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Abstract. A product may fail when design parameters are
subject to large deviations. To guarantee yield one likes to
determine bounds on the parameter range such that the fail
probability Pfail is small. For Static Random Access Memory
(SRAM) characteristics like Static Noise Margin and Read
Current, obtained from simulation output, are important in
the failure criteria. They also have non-Gaussian distribu-
tions. With regular Monte Carlo (MC) sampling we can
simply determine the fraction of failures when varying pa-
rameters. We are interested to efficiently sample for a tiny
fail probability Pfail ≤ 10−10. For a normal distribution this
corresponds with parameter variations up to 6.4 times the
standard deviation σ . Importance Sampling (IS) allows to
tune Monte Carlo sampling to areas of particular interest
while correcting the counting of failure events with a cor-
rection factor. To estimate the number of samples needed we
apply Large Deviations Theory, first to sharply estimate the
amount of samples needed for regular MC, and next for IS.
With a suitably chosen distribution IS can be orders more
efficient than regular MC to determine the fail probability
Pfail. We apply this to determine the fail probabilities the
SRAM characteristics Static Noise Margin and Read Cur-
rent. Next we accurately and efficiently minimize the ac-
cess time of an SRAM block, consisting of SRAM cells and a
(selecting) Sense Amplifier, while guaranteeing a statistical
constraint on the yield target.
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1. Introduction
As transistor dimensions of Static Random Access

Memory (SRAM) become smaller with each new technol-
ogy generation, they become increasingly susceptible to

statistical variations in their parameters. These statistical
variations may result in failing memory. An SRAM is used
as a building block for the construction of large Integrated
Circuits (ICs), providing Megabits of memory. To ensure
that a digital bit cell in SRAM does not degrade the yield
(fraction of functional devices) of ICs, very small failure
probabilities are necessary [2]. For instance, in SRAM
memory design one aims to get less than 0.1% yield loss for
a 10Mbit memory, which means that at most 1 in 10 billion
cells fails (Pfail ≤ 10−10; for a one-sided tail probability this
corresponds with a−6.4σ parameter variation when dealing
with a normal distribution; here σ is the standard variation).
To simulate this, regular Monte-Carlo (MC) requires a huge
number of simulations, despite some speed-up techniques
that are available in commercial simulation tools (Latin Hy-
percube, stratification, quasi Monte Carlo, etc.). Importance
Sampling (IS) [1] is a sampling technique that is relatively
easy to implement. Practice shows that by IS one can obtain
sufficiently accurate results in a much more efficient way
than by MC [3,5,6,9]. Also some variants show up [4]. Sec-
tion 2 and 3 provide sharp upper bounds for the number of
samples needed by MC and by IS more advanced technique
that provides sufficiently accurate results and is relatively
easy to implement. A speed up of several orders can be
achieved when compared to regular Monte Carlo methods.

2. Regular Monte Carlo
Let Y be a real-valued random variable with probabil-

ity density function f . We assume that N independent ran-
dom observations Yi (i = 1, . . . ,N) of Y are taken and define,
for a given set A = (−∞,x), the event indicator Xi = IA(Yi),
where IA(Yi) = 1 if Yi ∈ A and 0 otherwise. Then pMC

f (A) =
1
N ∑

N
i=1 Xi estimates p =

∫ x
−∞

f (z)dz = P(Y ∈ A). The Xi are
Bernoulli distributed, hence N pMC

f ∼ Bin(N, p) is Binomi-
ally distributed (N samples, each with success probability
p), and thus for the expectation one has E(pMC

f )= 1
N N p= p,

and for the variance Var(pMC
f ) ≡ σ2(pMC

f ) = p(1−p)
N . Here



σ(pMC
f is the corresponding standard deviation.

