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Abstract

We assume linear systems of differential algebraic equations, which include
physical parameters or other parameters. Uncertainties of the parameters
are modelled by random variables. We expand the corresponding random-
dependent solutions in the polynomial chaos. Approximations of unknown
coefficient functions can be obtained by quadrature or sampling schemes.
Alternatively, stochastic collocation methods or the stochastic Galerkin ap-
proach yield larger coupled systems of differential algebraic equations. We
show the equivalence of these types of numerical methods under certain as-
sumptions. The index of the coupled systems is analysed in comparison to
the original systems. Sufficient conditions for an identical index are derived.
Furthermore, we present results of numerical simulations for an example.

Keywords: differential algebraic equations, initial value problems, index,
polynomial chaos, stochastic collocation method, stochastic Galerkin
method, quadrature, uncertainty quantification

1. Introduction

The mathematical models of technical applications often represent time-
dependent systems of differential algebraic equations (DAEs). For example,
corresponding models are applied in the simulation of electric circuits, see [3],
and of multibody systems, see [12]. We consider initial value problems of
linear systems of DAEs.
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In the systems of DAEs, some parameters often exhibit uncertainties due
to modelling errors, measurement errors or imperfections of a manufactur-
ing process, for example. We replace the critical parameters by independent
random variables to quantify the uncertainties. Consequently, the solution
of a system of DAEs becomes a random process. We expand the random
process in the polynomial chaos, which represents a series with unknown
time-dependent coefficient functions and given random-dependent basis poly-
nomials, see [1, 2, 15].

The coefficient functions can be computed approximately by a quadra-
ture or sampling method, where the original DAEs have to be resolved
many times. Alternatively, stochastic collocation techniques and stochas-
tic Galerkin methods yield larger coupled systems of DAEs satisfied by an
approximation of the coefficient functions, which have to be solved just once,
see [16, 17]. Under certain assumptions, we show that the collocation ap-
proach as well as the Galerkin method are equivalent to a multivariate Gaus-
sian quadrature.

The theoretical and numerical properties of a system of DAEs are char-
acterised by its index, see [4, 6]. Thus we examine the index of the coupled
systems in comparison to the original systems of DAEs. Thereby, the equiva-
lence of methods yields sufficient conditions for an identical index. However,
we also construct a counterexample, where the index changes. In the previ-
ous work [9], the index of the coupled system from the stochastic Galerkin
method is analysed for linear systems of DAEs assuming a specific struc-
ture of the involved matrices. In this article, we consider the index both
for stochastic collocation methods and for the stochastic Galerkin approach,
where either no particular structure or another condition on the matrices
is assumed. For nonlinear systems of DAEs, numerical methods using the
polynomial chaos expansions have been investigated in [7, 8, 11, 12, 13].

The article is organised as follows. In Sect. 2, we introduce the modelling
using random parameters, the polynomial chaos expansions and correspond-
ing numerical methods. We analyse the equivalence of numerical techniques
and the index of coupled systems in Sect. 3. Finally, numerical simulations
of an illustrative example from electrical engineering are presented in Sect. 4.
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2. Stochastic Modelling and Numerical Methods

We define the class of problems and outline corresponding numerical tech-
niques now.

2.1. Differential Algebraic Equations with Random Parameters

A linear system of DAEs is considered in the form

A(p)x′(t, p) +B(p)x(t, p) = s(t, p), (1)

where the matrices A,B ∈ RN×N as well as the source term s ∈ RN depend
on parameters p = (p1, . . . , pQ) ⊆ Π within a relevant set Π ⊆ RQ. Conse-
quently, the solution x : [t0, tend] × Π → R

N depends on time as well as the
parameters. Let initial value problems

x(t0, p) = x0(p) (2)

be given with a prespecified function x0, which may depend on the param-
eters. The choice of initial values (2) has to be consistent with respect to
the system (1). Furthermore, we assume that the index of the systems (1) is
identical for all p ∈ Π.

