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Abstract

This work is concerned with symmetric and symplectic projection methods.
The idea is based on symmetric projection schemes introduced by Hairer
for ODE systems on a manifold in the Abelian case Rn. These methods
combine a symmetric scheme with a projection on the manifold, arising in
an overall symmetric scheme which preserves the constraint defined by the
manifold. We have generalized this scheme to projection schemes, which join
a symmetric, time-reversible and symplectic scheme (Leapfrog, for example)
with a projection on the manifold described by the Hamiltonian, resulting in a
scheme with the aforementioned properties which preserves the Hamiltonian
exactly. In a further step, we adapted the method to the non-Abelian case
of matrix Lie groups to reduce the computational costs of Lattice QCD.
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1. Introduction

Quantum Chromo Dynamics (QCD), the theory of strong interaction (or
color force) between quarks and gluons inside subatomic particles, deals with
the properties of elementary particles (hadrons) given by the expectation val-
ues ⟨E⟩ of certain operators E. These expectations are needed to properly
analyze experiments at the Large Hadron Collider (LHC) at CERN, for ex-
ample, and are theoretically given by evaluating a high-dimensional path
integral. As this integral can not be determined analytically, one has to rely
on numerical simulation to sample the integral, resulting into Lattice QCD
[1, 2]. One way of approximation in Lattice QCD is Hybrid Monte-Carlo:
here samples are obtained by performing a molecular dynamics step in vir-
tual time, applied to Hamiltonian equations of motion defined on a product
space of Lie groups and associated Lie algebras. These samples are rejected
with a probability proportionally to the defect in preserving the Hamiltonian.
Hence, one is interested in numerical integration schemes approximating the
Hamiltonian at high accuracy, which at the same time have to be volume-
preserving and time-reversible to meet the detailed balance condition [3, 4].
Usually, one applies numerical geometric integration of preferably high order
to meet these demands. For this purpose, the Leapfrog method, the Omelyan
scheme [5, 6] or splitting methods with multiple timescales [7] according to
Sexton-Weingarten are commonly used. Another approach would be the use
of higher order symmetric partitioned Runge-Kutta methods described in [8].
In this paper, we will propose an alternative way: we will not use high order
schemes to obtain a high accuracy in the Hamiltonian and, accordingly, a
low rejection rate of the samples, but combine low order numerical geometric
integration schemes with projection schemes which preserve the Hamiltonian
exactly and, thus, avoid the rejection of samples.
The paper is organized as follows: in Section 2, we start with a motivation
of time-reversible and volume-preserving projection methods for differential
equations on manifolds arising from the non-Abelian case of Lattice QCD.
In doing so, we give a short introduction in the field of Quantum Chromo
Dynamics and Lattice QCD. The Hybrid Monte Carlo method used in Lattice
QCD is explained in more detail including the necessary geometric properties
of the molecular dynamics step to meet the detailed balance condition. In
Section 3 we start from symmetric projection schemes [9] and develop time-
reversible and volume-preserving projection schemes for the Abelian case.
These results are generalized and applied to the non-Abelian case of Lattice
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QCD in Section 4. Moreover, numerical results given in Section 5 for an
SU(2) gauge field to verify the desired properties of our projection approach
in the non-Abelian case of Lattice QCD. Finally, a conclusion and outlook
to open question and future work is given in Section 6.

2. Motivation: Lattice QCD and numerical geometric integration

In Lattice QCD, the approximation of expectation values needed in QCD
is usually performed on a 4-dimensional space-time lattice consisting of ele-
mentary particles U . The field configuration {U} is composed of all particles
U on the lattice. Expectation values ⟨E⟩ are computed by summing up a se-
lected ensemble of field configurations {U}. Since the contribution of nearly
all configurations is very small, one decreases the computational effort by
preferring configurations {U i} occurring with a high probability pi:

⟨E⟩ =
∑
{U i}

pi · E({U i}). (1)