Let Φ(x) =
∫ x
−∞

e−z2/2dz be the cumulative probability func-
tion of the normal density function and define zα by
Φ(−zα) = α , see Fig. 1 for an impression. For NMC large

Fig. 1. Powers of tail accuracy, log10(α), versus quantiles zα of
the normal distribution along σ -scale. Our interest goes
to variations up to 6σ .

enough we can apply the Central Limit Theorem (CLT) and
derive

P(|pMC
f − p|> ε) = P(

|pMC
f − p|

σ(pMC
f )

> z)

NMC→∞−→ 2Φ(−z)≤ 2Φ(−zα/2) = α,

where z = ε/
√

p(1− p)/NMC and NMC = N. Hence, if z≥
zα/2 we deduce

NMC ≥ p(1− p)
( zα/2

ε

)2
=

1− p
p

( zα/2

ν

)2
, (1)

for ε = ν p. Here we assume ν = 0.1 and p = 10−10. Now
let α = 0.02, then zα/2 ≈ 2. Then (1) implies NMC ≥ 4 1012.
If we do not know p, we can use p(1− p) ≥ 1/4, yield-

ing NMC ≥ 1
4

(
zα/2

ε

)2
= 1022. And if NMC is not large

enough to apply the CLT, Chebyshev’s inequality even re-
sults to NMC ≥ 1024. These general bounds are much too
pessimistic. Large Deviations Theory (LDT) [1,7] results in
a sharp upper bound that nicely involves NMC

P(|pMC
f − p|> ν p) ≤ exp

(
−NMC

2
p

1− p
ν

2
)
, (2)

for all NMC, with a possible exception of finitely many. For
a proof, see [11, 12]. The exponential type of bound in (2)
is also valid from below and thus is sharp. For ν = 0.1,
p = 10−10 and α = 0.02, as above, we find: NMC ≥ 8 1012

(which is thus a sharp result). Note that an extra k-th decimal
in ν increases NMC with a factor k2.

3. Importance Sampling
With Importance Sampling we sample the Yi accord-

ing to a different distribution function g and observe that

p f (A) =
∫ x
−∞

f (z)dz=
∫ x
−∞

f (z)
g(z)g(z)dz. We define a weighted

success indicator V = V (A) = IA(Y ) f (Y )/g(Y ). Then with
the g-distribution we have for the expectation Eg(V ) =∫

IA(y)
f (y)
g(y)g(y)dy =

∫ x
−∞

f (y)dy = p f (A). Hence if we
determine Vi = IA(Yi) f (Yi)/g(Yi) from g-distributed Yi we
can define pIS

g (A) = 1
N ∑

N
i=1 Vi. Its expectation becomes

Eg
(

pIS
g
)
= 1

N ∑
N
i=1 Eg (Vi) = p f (A). When also f (z)

g(z) ≤ 1 on A

we derive after some calculation Varg
(

pIS
g
)
≤ Var f

(
pMC

f

)
(variance reduction, using the same number of samples).
This does not yet imply more efficiency. However, similar
to (2), we derive (in which NIS = N), for NIS large enough

P
(∣∣pIS

g − p
∣∣> ν p

)
≤ exp

(
− NIS p2

2Varg(V )
ν

2
)
. (3)

For a proof, we again refer to [11, 12]. Assuming the same
upper bounds values in (2) and (3), comparing them gives
NIS

NMC
=

Varg(V )
p(1−p) =

Eg(V 2)−p2

p(1−p) . Now, suppose p≤ κ and

f (z)
g(z)

≤ κ < 1, on A. (4)

Then, with q = 1− p, we obtain

NIS

NMC
=

Eg(V 2)

pq
− p

q
≤ κ

q
− p

q
≤ κ(1+ζ ) (5)

for |(1 − 1
κ
)p + O(p2)| ≤ ζ , which for κ = 0.1 and

p = 10−10 means that ζ ≤ 10−9. Hence, for κ = 0.1, we can
take an order less samples with Importance Sampling to get
the same accuracy as with regular Monte Carlo. This even
becomes better with smaller κ . By Importance Sampling
we gain efficiency; this is the main message. Also the
asymptotic accuracy improves when compared to regular
Monte Carlo, but the improvement is less impressive than
for the efficiency. We can derive an enhanced variance
reduction: Varg