Now let the chosen parameters exhibit some uncertainties. Hence we
replace the parameters by independent random variables

p : Ω → Π, ω 7→ (p1(ω), . . . , pQ(ω))

on some probability space (Ω,A, P ) to achieve an uncertainty quantification.
It follows that the solution of (1) becomes a time-dependent random process.
The choice of traditional distributions (Gaussian, uniform, beta, etc.) implies
the existence of a probability density function ρ : Π → R. We denote
corresponding expected values by

⟨f(p)⟩ :=
∫
Π

f(p)ρ(p) dp (3)

for measurable functions f : Π → R provided that the integral is finite.
We apply the notation (3) also to vector-valued and matrix-valued functions
by the separate components. The expected value yields an inner product
⟨f(p)g(p)⟩ for two functions f, g : Π → R, which yields the L2-norm of the
probability space.
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2.2. Polynomial Chaos Expansions

We assume that each component of the solution x of the random-de-
pendent system (1) exhibits finite second moments at each time t ∈ [t0, tend].
It follows that the random process can be expanded in the generalised poly-
nomial chaos (gPC), see [1, 15, 17], i.e.,

x(t, p(ω)) =
∞∑
i=0

vi(t)Φi(p(ω)) (4)

with coefficient functions vi : [t0, tend] → R
N . The basis functions (Φi)i∈N

with Φi : Π → R represent a complete set of orthonormal polynomials
(⟨Φi(p)Φj(p)⟩ = δij with the Kronecker delta). In the case Q = 1, the Gaus-
sian distribution and the uniform distribution imply the Hermite polynomials
and the Legendre polynomials, respectively, for example. The multivariate
orthonormal polynomials are just the products of the univariate orthonormal
polynomials.

The expansion (4) converges in the L2-norm of the probability space for
each fixed time t ∈ [t0, tend]. The coefficient functions represent projections
of the random process on the basis polynomials, i.e.,

vi(t) = ⟨x(t, p)Φi(p)⟩ for each i. (5)

Since x is unknown a priori, we obtain the problem to determine the coeffi-
cient functions now.

2.3. Numerical Methods

The following numerical techniques refer to the gPC expansion (4). In
each method, the aim is to compute an approximation of a finite set of
coefficients functions v0, v1, . . . , vM .

2.3.1. Quadrature and Sampling

Numerical techniques can be obtained directly from the formula (5) of
the coefficient functions. It follows that the coefficient functions represent
expected values or, equivalently, probabilistic integrals of the form (3). Using
quadrature schemes, the integrals become finite sums

ṽi(t) =
K∑
k=1

wk x(t, p
(k)) Φi(p

(k)) (6)

4



for the approximations ṽi of (5). Each quadrature method is defined by the
nodes p(k) ∈ Π and the weights wk ∈ R. Different quadrature schemes may
be applied for each i. However, often the same method is applied for all
coefficient functions to keep the total number of evaluations of the integrand
small. A special case represent sampling methods like Monte-Carlo or quasi
Monte-Carlo techniques, where the weights are wk =

1
K

for all k.
Hence the application of a quadrature or sampling method requires to

solve K separate initial value problems (1),(2) for each tuple of parame-
ters p(k). We can apply corresponding numerical time integrators directly.
However, the choice of an appropriate numerical solver depends on the index
of the systems (1), see [4].

2.3.2. Stochastic Collocation Techniques

Another class of methods follows from a truncation of the gPC expan-
sion (4)

xM(t, p(ω)) :=
M∑
i=0

vi(t)Φi(p(ω)). (7)

Typically, all multivariate polynomials up to some degree are included. In-
serting the truncated series (7) in the original DAEs (1) yields the residual

r(t, p) := A(p)
M∑
i=0

v′i(t)Φi(p) +B(p)
M∑
i=0

vi(t)Φi(p)− s(t, p) (8)

for each t ∈ [t0, tend]. Now we like to determine the unknown coefficient
functions such that the residual becomes small in some sense. In a collocation
method, the residual vanishes at prespecified nodes, i.e., r(t, p(l)) = 0 for
l = 0, 1, . . . ,M . Thus we obtain a coupled system of DAEs

A(p(l))
M∑
i=0

ṽ′i(t)Φi(p
(l)) + B(p(l))

M∑
i=0

ṽi(t)Φi(p
(l)) = s(t, p(l)) (9)

for l = 0, 1, . . . ,M . The system (9) involves (M + 1)N equations for the
unknown approximations ṽ0, . . . , ṽM . Corresponding initial values follow
from (2) and (5)

vi(t0) = ⟨x0(p)Φi(p)⟩ for each i, (10)

where the probabilistic integral is evaluated analytically or by a quadrature
scheme, cf. Sect. 2.3.1.
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We can solve the initial value problem (9),(10) of the coupled system to
compute the approximations of the coefficient functions. Obviously, the com-
putational effort is higher than solving M +1 separate initial value problems
(1),(2). The stochastic collocation approach is interesting if the system (9)
can be decoupled, which is investigated in Sect. 3. Furthermore, a ques-
tion is if the index of the coupled system (9) is the same as for the original
systems (1).