This approach is realized in the Metropolis Monte Carlo method, which uses a
Markov chain process to generate new field configurations which should reach
the equilibrium distribution (i.e. the fixed point of the Markov process) at
the end. In doing so, a new configuration {U j} is created randomly and
afterwards accepted with a certain transition probability Tij := min(1,

pj
pi
) to

reach configuration {U j} from {U i}. Thereby, the so-called detailed balance
condition concerning the action S({U}), i. e.

piTij = pjTji with pi ∼ exp
(
−S

(
{U i}

))
. (2)

with probability pi to find configuration {U i} has to be fulfilled to reach the
fixed point of the Markov process.

2.1. HMC Algorithm and Molecular Dynamics Step

This approach can be improved by the Hybrid Monte Carlo (HMC) method,
a type of Markov Chain Monte Carlo (MCMC) method published by Duane
et al. [3] in 1987.
The idea is to use a Hamiltonian Hi := H{U i, P i} (which is a constant in
time) for the probability distribution pi = exp(−Hi) to achieve a high accep-
tance rate. To obtain the Hamiltonian equations of motion, a fictitious time
and a field of fictitious momenta {P} are introduced. Here, one starts with
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an initial configuration {U i, P i} at time t = 0 and gets the new configura-
tion {U j, P j} by applying a Molecular Dynamics step. Due to the fact that
the Hamiltonian is conserved in time, the Hamiltonians of two successive
configurations will be the same up to the numerical errors of the integration
method. As the transition probability

Tij := min(1,
pj
pi
) = min(1, exp(−∆H)) , ∆H := Hi −Hj

depends only on the difference of the Hamiltonians ∆H, the acceptance rate
is linked to the convergence order of the numerical integration scheme used
in the Molecular Dynamics step.
It is essential for the Hybrid Monte Carlo method that the Markov process
converges to the fixed point of the equilibrium distribution of the field con-
figurations {U}. To ensure this, the numerical integration scheme still has
to fulfill the detailed balance condition (2) concerning the action S({U}).
Therefore, the numerical integration schemes used in the Molecular Dynam-
ics Step have to be time-reversible and should be volume-preserving. The
time-reversibility is mandatory, while a missing volume-preservation can be
compensated theoretically by a proper scaling with the determinant of the
Jacobian of the whole system ∂{U j, P j}/∂{U i, P i}.
The convergence order p of the numerical integration scheme is just of interest
to achieve a high acceptance rate because |∆H| is proportional to the error
of the integration scheme.

2.2. Projection Schemes

Our aim is the development of projection schemes for the Molecular Dynam-
ics Step of the Hybrid Monte Carlo method. For this purpose, the projection
scheme has to fulfill several properties:

• first of all, it has to be time-reversible to reach the correct fixed point
of the Markov chain;

• then, it should be volume-preserving; otherwise the Jacobian of a sys-
tem of huge dimension has to be computed;

• additionally, the Hamiltonian should remain constant.

If all these demands are met, one gets an overall time-reversible, volume-
preserving projection scheme that preserves the Hamiltonian. It has the
following advantages: the acceptance step can be dropped because ∆H = 0;
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there is no need for higher order methods or small step sizes, one large
integration step is sufficient.
In a first step, we will construct such schemes for the Abelian case.

3. Projection Schemes for the Abelian Case

Symmetric projection schemes have been introduced by Hairer [9] to solve
numerically the initial value problem

y′ = f(y), y(0) = y0

in the Abelian case y ∈ R2n subject to an invariant manifold defined by
a constraint g(y) = 0. These schemes combine one step of a symmetric
integration method Φh with a symmetric forward and backward projection to
obtain a symmetrical method and at the same time to preserve the constraint:
first of all, the initial value y0 is perturbed orthogonal to the manifold:

P µ
f : ỹ0 = y0 +G⊤(y0)µ

with G⊤(y) denoting the Jacobian of g(y). After that, one symmetric nu-
merical integration step is performed:

Φh : ỹ1 = Φh(ỹ0) .