(
pIS

g
)
≤ κ Var f

(
pMC

f

)
− 1−κ

N p2 and thus

σg
(

pIS
g
)
≤
√

κ σ f

(
pMC

f

)
, which for κ = 0.1 means that

here not an order is gained, but a factor
√

κ ≈ 0.316.
We note that, if g(x) ≡ 1, as in Section 2, we have
Varg (V ) = 1

pq , see (2). We remark that (4) is easily satisfied
if f is a Gaussian distribution and g has a broader or shifted
(Gaussian, or uniform) distribution, with enough density on
A. In [2] one uses a 4σ shift for a Gaussian distribution;
in [3] the shift is optimized. In [11] and in [4, 9] algorithms
for an adaptively determined distribution g can be found.

4. Uncertainty Quantification
Uncertainty Quantification usually applies so-called

Polynomial Chaos expansions of the random processes.
The corresponding numerical approaches represent an
alternative to do statistics, and are in many cases several
orders faster than what is possible with Monte Carlo. Thus,
statistics can be done efficiently, exploiting fast converging
expansions, and with a sound mathematical background.



Around 2005 interest popped up in electronic engineering.
In the Polynomial Chaos approach, one represents a solu-
tion by an expansion using orthogonal polynomials, where
the polynomials involve the random parameters and the
coefficients are time or space dependent. These coefficients
have to be determined by some numerical technique,
where mostly the two classes of Collocation and Galerkin
methods are applied. On the one-hand, these techniques
offer deterministic algorithms. On the other hand, they
require either many systems to be solved (Collocation),
or a large fully coupled system (Galerkin). The classical
Hermite polynomials (associated with normal distributions)
are worse in the tails; an expansion using Gauss-Legendre
polynomials (associated with uniform distributions) already
behaves better.
The software tool RODEO of Siemens AG seems to be the
only industrial implementation of failure probability calcu-
lation that fits within the polynomial chaos framework [13].
The method can shift the (probability density) weighting
function in the inner product to the area of interest (shifted
Hermite chaos). One also can use a windowed Hermite
chaos. The shift is tuned by some optimization procedure.
The windowed Hermite chaos is the most accurate.
In [14] for a parameter γ = γ0 + γ1ξ , where ξ is a beta
random variable, one considers an expansion in Jacobi
polynomials; more generaly, knowing the density of γ one
can construct orthogonal polynomials.
A hybrid method to compute small failure probabil-
ities has been introduced by [10], where the method
achieves efficient numerical simulations for academic
examples. Most likely, this technique has not been
applied in European industrial companies yet.

5. Accurate Estimate of SRAM Yield
The threshold voltages Vt of the six transistors in an

SRAM cell are the most important parameters causing vari-
ations of the characteristic quantities of an SRAM cell [5]
like Static Noise Margin (SNM) and Read Current (Iread).
In [5, 11] Importance Sampling (IS) was used to accurately
and efficiently estimate low failure probabilities for SNM
and Iread. SNM = min(SNMh,SNMl) is a measure for the
read stability of the cell. SNMh and SNMl are identically
Gaussian distributed. The min() function is a non-linear op-
eration by which the distribution of SNM is no longer Gaus-
sian. Figure 2-top, shows the cumulative distribution func-
tion (CDF) of the SNM, using 50k trials, both for regular
MC (solid) and IS (dotted). Regular MC can only simulate
down to Pfail ≤ 10−5. Statistical noise becomes apparent be-
low Pfail≤ 10−4. With IS (using a broad uniform distribution
g), Pfail ≤ 10−10 is easily simulated (we checked this with
more samples). The correspondence between regular MC
and IS is very good down to Pfail ≤ 10−5. The Read Cur-
rent Iread is a measure for the speed of the memory cell. It
has a non-Gaussian distribution and the cumulative distribu-
tion is shown in Figure 2-bottom. Also here IS is essentially
needed for sampling Iread appropriately.

