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Abstract: Fatigue describes the damage or failure of material under cyclic loading. Activation
and deactivation operations of technical units are important examples in engineering where
fatigue and especially low-cycle fatigue (LCF) play an essential role. A significant scatter in
fatigue life for many materials results in the necessity of advanced probabilistic models for
fatigue. Moreover, structural shape optimization is of increasing interest in engineering, where
with respect to fatigue the cost functionals are motivated by their predictability for the integrity
of the component after a certain number of load cycles. But mathematical properties such as
the existence of the shape derivatives are desirable, too. Deterministic design philosophies
that derive a predicted component life from the average life of the most loaded point on
the component plus a safety factor accounting for the scatter band do not have this favorable
property, as taking maxima is not a differentiable operation. In this work we present a new local
probabilistic model for LCF. This model constitutes a new link between reliability statistics,
shape optimization and structural analysis which considers the perspective of fatigue but also
fits into the mathematical setting of shape optimization. The cost functionals derived in this
way are too singular to beH1 lower semi-continuous. We therefore have to modify the existence
proof of optimal shapes [20] for the case of sufficiently smooth shapes using elliptic regularity,
uniform Schauder estimates and compactness of certain subsets in Ck(Ωext,R) via the Arzela-
Ascoli theorem, where Ωext is some shape containing all admissible shapes. Here, we analyze a
class of cost functionals which consists of volume and surface integrals whose integrands include
derivatives of the displacement field up to second order. Moreover, we extend our existence
results to high-cycle fatigue (HCF) and deterministic models of fatigue.

1 Introduction

A design being made from material will fail if the material degradation due to loading exceeds
certain limits. Reliability, i.e. the absence of failure, is thus the ultimate goal of structural
design. Whether a design will operate safely under certain load conditions depends on the
failure mechanisms which are very diverse for different material classes. Degradation can
occur as a function of operating time, which is e.g. the case for creep damage. Or it can occur

1Bergische Universität Wuppertal, Fachbereich Mathematik und Naturwissenschaften, Gaußstraße 20, 42097
Wuppertal, Germany, Email: hanno.gottschalk@uni-wuppertal.de

2Universita della Svizerra Italiana, Istituto di Scienze Computazionali, Via Giuseppe Buffi 13, 6900 Lugano,
Switzerland, Email: sebastian.schmitz@usi.ch

Siemens AG Energy, Mellinghoferstraße 55, 45473 Mülheim an der Ruhr, Germany, Email:
schmitz.sebastian@siemens.com



2 1 INTRODUCTION

when small plastic deformations under cyclic loading pile up and result in a crack. This is
called fatigue which can be differentiated into high-cycle fatigue (HCF) and low-cycle fatigue
(LCF). In this work we focus on LCF in conjunction with polycrystalline metals and consider
the number of load cycles until crack initiation.

The LCF failure mechanism – confer [6], [30], [15] and [36] – with respect to polycrystalline
metal leads to the stochastic nature of LCF which prevails on the macroscopic scale, where a
statistical scatter of a factor 10 between the highest and lowest load cycles to crack initiation is
a common phenomenon, even under lab conditions. This makes it obvious that the reliability
of a design has to be understood quantitatively as the probability of the absence of failure
after a given number of loads. Thus reliability statistics, see e.g. [13], should play a vital
part in LCF design. Furthermore, LCF cracks initiate at the surface and they are small in
the initiation phase. Therefore, they will only influence stress fields on micro- and mesoscales
and so it is reasonable to assume that crack formation in one region of the component surface
is not influenced by the crack forming process on another part. This forces us to see crack
formation as a problem of spatial statistics [34]. We thus infer that hazard rates for crack
initiation have to be integrals over some local function depending on the local stress or strain
fields. Therefore, hazard rates for the component can be expressed by a surface integral over
some crack formation intensity function depending on local fields. The latter can also be seen
as the density for the intensity measure of a poisson point process (PPP) on [0,∞) × ∂Ω,
confer [25] and [5]. Here, the first component stands for ’time’ measured in cycles. The very
interesting article [15] also emphasizes the role of the PPP.