2.3.3. Stochastic Galerkin Method

Again the truncated gPC expansion (7) is applied. To achieve small
residuals (8), the Galerkin approach requires the condition

⟨r(t, p)Φl(p)⟩ = 0 for l = 0, 1, . . . ,M, (11)

which represents an optimal choice of the approximation in some sense. In-
serting the formula (8) of the residual into the condition (11) and performing
elementary manipulations yields the coupled system

M∑
i=0

⟨A(p)Φi(p)Φl(p)⟩ṽ′i(t) + ⟨B(p)Φi(p)Φl(p)⟩ṽi(t) = ⟨s(t, p)Φl(p)⟩ (12)

for l = 0, 1, . . . ,M . Corresponding initial values are obtained from (10).
Again initial value problems (12),(10) of a coupled system of DAEs have

to be solved to compute the approximations ṽ0, . . . , ṽM . In general, the
accuracy of the approximations is better in the Galerkin method than in
the collocation method for the case of identical M . Once again, a question
is if the index of the coupled system (12) is the same as for the original
systems (1).

3. Index Analysis

The properties of a system of DAEs are characterised by its index. Dif-
ferent index concepts exist, see [4, 6]. Nevertheless, the concepts coincide in
case of linear DAEs. We investigate the index of the coupled systems (9)
and (12) in comparison to the original systems (1).
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3.1. Choice of Polynomial Spaces

We consider expansions (4) with orthonormal basis polynomials in the
following. The multivariate basis polynomials are the products of the uni-
variate orthonormal polynomials, i.e.,

Φi1,i2,...,iQ(p) = Ψ1
i1
(p1)Ψ

2
i2
(p2) · · ·ΨQ

iQ
(pQ), (13)

where Ψj
i is a univariate polynomial of degree i.

We define two types of finite sets of basis polynomials and their corre-
sponding spans

MR := span
{
Φi1,...,iQ : i1 + · · ·+ iQ ≤ R

}
,

NR := span
{
Φi1,...,iQ : i1, . . . , iQ ≤ R

}
.

(14)

The set MR represents all polynomials up to degree R as in a multidimen-
sional Taylor expansion. The basis of the set NR is sometimes called a
tensor-product basis. Obviously, it holds that MR ⊆ NR for each R. The
two sets coincide only in case of Q = 1. Furthermore, the corresponding
dimensions read

dim(MR) =
(R +Q)!

R!Q!
, dim(NR) = (R + 1)Q.

A different behaviour of the stochastic Galerkin method for the two different
types of polynomial spaces (14) has been observed in case of linear hyperbolic
equations, see [10].

In the analysis, we restrict to domains Π = I1 × · · · × IQ with com-
pact or infinite intervals Ij. Let the corresponding random distributions be
chosen via ρ(p) = ρ1(p1) · · · ρQ(pQ) such that a Gaussian quadrature with
optimal order exists on each interval Ij for j = 1, . . . , Q. Given a multivari-
ate Gaussian quadrature with K nodes in each dimension and corresponding
weights wk, it holds that

⟨Θ(p)⟩ =
KQ∑
k=1

wkΘ(p(k)) for all Θ(p) ∈ N2K−1,

since the multivariate quadrature decomposes into Q univariate Gaussian
quadratures.

For the matrix A(p) in the system (1), we will sometimes assume the
structure

A(p) = A0+
∑
i

piAi+
∑
i<j

pipjAij+
∑
i<j<k

pipjpkAijk+· · ·+p1 · · · pQA1···Q (15)
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with constant matrices and, likewise, for the matrix B(p) in the systems (1).
This assumption is often satisfied in the applications. The condition (15) is
equivalent to A(p), B(p) ∈ N1. The structure (15) differs from the assump-
tion on A(p), B(p) in the previous work [9]. None of the two assumptions
implies the other, i.e., they just agree for a common subset of problems.