Finally, the result is projected back to the manifold:

P µ
b : y1 = ỹ1 +G⊤(y1)µ .

Here, the perturbation P µ
f and projection step P µ

b depend on a parameter µ
that is implicitly defined by the constraint g(y) = 0 .
Our aim is to adapt the symmetric projection method to a simple time-
reversible and volume-preserving projection scheme in the case of general
Hamiltonian equations of motion given by

y′ = f(y) = J−1∇H(y) with y = (q, p)⊤, J =

(
0 I
−I 0

)
,

initial values y(0) = y0 and the energy-preserving constraint

g(y) = H(y)−H(y0) = 0 .

5
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Note that – in contrast to [9] – we regard the projection parameter µ as
variable, but fixed, thus yielding a parametrized family of numerical approx-
imations yµh for step size h. At the end, we are interested in the scheme y

µopt

h

defined by
g(y

µopt

h ) = H(y
µopt

h )−H(y0) = 0 .

The aforementioned adaption can be realized by three steps:

1. replace the symmetric integration method with a symmetric and at the
same time time-reversible and volume-preserving one;

2. next, ensure that the overall scheme is volume-preserving;

3. and after all, make the overall scheme time-reversible.

The first step is very similar to the symmetric projection and can be real-
ized, for example, by use of the Leapfrog integration scheme or the implicit
midpoint rule as described in [10]. The new scheme

Ψµ
h := P µ

b ◦ Φh ◦ P µ
f . (3)

is still symmetric, but in general neither volume-preserving nor time-reversible.

3.1. Volume-Preservation

The volume is preserved, if

|det (DΨµ
h(y0))| = 1 with DΨµ

h(y) :=
∂Ψµ

h(y)

∂y

holds, i. e., it has to be checked whether the modulus of the determinant
of the Jacobian is equal 1. Since the result y1 = Ψµ

h(y0) is computed in
three steps, a short computation shows that the method is in general not
volume-preserving because the determinant of the Jacobian reads

|detDΨµ
h(y0)| =

∣∣∣∣det(DP µ
b (y)

∣∣∣
y=(Φh◦Pµ

f )(y0)
·DΦh(y)

∣∣∣
y=Pµ

f (y0)
·DP µ

f (y0)

)∣∣∣∣
=

∣∣∣∣det(I −DG⊤(y1)µ
)−1

· det
(
I +DG⊤(y0)µ

)∣∣∣∣
and is usually not equal to 1. Nevertheless, there is a simple way to ensure the
volume-preservation: first of all, replace the matrix DG⊤(y) by a constant
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matrix A⊤ such that the projection matrix G⊤(y) is replaced by A⊤ · y. In
doing so, the modulus of the determinant of the Jacobian reads

| detDΨµ
h(y0)| = | det(I − A⊤µ)−1 · det(I + A⊤µ)| ;

but, unfortunately, the modulus of the determinant will again not be equal
to 1 in general. There has to be an additional sign flip in either the forward
or the backward projection to achieve this. A sign flip in the backward
projection gives the overall system

P µ
f : ỹ0 = y0 + A⊤y0µ

Φh : ỹ1 = Φh(ỹ0) (4)

P µ
b : y1 = ỹ1 − A⊤y1µ , µ : H constant .

Using the short-hand notation Ψµ
h defined in (3), we get

| detDΨµ
h(y0)| = | det(I + A⊤µ)−1 · det(I + A⊤µ)| = 1

and thus, the method given in (4) is volume-preserving. At this point, it
can be easily checked that the adapted method is still symmetric and even
symplectic.