In this work we model hazard rates and intensity densities of the PPP with a rather
conservative approach. That is, we assume that the intensity measure is of scale-shape type,
as it is the case for many distributions in reliability statistics. Furthermore, we assume that the
scale variable Ndet is of the same functional form as the usual Coffin-Manson-Basquin equation,
confer [6] and (5) below. Although we are not aware of any empirical study showing that
LCF failure time distributions are Weibull, we determine the shape of the intensity measure
according to this approach for mathematical simplicity. It then follows that the number N
of cycles of first crack initiation will be a Weibull distribution as well. The Weibull scale
parameter is given by the inverse of the Lm(∂Ω,R)-norm of the inverse of variable Ndet. In
contrast to [15] this purely phenomenological approach avoids detailed modeling at the meso
scale which facilitates calibration with experiments. Both approaches have the use of Weibull
distributions in common. From a materials engineering point of view our new model has the
significant advantage – compared to standard methods in fatigue – of bypassing the standard
specimen approach and of considering size effects.

As LCF is driven by cyclic loads, the reaction of the component to these loads needs to be
taken into account as well. Usually, this is done via a continuum mechanics approach and here
we do follow. Furthermore, we restrict to linear elasticity as the fundamental equation that
determines the loads. This seems to be in contradiction with the need to model also plastic
deformation to capture the LCF damage mechanism. But there are time honored procedures
that bypass this problem, namely elastic-plastic strain conversion of Neuber and Glinka, see
[26]. Although those seems not quite up to date, they are still often used in engineering and
they have considerable mathematical advantages when it comes to shape optimization – and
this will be the next topic.

So far we have considered the component shape Ω as fixed. It is the task of design teams,
to choose the shape such that reliability, performance and cost are in an optimal equilibrium.
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Here, we consider the disciplinary task of structural design alone and hence focus on reliability.
Narrowing in even further, reliability is understood as the probability of survival (no crack
initiation) with respect to LCF at a given number of cycles. An optimal design with respect to
LCF will then be a design, that maximizes, under given load conditions, the survival function
SN (n) = 1−FN (n) with FN the cumulative density function of the random LCF crack initiation
time N of the component.

From a mathematical point of view, there are quite a few studies on the question of optimal
design, see e.g. [20] and references therein. The problem of optimal design can be seen
as a PDE restricted optimization problem with control parameter Ω. Compactness of the
set of admissible shapes Ω and lower semi-continuity of cost functionals J(Ω, u(Ω)) to be
minimized are essential ingredients. Here, u(Ω) uniquely solves the linear elasticity equation
on Ω with boundary conditions on ∂Ω. In this context, linear elasticity is treated within the
weak formulation [10]. Consider a sequence given by un = u(Ωn) ∈ [H1(Ωn)]

3 for n ∈ N.
Under a few assumptions on ∂Ωn it has been shown that uextnk

→ uext strongly in [H1(Ωext)]3

for a subsequence unk
, whenever Ωn → Ω in a suitable sense [20]. Here, Ωext contains all

admissible shapes and uext denotes a suitable extension of functions to Ωext which are defined
on a corresponding admissible domain.

Unfortunately, in the context of LCF a problem occurs that prohibits the application of
these results: The LCF failure mechanism leads to cost functionals J(Ω, u) – the probability of
failure at given cycles with displacement field u – that depend on ∇u and are surface integrals.
While the components of ∇u are in L2(Ω) and of u ↾∂Ω in L2(∂Ω) for u ∈ [H1(Ω)]3, this does
not guarantee that ∇u ↾∂Ω is a well defined function. A proof of lower semi-continuity for the
probability of crack initiation as a functional on [H1(Ω)]3 therefore seems to be problematic
or even wrong. Therefore, we have to look for an alternative strategy to prove the existence
of shapes with optimal reliability for LCF.

We address a general class of cost functionals which considers LCF survival and failure
probabilities as defined in Definition 4.1 which are apparently [C2(Ωext)]3 continuous. Although
this seems to be a very rough way of modeling again, we impose smoothness conditions on ∂Ω
and on the loads and boundary values in order to obtain strong solutions in [C3(Ω)]3 for a
domain Ω in the case of a fixed Dirichlet and a variable von Neumann boundary. Note that we
even consider third derivatives to be able to extend our models to stress gradients. The key
here is uniform elliptic regularity and Schauder estimates [2]. This is however still not enough
as we need to prove the existence of a limiting function u ∈ [C3(Ωext)]3 for a subsequence
u(Ωnk

) of solutions u(Ωn) of the linear elasticity problem on admissible shapes Ωn suitably
continued to Ωext, Ωn ⊆ Ωext. But using the Arzela-Ascoli theorem, revisiting the Schauder
estimates and proving that they are uniform with respect to the set of admissible shapes leads
to the existence of such a limiting function.