3.2. Equivalence of Numerical Methods

In this subsection, we apply and extend results from [12] on numeri-
cal techniques for nonlinear systems of DAEs to our case of linear systems.
Equivalence of numerical techniques means that the resulting solutions are
exactly the same. We apply the vectors V := (v⊤0 , . . . , v

⊤
M)⊤ to collect the

first M + 1 coefficient functions of a gPC expansion (4).
We consider the stochastic collocation method from Sect. 2.3.2. It holds

that the following result is valid.

Lemma 1. Let a basis Φ0, . . . ,ΦM and collocation points p(0), . . . , p(M) be
given. If the matrix C := (Φj(p

(l)))lj of order M + 1 is regular, then the
solution of the coupled system (9) is

Ṽcol(t) = (C−1 ⊗ IN)X(t)

with X(t) := (x(t, p(0))⊤, . . . , x(t, p(M))⊤)⊤ using the Kronecker product and
the identity matrix IN .

The proof can be obtained by mimicking the steps in Sect. 5.2 of [12].
Lemma 1 shows that the system (9) of the collocation method can be decou-
pled. Consequently, we will never solve the coupled system (9) in case of a
regular matrix C. Instead, the original systems (1) are resolved separately
for each collocation point.

Concerning the regularity of the transformation matrix, the following
well-known property will be used.

Lemma 2. Let the domain Π and the probability distributions be chosen such
that a Gaussian quadrature of optimal order exists. If p(0), . . . , p((R+1)Q−1) are
the nodes of this quadrature and Φ0, . . . ,Φ(R+1)Q−1 represent the orthonormal

basis of NR, then the matrix C := (Φj(p
(l)))lj is regular.

This statement can be shown by considering the products of the evalua-
tions of the univariate polynomials from (13) and the products of the weights
of the involved univariate Gaussian quadratures.

Now we achieve a first result on the equivalence of methods.
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Theorem 1. Let the domain Π and the probability distributions be chosen
such that a Gaussian quadrature of optimal order exists. It follows that the
stochastic collocation method using the basis of NR and the (R+1)Q nodes of
the quadrature is equivalent to the scheme (6) based directly on the Gaussian
quadrature.

Proof:
We define K := (R + 1)Q. Let p(l) and wl for l = 1, . . . , K be the nodes

and the weights, respectively, of the multivariate Gaussian quadrature. The
orthonormal basis of NR is used to define the transformation matrix C :=
(Φi(p

(l)))li ∈ RK×K . Furthermore, we introduce W := diag(w1, . . . , wK). Let
Ṽcol, Ṽqdr ∈ RKN be the approximations from the coupled system (9) and the
quadrature (6), respectively. It follows that

X(t) = (C ⊗ IN)Ṽcol(t)

with X(t) := (x(t, p(1))⊤, . . . , x(t, p(K))⊤)⊤ due to Lemma 1. The quadra-
ture (6) can be written in the form

Ṽqdr(t) = ((C⊤W )⊗ IN)X(t) = ((C⊤WC)⊗ IN)Ṽcol(t).

To achieve Ṽcol = Ṽqdr, it remains to show that C⊤WC = IK . This property
follows from

(C⊤WC)ij =
K∑
l=1

wlΦi(p
(l))Φj(p

(l)) = ⟨Φi(p)Φj(p)⟩ = δij

due to the exactness of the Gaussian quadrature in case of Φi,Φj ∈ NR. □
Lemma 2 and Theorem 1 apply the space NR for the basis polynomi-

als, whereas the matrices A(p), B(p) from (1) are arbitrary. The following
theorem holds for the specific structure (15) of these matrices.

Theorem 2. Let the domain Π and the probability distributions be chosen
such that a Gaussian quadrature of optimal order exists. If it holds that
A(p), B(p) ∈ N1 and s(t, p) ∈ NR, then the stochastic collocation method
using the (R + 1)Q nodes of the quadrature is equivalent to the stochastic
Galerkin method provided that the same basis of NR is applied.
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Proof:
Consider the coupled system (9) from the stochastic collocation method,

where the collocation points are chosen as the M + 1 = (R + 1)Q nodes of
the multivariate Gaussian quadrature. We multiply the the lth equation by
wlΦj(p

(l))

M∑
i=0

wlA(p
(l))Φi(p

(l))Φj(p
(l))ṽ′i(t) + wlB(p(l))Φi(p

(l))Φj(p
(l))ṽi(t)

= wls(t, p
(l))Φj(p

(l)).

