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Abstract Coupled electromagnetic-heat problems have been studied for induction
or inductive heating, for dielectric heating, for testing of corrosion, for detection of
cracks, for hardening of steel, and more recently for inductive charging of electric ve-
hicles. In nearly all cases a simple co-simulation is made where the electromagnetics
problem is solved in the frequency domain (and which thus is assumed to be linear)
and the heat equation in the time domain. One exchanges data after each time step (or
after some change in the heat profile). However, the coupled problem is non-linear in
the heat variable.
In this paper we propose to split the time domain in windows in which we solve
the electromagnetics problem in frequency domain. We strengthen the coupling by
iterations, for which we prove convergence. By this we obtain a higher accuracy,
which will allow for larger time steps and also for higher order time integration. This
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fully exploits the multirate behavior of the coupled system. An industrial example
illustrates the analysis.

Keywords Inductive charging · Coupled simulation · Co-simulation · Electromag-
netic · Heat ·Modeling · Dynamic iteration

1 Introduction

In today’s development processes, simulation is becoming more and more impor-
tant. One predicts physical behavior precisely – even for multiphysics systems, where
many effects influence each other. In that sense the first prototypes can be replaced
by simulation. This is called virtual prototyping and speeds up time-to-market con-
siderably.
In this paper simulation of electromagnetic problems coupled with heat problems is
considered. Well known applications are induction heating [9,12], dielectric heating
[7], e.g. used for microwave ovens, steel hardening of gears [10] and detection of
cracks or corrosion in ships. We focus on the design process of an inductive charging
station for electric vehicles.
In inductive charging the electromagnetic (EM) field is of main importance. It in-
duces eddy currents in massive conductors. At the power levels used for charging of
electric vehicles, these losses cause a significant amount of heat. The heat diffuses
and changes temperature and properties of the materials, and thus also the EM field.
These effects have to be considered in a two-way coupling: One way is the generation
of heat via eddy current losses resulting from the EM field. The other is the influence
of the temperature dependent material parameters on the EM field.
In contrast to [8] we focus here on the comparison of the different co-simulation
methodologies.

2 Modeling

A simple time-domain model consists of the magnetic vector potential equation (1)
for the electromagnetic problem and the heat equation (2) to describe the heat diffu-
sion. It can be stated as

∇× (µ−1
∇×A)+ ε

∂ 2A
∂ t2 +σ(T )

∂A
∂ t

= Jsrc (1)

ρ c
∂T
∂ t

= ∇ · (k∇T )+Q, (2)

in which the heat source density Q comes from the power loss terms caused by the
eddy current losses and the currents in the coil

Q(A,T ) := σ(T )
∂A
∂ t
· ∂A

∂ t
−Jsrc ·

∂A
∂ t

. (3)

In (1) A is the magnetic vector potential, Jsrc is the source current density. The electric
conductivity σ is material and temperature dependent. The other material parameters
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Fig. 1: Single rate co-simulation approach.

(the magnetic permeability µ and the permittivity ε) are considered here as constant
in time and do not dependent on the temperature T , but vary in space. For the heat
equation, ρ and c are the mass density and the specific heat density, respectively; k is
the thermal conductivity. Both equations must be equipped with appropriate boundary
conditions (BC). The heat equation requires an initial value (IV) at start time.

3 Co-Simulation

A simulation could be drawn out as one large system of equations, i.e. monolithic.
Solving this system with classical time stepping methods would require to follow
the demands of the fastest part of the system. In heat/electromagnetic problems this
is usually the EM field. Here we assume a harmonic source current density, which
determines the step size of the integrator. As first co-simulation scheme, we consider
the one, that is closest to the monolithic approach: single rate co-simulation. Basically
this is a Gauss-Seidel-type scheme, where each part uses the same time steps. The
scheme is illustrated in Fig. 1. The single rate co-simulation approach is a simple and
straight forward approach. Data of one part of the solution can be given directly into
the next one. Alternatively, outer iterations can be used to increase the accuracy and
stability. However, a lot of computational effort is spent in both subsystems due to the
uniform time step, although the slow part does not need these steps. This observation
is the base of the next scheme we consider.
The multirate co-simulation approach, illustrated in Fig. 2, makes use of the different
time scales of the heat and EM equations. Since the source current density (and thus
magnetic vector potential) is faster changing than the temperature, there are more
time steps needed for the EM equation than for the heat equation. Clearly, here the
advantage is the computational savings when solving the heat equation. On the other
hand this approach is less straightforward than the single rate approach; one has to
manage the more complex data transfer. A common way is the introduction of syn-
chronization time points τi, as shown in the Fig. 2. This requires to align the time
stepping schemes of all subsystems. Another way to find the data at the desired time
point is interpolation. Finally, iteration is still possible in this multirate approach,
similar to dynamic iteration approaches, e.g. [1]. However, the main part of the com-
putational costs is the integration of the EM equation, which still has not changed in
comparison to the single rate approach.
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Fig. 2: Multirate co-simulation approach with synchronization time points τi.