3.2. Time-Reversibility

So far, we have a symmetric and symplectic projection scheme given in (4).
It is essential, that the scheme is also time-reversible, i. e., the condition

ρ ◦Ψµ
h = (ρ ◦Ψµ

h)
−1 with ρ =

(
I 0
0 −I

)
(5)

consisting of blocks of size n×n has to be fulfilled. The overall system reads

Ψµ
h(y) =

(
I + A⊤µ

)−1 · Φh

((
I + A⊤µ

)
(y)

)
(6)

and with the time-reversibility of the inner one-step scheme Φh it can be
shown that it is sufficient to choose a matrix A with block-diagonal structure
according to the dimensions of q and p of y = (q, p)⊤.

Proof: for

Ψµ
h = B−1

µ · Φh ·Bµ with Bµ := I + A⊤µ .

7
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we have two verify the condition for time-reversibility

ρΨµ
h = (ρΨµ

h)
−1 ⇔ ρ ·Ψµ

h · ρ ·Ψ
µ
h = id,

or equivalently,

ρ ·B−1
µ · Φh ·Bµ · ρ ·B−1

µ · Φh ·Bµ
!
= id .

Using the time-reversibility of Φh and the fact that ρ is idempotent, we can
replace one of the one-step schemes ϕh with ρ · Φ−1

h · ρ and get

id
!
= ρ ·B−1

µ · Φh ·
(
Bµ · ρ ·B−1

µ · ρ
)
· Φ−1

h · ρ ·Bµ .

If we assume Bµ · ρ ·B−1
µ · ρ = id we are done. A sufficient but not necessary

condition would be that the matrix Bµ, respective A, is block-diagonal.

4. Projection Schemes for the Non-Abelian Case

In the previous section, we developed the time-reversible and volume-preserving
projection scheme Ψµ

h := P µ
b ◦ Φh ◦ P µ

f described in (4) with block-diagonal
matrix A for the Hamiltonian equations of motion

y′ = f(y) = J−1∇H(y) with y = (q, p)T , J =

(
0 I
−I 0

)
and y(0) = y0

in the Abelian case. Since we are interested in a scheme to solve the Hamilto-
nian equations of motion in the non-Abelian case of Lattice QCD, we adapt
the projection scheme to this case here.
The Hamiltonian equations of motion in the non-Abelian case look similar
to the Abelian one:

y′ = f(y) = J−1∇H(y), y = ({U}, {P})⊤, J =

(
0 I
−I 0

)
. (7)

In Lattice QCD, the configurations

{U} := (U1, . . . , Un)
⊤ and {P} := (P1, . . . , Pn)

⊤

consist of variables U1, . . . , Un, each an element of the special unitary Lie
group SU(N), and P1, . . . , Pn, each a traceless and hermitian matrix of size
N × N . Now, we have to adapt the integration method Φh to this special

8
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type of differential equations on manifolds.

Adaptation to Lie-group structure. Applying the time-reversible and
volume-preserving scheme (6) on the aforementioned equations of motion
(7), we get a problem in the perturbation step:

U1, . . . , Un ∈ SU(N) → U1 + µA11U1 , . . . , Un + µA11Un /∈ SU(N) .

As the Lie group SU(N) is not closed with respect to addition, the results
of the overall projection scheme will not be elements of the Lie group. A
simple way out is the choice A11 = 0, i. e., the Lie group elements are not
perturbed.
The variables {P} := (P1, . . . , Pn)

⊤ are traceless and hermitian and, thus, el-
ements of a linear space. Indeed, iP1, . . . , iPn are traceless and anti-hermitian
or, in other words, elements of the special unitary Lie algebra su(N). Here,
we have no problems with the projection step:

iP1, . . . , iPn ∈ su(N) → iP1 + µA22iP1 , . . . , iPn + µA22iPn ∈ su(N) .