Summing up over all l = 0, 1, . . . ,M yields

M∑
i=0

(
M∑
l=0

wlA(p
(l))Φi(p

(l))Φj(p
(l))

)
ṽ′i(t)

+

(
M∑
l=0

wlB(p(l))Φi(p
(l))Φj(p

(l))

)
ṽi(t) =

M∑
l=0

wls(t, p
(l))Φj(p

(l))

(16)

for each j = 0, 1, . . . ,M . The Gaussian quadrature reproduces the exact
integrals for polynomials in N2R+1. The assumptions on the matrices, the
source term and basis polynomials guarantee this property. Thus a solution
of the system (9) also solves the system (12).

Vice versa, the system (12) coincides with (16) under these assumptions.
We rewrite the system (16) as

M∑
l=0

wlΦj(p
(l))

[
M∑
i=0

(
A(p(l))Φi(p

(l))ṽ′i(t) +B(p(l))Φi(p
(l))ṽi(t)

)
− s(t, p(l))

]
= 0

for j = 0, 1, . . . ,M . Since the matrix (wlΦj(p
(l)))lj is regular due to Lemma 2,

the system can be transformed into (9). It follows that a solution of the
system (12) also satisfies the system (9). □

Theorem 1 and Theorem 2 imply the following conclusion directly.

Corollary 1. Under the assumptions of Theorem 2, the stochastic Galerkin
method with polynomial space NR is equivalent to a multivariate Gaussian
quadrature using (R + 1)Q nodes.

The above theorems do not hold in case of the polynomial space MR

from (14) for R ≥ 2, since a quadrature scheme with a number of nodes
equal to the dimension of MR does not achieve the required optimal order
in general. Nevertheless, the results also hold in case of M1.
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3.3. Conclusions on the Index

We employ the results from the previous subsection to obtain statements
on the index of the coupled systems in the numerical methods.

Corollary 2. Let the domain Π and the probability distributions be chosen
such that a Gaussian quadrature of optimal order exists. If the systems of
DAEs (1) exhibit the index k for all p ∈ Π, then the coupled system (9) of the
stochastic collocation method based on the (R + 1)Q nodes of the quadrature
and the basis of NR inherits the same index k.

Proof:
Lemma 1 and Lemma 2 imply that the coupled system (9) is equivalent

to a decoupled system with subsystems (1) evaluated at the nodes p(l) ∈ Π
of the Gaussian quadrature. Since the index of each subsystem is identical
to k, also the index of the system (9) results to k. □

Corollary 3. Let the domain Π and the probability distributions be chosen
such that a Gaussian quadrature of optimal order exists. If it holds that
A(p), B(p) ∈ N1, s(t, p) arbitrary and the systems of DAEs (1) exhibit the
index k for all p ∈ Π, then the coupled system (12) of the stochastic Galerkin
method using the basis of NR has the same index k.

Proof:
In the proof of Theorem 2, the steps show that the matrices in the sys-

tem (12) of the Galerkin method are identical to the matrices in the sys-
tem (9) of the collocation method with the (R+1)Q nodes from the Gaussian
quadrature. The index is determined by the matrices only, i.e., the index is
independent of the source term. Hence the index of both systems coincides.
Now Corollary 2 allows for the conclusion. □

The above corollaries represent sufficient conditions such that the coupled
systems inherit the index of the original systems. The conditions are not
necessary. However, the index is not always preserved as demonstrated by
the counterexample in the next subsection.
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Figure 1: Functions in counterexample chosen as cubic B-splines.

3.4. Counterexample
We apply just a single random parameter (Q = 1) in the following. The

index of a system of DAEs is often related to the regularity of matrices. We
construct an example in the case N = 2, where regularity of a matrix is
gained.

We consider the system (1) with the matrix

A(p) =

(
a1(p) 0
0 a2(p)

)
(17)

and the simple choice B(p) ≡ I2 (identity matrix). Now we choose two
functions aj with compact supports [αj, βj] for j = 1, 2. Let α1 < β1 < α2 <
β2. It follows that the matrix (17) is singular for all p ∈ R. We assume
that the functions are strictly positive within the interior of their supports.
For example, B-splines are feasible as depicted in Fig. 1. Arbitrarily smooth
functions can be constructed.