3.1 Frequency-Transient Model

More elaborated modeling significantly reduces the high computational costs for
solving the EM equation: for many applications it is accurate enough to average
the power transferred within a time window [τi,τi+1]. Similarly, an averaged tem-
perature, T̃i, is used for the conductivity Mσ in the EM equation. For metals Mσ (T )
is monotonically decreasing. The other material parameters (µ , ε) are assumed to be
constant. That allows to solve the EM equation in the frequency domain and avoid the
computation of the EM part in time domain. We further assume that Jsrc = Ĵsrc e jωt .
Then the coupled model for a time harmonic source current density can be stated as

( j ω Mσ (T̃i)−ω
2

ε)Âc +∇× (µ−1
∇× Âc) = Ĵsrc (4)

ρ c
∂T
∂ t

= ∇ · (k∇T )+ Q̃i(T̃i), (5)

where

Q̃i(T̃i) = Mσ (T̃i)
ω2

2

∥∥∥Âc(T̃i)
∥∥∥2

c
− ω

2
Im

(
Âc(T̃i) · Ĵsrc

)
. (6)

in which Âc = Âc(T̃i) and Ĵsrc are the first Fourier coefficients of the magnetic vector
potential A and the source current density Jsrc, respectively. In (6) the norm is the
complex norm; the overline indicates the complex conjugate. For further details of
the derivation, see [8]. Remark that there is still the parametric coupling from the
heat equation via the conductivity Mσ to the EM equation. Also the EM equation
is still coupled to the heat equation via the source term Q̃i. Hence, the coupling is
still two-way. The EM equation (4) has become a purely algebraic equation whose
solution depends on the temperature and, by this, implicitly on time. The scheme is
illustrated in Fig. 3. By computing the EM equation in frequency domain only one
linear system is solved for one time step of the heat equation. Especially for high
frequencies this saves a huge amount of computational time in comparison to the
classical approaches. Also, the data transfer is straightforward. This setup has been
the basis for several coupled EM-heat problems [3,4,7,9], however typically without
applying iterations.
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Fig. 3: Frequency-transient co-simulation approach.

When using an iterative scheme, convergence must be analyzed on beforehand. For
the frequency-transient approach with an implicit Euler scheme for the time dis-
cretization of the heat equation, convergence can be proved [8]. This results in the
following theorem:

Theorem 1 We assume given BC and IV and differentiability for Mσ w.r.t. tempera-
ture t. Then the iteration is convergent for h small enough with∥∥∥t(l+1)− t∗

∥∥∥≤ c(ω)h
∥∥∥t(l)− t∗

∥∥∥ ,
where c(ω) is uniformly bounded on ω ∈ [0,∞). Furthermore, for metals (M′σ < 0),
we have c(ω) = O( 1

ω2 ) for large ω .

For metals this implies that there are no additional step size restrictions for ω →
∞. Then, for higher frequencies the step size can be larger. In fact this is in good
agreement with the high frequency applications found in literature. However, we are
also interested in rather moderate frequencies.

Proof: Here we summarize the steps of the proof; for details see [8]. We assume the
same space discretization for both subproblems. For the discretization in space we
propose Finite Element Method (FEM) with Lobatto Quadrature or the Finite Inte-
gration Technique (FIT), [11,4]. In the quadratic Q-term, the value of T only depends
on the temperature in a local meshpoint. This simplifies the proof. For readability we
drop the diacritic symbol .̂
Let a and t denote the discretized magnetic vector potential and temperature, respec-
tively. At time τn we assume a, t given. Then at τn+1 = τn+h we iteratively determine
tl⇒ al+1⇒ tl+1, etc. We assume that there is an exact solution without splitting error
at τn+1: a?, t?. The discretized EM equation (4) becomes in FIT-like notation [11]

[ jωMσ (tl)−ω
2Mε +C>Mν C]al+1 = jsrc,

with diagonal matrices for conductivity, permittivity and reluctivity, Mσ , Mε , Mν ,
discrete curl operators C, C> and source current jsrc. This gives an error equation

[Xεν + jωMl
σ ](a

l+1−a?) =− jω[Ml
σ −M?

σ ]a
?,
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where we define for convenience

Xεν :=−ω
2Mε +C>Mν C, Ml

σ := Mσ (tl), M?
σ := Mσ (t?).

Thus al+1 = a?+R, where

R =− jω[Xεν + jωMl
σ ]
−1[Ml

σ −M?
σ ]a

?.

Hence

‖R‖< ω‖[Xεν + jωMl
σ ]
−1‖ · ‖Ml

σ −M?
σ‖ · ‖a?‖,

which asks for a uniform upper bound for the inverse operator and for Lipschitz
continuity of Mσ . Then the al+1 are bounded.
The discretized version of the heat equation (5) is given in the following. For sim-
plicity we assume time discretization by the implicit Euler scheme, we focus only on
the quadratic term and disregard the other right-hand-side terms (rhs); ||.|| is a vector
of coordinate-wise norms

[Mρ,c−hS̃MkS̃>(tl+1− t?) =
1
2

hω
2[Ml+1

σ ‖al+1‖2−M?
σ‖a?‖2]+ rhs

=
1
2

hω
2[Ml+1

σ ‖a?+R‖2−M?
σ‖a?‖2 ]+ rhs

=
1
2

hω
2[Ml+1

σ −M?
σ ]‖a?+R‖2 +R+ rhs

with R =
1
2

hω
2M?