Extrapolated MC assumes a Gaussian distribution based on
estimated expectation and standard deviation (which only
need a few number of samples). Figure 2-top clearly shows
that using extrapolated MC (dashed) leads to overestimating
the SNM at Pfail = 10−10. Figure 2-bottom shows that ex-
trapolated MC can result in serious underestimation of Iread.
This can lead to over-design of the memory cell.

Fig. 2. SNM (top) and Iread (bottom) cumulative distribution
function for extrapolated MC (dashed), regular MC
(solid) and IS (dotted). Extrapolation assumes a normal
distribution.

6. Optimization of SRAM Block
The block in Fig. 3 contains a Sense Amplifier (SA), a

selector, and a number of SRAM cells. The selector chooses
one ”row” (block) of cells. Then the voltage difference is
∆Vcell = ∆Vk. A block B works if mink(∆Vk) ≥ ∆VSA. With
m blocks B and n cells per block we define Yield Loss by
Y L = P(#B ≥ 1). Note that P(#B ≥ 1) ≤ mP(B), where
the fail probability P(B) = Pfail(B) of one block is (accu-
rately) approximated by the lower bound P(B)≈ Y L

m = nY L
N ,

in which N = nm. For Y L= 10−3, m= 104 blocks, n= 1000
we find P(B)≤ 10−7.
For X = mink(∆Vk), and Y = ∆VSA we have

P(B) = P(X < Y ) =
∫ ∫

−∞≤x<y≤∞

fX ,Y (x,y)dxdy

=
∫

∞

−∞

fY (y)FX (y)dy. (6)

Thus we need the pdf fY (y) and the cdf FX (y) (probability
and cumulative distribution functions of Y and X). Note that

FX (y) = P(X < y) = P(min
k

∆Vk < y)

= 1− [1−P(∆Vk < y)]n ≤ nP(∆Vk < y). (7)



Fig. 3. Rows with blocks of SRAM cells together with a Selec-
tor and a Sense Amplifier.

For each simulation of the block we can determine the ac-
cess times ∆tcell and ∆tSA. We come down to an optimization
problem with a statistical constraint:

Minimize ∆tcell +∆tSA such that P(B)≤ 10−7.

This has led to the following algorithm. We only give a
sketch; for more details see [6].

• By Importance Sampling sample ∆Vk. Collect ∆Vk
at the same ∆tcell.

• By Monte Carlo sample ∆VSA. Collect ∆VSA at the
same ∆tSA.

• For given ∆tcell:

– Estimate pdf f∆Vk and cdf P(∆Vk < y).

– From this calculate FX (y) = FX (y;∆tcell), using
the exact expression in (7). In our case we have
∂FX (y;∆tcell)

∂∆tcell
≤ 0.

• For given ∆tSA:

– Estimate pdf of ∆VSA: fY (y).

• Calculate (numerical integration)

– P(B) =
∫

∞

−∞
fY (y)FX (y)dy.

Hence P(B) = G(∆tcell,∆tSA) for some function G.
For given ∆tSA G1(∆tcell;∆tSA) = G(∆tcell,∆tSA) is
monotonically decreasing in ∆tcell. Hence we Mini-
mize G−1

1 (10−k;∆tSA) + ∆tSA. The optimization with
the statistical constraint on P(B) led to a reduction
of 6% of the access time of an already optimized SA
while simultaneously reducing the silicon area [6].

7. Conclusions
We derived sharp lower and upper bounds for estimat-

ing accuracy of tail probabilities of quantities that have a
non-Gaussian distribution. For Monte Carlo and for Im-
portance Sampling (IS) this leads to a realistic number of
samples that should be taken. IS was applied to efficiently

estimate fail probabilities Pfail ≤ 10−10 of SRAM character-
istics like Static Noise Margin and Read Current. We also
applied IS to minimise the access time of an SRAM block
while guaranteeing that the fail probability of one block is
small enough. In our experiments we used a fixed distribu-
tion g in the parameter space. In [11] an algorithm with an
adaptively determined distribution g can be found.
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