possibility of the simultaneous default
among the three names in a CDS contract. Using a Monte-Carlo scheme we evaluate the
BVAs for some scenarios, which include the different situations of credit risk level among
the three names in the CDS contract. By analyzing the numerical results we observed
the effect of a simultaneous default involved in the CDS contract. Besides, we applied our
methodology to evaluate the risk-adjusted mark-to-market of the market CDS contract
which is provided in [7]. In comparison with the results in [7], we saw the effect of considering
the possibility of simultaneous defaults on the valuation of the counterparty risk in a CDS
contract.

The numerical results show that the dependence between defaults only represented by the
possibility of simultaneous defaults in the Markov copula model can fully capture wrong-
way risk. Besides, the results confirm that the substantial role of considering simultaneous
defaults on the valuation of the counterparty risk in CDS contracts. In particular, the
effects of the simultaneous defaults on the BVA are not identical for the contracting party
as the CDS seller and the CDS payer.

In the market, collateralization is one of the most important techniques of mitigation of
counterparty risk. The collateral can be either directly transferred between counterparties
themself or held by a third party like a clearing house. A model for the bilateral margin
call process and its application in the calculation will be investigated in future work.
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8 Appendix

Here we present the proof of Proposition 2.1.

Proof. : We have that

SAt
(4)(5)

= E

{
IAD(t, τ)(−LR)

+ IB

[
D(t, τ)

(
RC(Sτ − I{τ=τR}LR)+ − (Sτ − I{τ=τR}LR)−

)]
+ IC

[
D(t, τ)

(
(Sτ − I{τ=τR}LR)+ −RI(Sτ − I{τ=τR}LR)−

)]
+ ID

[
D(t, τ)

(
−(Sτ − I{τ=τR}LR)

)]
+ IE [D(t, τ) (LR)]

+D(t, τ)(τ − Tγ(τ)−1)PI{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiPI{τ≥Ti}︸ ︷︷ ︸
:=M1

∣∣∣∣Gt
}

(37)

We first consider the expression regarding the event B inside the above conditional expec-
tation

IB

[
D(t, τ)

(
RC(Sτ − I{τ=τR}LR)+ − (Sτ − I{τ=τR}LR)−

)]
.

Since

RC(Sτ−I{τ=τR}LR)+−(Sτ−I{τ=τR}LR)− = (RC−1)(Sτ−I{τ=τR}LR)++(Sτ−I{τ=τR}LR),

this expression is equal to

IB

[
−D(t, τ)(1−RC)(Sτ − I{τ=τR}LR)+

]
+ IBD(t, τ)(Sτ − I{τ=τR}LR)︸ ︷︷ ︸

=:M2

.

Similarly, the expression conditional on the event C in (37) can be rewritten as

IC

[
D(t, τ)(1−RI)(Sτ − I{τ=τR}LR)−

]
+ ICD(t, τ)(Sτ − I{τ=τR}LR)︸ ︷︷ ︸

=:M3

.
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It is obvious that I{τ=τR}Sτ = 0, and therefore we observe M2,M3 and the last two
expressions respectively regarding the event D and E in (37) together as follows,

D(t, τ)I{τ=τR}(−LR) (IB + IC − ID − IE) +D(t, τ)I{τ 6=τR}Sτ (IB + IC − ID) .

Observing that IB + IC − ID − IE = 0, we can rewrite the terms inside (37) as

ΠA(t, T ) =IB

[
−D(t, τ)(1−RC)(Sτ − I{τ=τR}LR)+

]
+ IC

[
D(t, τ)(1−RI)(Sτ − I{τ=τR}LR)−

]
+ IA (−D(t, τ)LR +M1) + I{τ>T}M1

+ I{τ 6=τR} (IB + IC − ID) (D(t, τ)Sτ +M1) .

Now, by comparing M1 with (1) we get

SAt =E
{
−IBD(t, τ)(1−RC)(Sτ − I{τ=τR}LR)+

∣∣Gt}
+ E

{
ICD(t, τ)(1−RI)(Sτ − I{τ=τR}LR)−

∣∣Gt}
+ E

{(
IA + I{τ>T}

)
Π(t, T )

∣∣Gt}
+ E

{
I{τ 6=τR} (IB + IC − ID) (D(t, τ)E{Π(τ, T )|Gτ}+ Π(t, τ))

∣∣Gt} .
(38)

Using E{E{·|Gτ}|Gt} = E{·|Gt} for t < τ, the last expression in (38) equals

E
{
I{τ 6=τR} (IB + IC − ID) Π(τ, T )

∣∣Gt} .
We see that

I{τ≤t} + I{τ>T} + IA + I{τ 6=τR} (IB + IC − ID) = 1

and the events in the terms of the sum are exclusive, we get

SAt = St−E
{
IBD(t, τ)(1−RC)(Sτ − I{τ=τR}LR)+

∣∣Gt}
+ E

{
ICD(t, τ)(1−RI)(Sτ − I{τ=τR}LR)−

∣∣Gt} (39)
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