σ [< a?,R >+< R,a? >+< R,R >]

with material matrices Mρ,c and Mk and the divergence and gradient operators S̃ , S̃>,
respectively [4]. It follows equivalently

[Mρ,c−hS̃MkS̃>](tl+1− t?)− 1
2

hω
2[Ml+1

σ −M?
σ ]‖a?+R‖2 = R.

We can rewrite

[Ml+1
σ −M?

σ ]‖a?+R‖2 = Diag(‖a?+R‖2)Vec(Ml+1
σ −M?

σ ).

For the last term we can apply the mean value theorem coordinate-wise and thus get

Vec(Ml+1
σ −M?

σ ) = Diag(M′σ ,k)(t
l+1− t?).

Hence, for M′σ (T )< 0 we have convergence for h small enough, but with good prop-
erties for varying ω . This completes the summary of the proof. ut
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(a) 3d view on 2d-axisymmetric geometry. (b) Cut view.

Fig. 4: Geometry of the simulated model. From left to right: ferrite (gray), primary
coil (blue), air, secondary coil (blue), ferrite (gray), air, steel slice (red). The left coil
represents the charging station and the right coil the coil behind the number plate in
the car. (Comsol)

4 Generalization

For an extended approach by Driesen and Hameyer [6], where also the complex pha-
sor is allowed to vary slowly, the proof can be extended. In this case the EM equation
in frequency domain leads to a second order DAE after space discretization. Hence
the error equation for the EM-equation needs to be integrated as well.
Another way of generalizing the frequency transient model is to include multifre-
quency excitation as needed, e.g., for non-smooth surfaces [10]. This is an easy way
to allow approximations for other periodic waveforms of source currents. Other wave-
forms are important to approximate the current from power electronics, that control
the primary coil. This gives way to a Harmonic Balance approach for the EM equa-
tion. It also allows for including a nonlinear permeability µ . Otherwise the model can
only be used for a working point of the material curve.
A more general fully multirate time domain model, that exploits different time scales,
can be derived by using the MPDAE approach by Brachtendorf [2]. By this, envelope
simulation techniques from circuit simulation are applied to the coupled EM-heat
problem.

5 Numerical Example

In this section results of a simulation for a model of an inductive charging system are
shown. The simulation of a model with temperature independent conductivity, which
results in a single way coupling, will be compared to the two-way coupling.
The frequency-transient model is applied to an inductive charging system for electric
vehicles. The charging is done here through the number plate. The model consists
of two copper coils with ferrite and air in between. The primary coil represents the
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(a) Temperature independent conductivity. (b) Temperature dependent conductivity.

Fig. 5: Simulation of inductive charging system for e-cars after 20 min. The plot
shows the temperature distribution. (Comsol)

charging station and the secondary coil the coil behind the number plate in the vehi-
cle. To account for the challenges of a real world prototype, a steel bar with a constant
permeability µr = 500 is added behind the secondary coil. It models parts of the car
body. The geometry is shown in Fig. 4.
The simulations are drawn out in Comsol [5] with appropriate settings to use the
frequency-transient model as described in this paper. Simulation time is set to 20 min,
the coils have 20 windings. The primary coil is excited by a current of 25 A at a (mod-
erate) frequency of 10 kHz. The secondary has a zero current (no-load configuration).
The conductivity σ in the independent case was chosen to be at room temperature
(293.15 K), which is also the initial temperature.
The simulation with temperature independent conductivity shows a maximum tem-
perature of 387.92 K, see Fig. 5a. The maximum temperature in case of an temper-
ature dependent conductivity is 395.15 K, see Fig. 5b. The difference of about 7 K
is due to the parameter coupling from the temperature to the EM equation via the
conductivity.
Remark that for this simulation only 17 time steps were needed to compute the re-
sults. When we compare that to simulating this problem with a monolithic model and
assume 10 time steps per period of the source current, 120 million time steps would
be necessary for simulation. This clearly shows the efficiency of simulation of the
frequency-transient model compared to approaches, where the EM equation is solved
in time domain.

6 Conclusions

A frequency-transient model tailored for coupled heat-electromagnetic problems was
described. An efficient multirate co-simulation approach was proposed for solving it
it. For this algorithm a convergence theorem for an iterative approach was proved for
all frequencies. For metals and higher frequencies the speed of convergence increases.
The numerical example confirms this result. The theorem also applies to approaches
by Driesen and Hameyer [6] and implementations in Comsol [5]. In particular it
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applies to many cosimulation approaches for high frequency applications [3,4,7,9,
10,12]. From the analysis (see [8]) an optimal step size can be derived.
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