In case of B(p) ≡ I2, the index of the linear DAEs (1) depends just on
the Jordan form J(p) of the matrix A(p), see [14]. We obtain

J(p) =


(
γ(p) 0
0 0

)
with γ(p) ̸= 0 for p ∈ (α1, β1) ∪ (α2, β2),(

0 0
0 0

)
otherwise.

Note that the Jordan form is unique except for permutations of Jordan blocks.
It follows that the nilpotency index of the corresponding linear system of
DAEs is k = 1 for all p ∈ Π and an arbitrary choice of Π ⊆ R.
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Now we investigate the coupled system (12) from the stochastic Galerkin
method. The system includes the symmetric matrix Â = (⟨A(p)Φi(p)Φl(p)⟩)il
of size 2(M + 1). After a permutation of rows and columns described by a
regular matrix P , we achieve the structure

PÂP =

(
Â1 0

0 Â2

)
with the symmetric minors Âj = (⟨aj(p)Φi(p)Φl(p)⟩)il of size M + 1 for
j = 1, 2. Let a probability density function ρ be chosen such that ρ(p) > 0
for all p ∈ (α1, β2), for example, an arbitrary Gaussian distribution or a
uniform distribution in [α1, β2]. Since a function aj is positive in the interior

of its support, it follows that the matrix Âj is positive definite, see the

proof of Theorem 2.1 in [5]. Hence the matrix Â is regular and the coupled
system (12) exhibits the index k = 0 in contrast to the index k = 1 of the
original systems (1).

A motivation for the heterogeneity of the index in this example can be
given by observing the kernels of the matrix (17). It holds that

kern(A(p)) =


span (1, 0)⊤ for p ∈ (α2, β2),
span (0, 1)⊤ for p ∈ (α1, β1),
R

2 otherwise.

Thus the kernel does not depend continuously on p, since the kernel changes
its dimension.

In this example, Corollary 3 is not applicable, since the assumption
A(p) ∈ N1 is not satisfied. Furthermore, the above counterexample does
not contradict the sufficient conditions for an identical index proven in [9].
Theorem 2 of [9] would require the assumption a1 ≡ a2, whereas the choice
of different functions a1, a2 is essential in the example (17).

It is important to note that this counterexample is independent of the
finite choice from the basis functions (Φi)i∈N. An arbitrary subset of polyno-
mials can be applied. Other (non-polynomial) basis functions yield the same
result provided that each basis function is not identical to zero within the
supports of the functions aj for j = 1, 2.
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Figure 2: Electric circuit of a Miller integrator.

4. Numerical Simulation of an Illustrative Example

The electric circuit of a Miller integrator amplifies an input signal uin to
an output signal u3, see Fig. 2. For specific choices of the involved physical
parameters, the output is approximately the integral of the input. However,
we apply parameters in other ranges now.

A mathematical model of the Miller integrator has been derived in [3].
Modified nodal analysis yields a linear system of DAEs

ACCA⊤
Cu

′(t) + ARGA⊤
Ru(t) + AV ȷV (t) = 0

A⊤
V u(t)− z(u(t), t) = 0

(18)

for the unknown node voltages u = (u1, u2, u3)
⊤ and unknown branch cur-

rents ȷV = (ȷ1, ȷ2)
⊤. The involved matrices read

AC =

0 0
1 −1
0 1

 , AR =

 1
−1
0

 , AV =

1 0
0 0
0 1

 , C =

(
C1 0
0 C2

)
and G = ( 1

R1
). In the modelling, a voltage controlled source z is introduced

as

z(u, t) =

(
uin(t)
au2

)
.

In [3], an analysis of the index shows that this linear system exhibits

index k = 2 for a ̸= 1 + C1

C2
,

index k = 3 for a = 1 + C1

C2
.
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The physical parameters are chosen as C1 = 10−10 F, C2 = 5 ·10−11 F, a = 2,
R1 = 103 Ω. We select a harmonic oscillation as input signal, i.e.,

uin(t) = sin
(
2π
T
t
)

with T = 10−6 s.

The output voltage is uout(t) = u3(t). Furthermore, we choose the initial
values x0 = 0 in (2).