Scaling of momenta. In addition to the choice A11 = 0 made for meeting the
Lie-group structure, we set A22 = I for a simple scaling of the momenta:

A =

(
A11 0
0 A22

)
=

(
0 0
0 I

)
. (8)

The overall choice A11 = 0, A22 = I has two consequences: first, the elements
U1, . . . , Un are never projected, they just occur in the inner one step integra-
tion scheme. Second, the variables P1, . . . , Pn are just scaled by a simple
factor 1 + µ in the perturbation step and the result of the intermediate one
step integration scheme is then rescaled by a factor 1/(1 + µ):

y1 =

(
{U1}
{P1}

)
=

 ΦU
h

(
{U0}, (1 + µ){P0}

)
1

1+µ
ΦP

h

(
{U0}, (1 + µ){P0}

) . (9)

The Lie group structure is preserved – ΦU
h is still in the Lie group, and

ΦP
h in the corresponding Lie algebra. Furthermore, the scheme (9) is still

symmetric, time-reversible and volume-preserving. A big advantage is that
there occurs no additional cost, except for the solution of the scalar equation

g̃(µ) := g(y
µopt

h ) = H(y
µopt

h )−H(y0) = 0 (10)

for the determination of µopt.
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5. Numerical Tests: Gauge Field in SU(2)

For the numerical test, we simulate a 2-dimensional gauge field in the special
unitary Lie group SU(2) which is one of the most simple models in the field
of Quantum Chromo Dynamics. Let us start with a short description of this
model.

5.1. Gauge fields in the special unitary Lie group SU(2)
Given is a 2-dimensional lattice with periodic boundary conditions. At the
end, we are interested in expectation values of type

⟨E⟩ =
∑
{U i}

pi · E({U i})

as defined in (1). This expectation value is composed of so-called links {U},
which are elements of the Lie group SU(2), and define the connections be-
tween adjacent lattice points. For the Hybrid Monte Carlo method, fictitious
momenta Pj with iPj being an element of the Lie algebra su(2) are introduced
at each lattice point j = 1, . . . , n. The Hamiltonian equations of motion

U̇j =
∂H

(
{U, P}

)
∂Pj

and Ṗj = −
∂H

(
{U, P}

)
∂Uj

have to be solved for each position j = 1, . . . , n on the lattice. The Hamil-
tonian, composed of the kinetic energy Ekin and the so-called Wilson gauge
action SG, reads

H
(
{U, P}

)
= Ekin({P}) + SG({U}) ,

yielding the corresponding equations of motion

U̇j = Pj · Uj and Ṗj = −F (Uj, {U})
for each lattice point j = 1, . . . , n. Here, the equations for U̇j are differential
equations on a manifold (Lie group) and the ones for iṖj are differential
equations in the linear space of a Lie algebra. The differential equation
for Pj involves the corresponding link Uj itself and several adjacent lattice
points, summarized by {U}, and is usually the more expensive part of the
simulation.
At the end, the Hamiltonian equations of motion can be written in the com-
pact notation (7)

ẏ = f(y) = J−1∇H(y) with y = ({U}, {P})⊤, J =

(
0 I
−I 0

)
.

10
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5.2. Numerical Tests

The numerical tests are performed on a lattice of size 8 × 8 with periodic
boundary conditions. In doing so, we start from already thermalized configu-
rations and compute the mean value of 100 different configurations including
statistical errors – which are in most cases so small that they can not be seen
in the figures.
We have implemented the new projection scheme (9) in MATLAB. For the
inner one-step scheme Φh, we use the common Leapfrog scheme which has
the advantage that it is explicit. The parameter µ is determined via the
scalar equation

g̃(µ) = H(yµh)−H(y0) = 0

mentioned in equation (10) using the bisection method.
Thereby, we investigate the step-size dependence of the following properties
for the new projection scheme in comparison to the pure Leapfrog scheme
without any projection: defect in the Hamiltonian, time-reversibility and
volume-preservation. In this manner, we compute a whole trajectory of
length τ = 1 using n = 1/h steps of step size h.

5.2.1. Difference in the Hamiltonian

We start with a measurement of the difference ∆H in the Hamiltonian before
and after one step of the projection scheme (9), respective the Leapfrog
method. In formulas, we have

∆H = Hnew −Hold with H = Ekin

(
{P}

)
+ SG

(
{U}

)
.