In a stochastic modelling, we arrange random distributions for the am-
plification factor and the two capacitances by

ã(p1) := a(1 + 0.1p1), C̃1(p2) := C1(1 + 0.1p2), C̃2(p3) := C2(1 + 0.1p3)

with independent uniformly distributed random variables pj ∈ [−1, 1] for
j = 1, 2, 3. Thus variations of 10% are considered in each parameter. The
index of the system (18) is two for all realisations of the random parameters.
Furthermore, the system (18) can be written in the form (1), where the
matrices A(p), B(p) exhibit the structure (15).

In the following, initial value problems of DAEs are always solved by the
RADAU5 method, see [4]. In case of DAEs of index two, the order of this
time integrator reduces to three. We apply equidistant step sizes in time.
The total interval of the simulations is always [0, 4T ].

Now we use the stochastic Galerkin method to solve the model including
the random parameters. Thereby, we choose the space M3 from (14), where
the dimension is M + 1 = 20. Thus the coupled system (12) is solved with
initial values equal to zero. Although the conditions from Sect. 3 do not
apply to this case, numerical computations confirm that the coupled system
inherits the index two. Fig. 3 illustrates the resulting expected values and
standard deviations of the five components in the Miller integrator. All
coefficient functions corresponding to the output signal are shown in Fig. 4.
We observe that the magnitude of the coefficients decreases exponentially
for increasing degree, which is a typical behaviour for processes with high
smoothness in the parameter space.

We like to compare the efficiency of different methods. We apply a Gaus-
sian quadrature with a grid of size 43, i.e., 64 separate systems (18) are
resolved. Theorem 1 and Corollary 1 imply that the reconstruction (6) of
the coefficient functions for N3 in (14) is equivalent to the corresponding
collocation method as well as Galerkin method. The associated coupled sys-
tems (9) and (12) have the index two due to Corollary 2 and Corollary 3. In
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Figure 3: Expected values (left) and standard deviations (right) of the solution of the
Miller integrator with random parameters.
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Figure 4: Coefficient functions of gPC expansion for output voltage of the Miller integrator
with random parameters.
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Table 1: Maximum absolute errors in methods (maximum for all grid points in time
interval [0, 4T ] and all coefficient functions v0, . . . , v19).

component u1 u2 u3 ȷ1 ȷ2
Galerkin 4 · 10−15 6 · 10−6 2 · 10−5 6 · 10−9 2 · 10−7

quadrature 4 · 10−15 3 · 10−7 8 · 10−7 3 · 10−10 7 · 10−7
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Figure 5: Sparse structure of the matrix Agal (left) and the matrix Bgal (right) in the
stochastic Galerkin method (nz: number of non-zero elements).

the software package MATLAB, the CPU times are 0.25 for the Galerkin ap-
proach with M3 and 64 · 0.18 = 11.5 for the Gaussian quadrature. Thus the
Galerkin method is faster. To estimate the errors, we compute a reference
solution by a Gaussian quadrature with a grid of size 83. Moreover, the time
step size is halved. Table 1 shows the maximum differences with respect to
the reference solution. It follows that the quadrature is more accurate than
the Galerkin method. In conclusion, the two approaches exhibit roughly the
same efficiency in this example.

It is interesting to understand why the CPU time for the Galerkin method
with a coupled system of dimension 100 is just slightly higher than the CPU
time for a single original system of dimension 5. The main reason for this
efficiency is the sparse and banded structure of the matrices in the coupled
system shown in Fig. 5, which is a consequence of the orthogonality of the
basis polynomials. It follows that the LU -decompositions of the matrices in
the time integration are also sparse and thus cheap.
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5. Conclusions

Three classes of numerical methods can be used to solve differential alge-
braic equations with random parameters: quadrature schemes, the stochastic
collocation and the stochastic Galerkin method. We showed the equivalence
of two or more classes in specific cases of linear systems, where a multivariate
Gaussian quadrature and a space of polynomials with tensor-product basis
is considered. We derived sufficient conditions for an identical index of the
linear systems of differential algebraic equations in the methods. An open
question is the behaviour of the index in case of a smaller space of polynomi-
als as used in truncated Taylor expansions. Furthermore, nonlinear systems
of differential algebraic equations have to be investigated in this context.
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