Since the Leapfrog scheme is a scheme of convergence order 2, it has an
error of order h3 after one step. The difference ∆H in the Hamiltonians is
computed after a whole trajectory such that the error of the Leapfrog method
in Figure 1 is of order h2.
For the projection method, the accuracy just depends on the stopping cri-
terion of the bisection method used for the determination of the parameter
µ. We can always choose the stopping criterion g(µ) in such a way that the
difference in the Hamiltonian is smaller than for the Leapfrog method.

5.2.2. Time-Reversibility

We have seen in section 3.2 that the integration scheme Ψh has to fulfill the
condition

ρ ◦Ψh ◦ ρ ◦Ψh = id with ρ =

(
I 0
0 −I

)
11
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Projection, g(µ) < 1e−4
Projection, g(µ) < 1e−6
Projection, g(µ) < 1e−8

Figure 1: Absolute value of the difference in the Hamiltonian of 2 successive configurations
{U,P}old and {U,P}new for Leapfrog method (blue circle) and projection method with
constraint g(µ) smaller than 10−4 (black diamond), 10−6 (black square) and 10−8 (red
diamond). Here, the mean value of 100 different configurations including statistical errors
is given.

to be time-reversible. Here, the matrix ρ consists of blocks of size n × n
according to the dimensions of {U} and {P}. Thus, we compare the ini-
tial values {U0, P0} with the outcome of

(
ρ ◦ Ψh ◦ ρ ◦ Ψh

)(
{U0, P0}

)
. This

comparison is done element by element and afterwards we take the mean
of the absolute values of the differences in Figure 2. It can be seen that
the differences of the Leapfrog and projection scheme are in the region of
machine precision and coincide. Therefore, the numerical test validates the
time-reversibility of our projection method.

5.2.3. Volume-Preservation

For the volume-preservation, we compute the absolute value of the determi-

nant of the Jacobian of the system
(
∂Ψh

(
{U0, P 0}

)
/∂{U0, P 0}

)
. Here, the

Jacobian is attained via a one-sided numerical differentiation with fixed per-
turbation ε = 10−6. In contrast to the Abelian case in Rn, the computation
of the Jacobian of a Lie-group/Lie-algebra is rather involved and follows the
calculus derived in [11].
In Figure 3, we see a comparison between the volume-preserving Leapfrog
method and the projection method with constraint g(µ) < 10−8. As the
values coincide, the numerical test results validate the volume preservation

12
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Figure 2: Time-reversibility: mean value of the absolute differences between the initial
values {U0, P0} and the outcome of

(
ρ ◦Ψh ◦ ρ ◦Ψh

)(
{U0, P0}

)
for Leapfrog (blue circle)

and projection method with constraint g(µ) smaller than 10−8 (red diamond).

of our projection scheme. The errors are due to the discretization errors
introduced by numerical differentiation.
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Figure 3: Volume-preservation: mean value of the absolute value of the determinant of the
Jacobian of the system for Leapfrog (blue circle) and projection method with constraint
g(µ) smaller than 10−8 (red diamond).
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6. Conclusion and Outlook

Starting from symmetric projection, we constructed methods that are ad-
ditionally time-reversible and volume-preserving, for the Abelian as well as
the non-Abelian case. In the application of Lattice QCD, the new projection
scheme has shown promising results within the Molecular Dynamics Steps of
the Hybrid Monte Carlo method, validated by the numerical results obtained
for a SU(2) gauge field: the difference in the Hamiltonian can be made arbi-
trarily small, thus avoiding rejection steps and allowing for large step sizes, at
the prize of only solving one additional scalar equation to obtain the optimal
value of µ.
In a next step, we will investigate the autocorrelation behavior of the new pro-
jection scheme to check for statistically independent configurations needed
in Lattice QCD. In addition, the projection scheme will be tested again for
larger lattices, higher dimensions (SU(3) instead of SU(2)) and more complex
Hamiltonians including fermionic fields.
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