The existence of shapes that are optimally reliable with respect to the probabilistic LCF
damage mechanism can thus be proven mathematically in the given set up and HCF failure
mechanism can be considered as well. But this is not special for the probabilistic approach. If
we apply a deterministic LCF lifing model, we need to minimize peak stress under given loads
in order to maximise the LCF life. Peak stress is C1(Ωext) continuous as well and thus we
obtained existence of optimal shapes for the deterministic approach to LCF as a by-product.
The same can be achieved for HCF. It is special to the probabilistic approach to fatigue that
it is described by a cost functional which is a local integral of the displacement field and its
derivatives. And this is exactly what is needed in shape sensitivity analysis [35] which we will
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address in our work [19] with respect to the probabilistic model. Shape sensitivity analysis
in conjunction with the adjoint method is a highly effective procedure to find – after suitable
discretization – shapes of (local) optimal reliability via a shape gradient decent method. Confer
[32] for an application in a different context.

This paper unifies some aspects of materials engineering, reliability statistics, elliptic PDE
and shape optimization. We therefore give some compilations of known results from the re-
spective fields to keep the article self contained. In particular, Sections 2 and 3 repeat some
basics from materials engineering. Section 4 motivates our main definition – the cost functional
for local probabilistic LCF. Here, HCF in a probabilistic sense and a deterministic model for
fatigue are discussed as well. An abstract setting for existence analysis of shape optimization is
given in Section 5 where we also address Ck-admissible domains. This abstract setting provides
the structure of Section 6 where we derive existence results for shape optimization problems
with respect to linear elasticity and to Ck-admissible domains. Here, we focus on a general
class of cost functionals of integral form without convexity constraints. At the end of Section
6 we apply our existence results to the probabilistic and deterministic models of Section 4 for
LCF and HCF.

2 Linear Isotropic Elasticity and Plasticity

In order to describe the behavior of components from polycrystalline metal under external
loading, we employ linear isotropic elasticity which is justified by the assumption of isotropic
material behavior at scales significantly larger than the grain size and of sufficiently small
deformations. We closely follow [12], [23] and [6], respectively.

Let Ω ⊂ R
3 be a domain which represents the component shape filled with a deformable

medium such as polycrystalline metal which is initially at equilibrium. Moreover, let ν be the
normal of the boundary ∂Ω, let f : Ω → R

3 be an external load and let u : Ω → R
3 be the

displacement field. Finally, let ∂Ω = ∂ΩD ∪ ∂ΩN be a partition where ∂ΩD is clamped and on
∂ΩN a normal load g : ∂ΩN → R

3 is imposed. Then, according to [12] the mixed problem of
linear isotropic elasticity is described by:

∇ · σe(u) + f = 0 in Ω,

σe(u) = λ(∇ · u)I + µ(∇u+∇uT ) in Ω,

u = 0 on ∂ΩD,

σe(u) · ν = g on ∂ΩN .

(1)

Here, λ and µ are the Lame coefficients. The linearized strain rate tensor εe(u) : Ω → R
3×3

is defined as εe(u) = 1
2 (∇u + ∇uT ), i.e. εeij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

for i, j = 1, 2, 3. Approximate

numerical solutions can be computed by a finite element approach, confer [23] and [12].

In the following we phenomenologically discuss time-independent plasticity as we cannot
assume a completely linear elastic material behavior when talking about fatigue. Plastic defor-
mations can allude to an imminent residual fracture of the material. Therefore, knowledge of
the threshold between elastic and plastic deformations is very important. According to Section
3 in [6] this threshold is described by so-called yield criteria. For multi-axile stresses scalar
comparison stresses σV are introduced. The comparison stress σV depends on the stress tensor
σij and points to beginning yielding if σV reaches a critical value σcrit. So yield criteria can
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be described by equations of the form y(σij) = 0, where y(σij) = σV (σij)− σcrit. For negative
values of y the material has solely elastic behavior.

Plastic deformations within grains of a metallic material are caused by dislocation motions
where crystal faces are displaced in different directions. Experiments have shown that only
shear stresses can plastically deform metallic material. Thus, the deviation of the state of
stress from the hydrostatic state of stress σ′ = σ − 1

3tr(σ) decides if metal begins to yield.
In the space of principle stresses the yield surface circumscribes a cylinder around the

hydrostatic axis σ1 = σ2 = σ3. In this work we use the von Mises yield criterion which is given
by a cylinder around the hydrostatic axis with a cross section of radius R =

√
2 kF . Here, kF

is the critical value of the von Mises yield criterion

√

1

2
tr(σ′2) =

√

1

6
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2] = kF . (2)

The left-hand side is proportional to the elastic strain energy of distortion. If the criterion
is applied to uniaxial tensile tests the relationship kF = Rp/

√
3 is obtained, where Rp is the

critical value of the only nonzero principle stress in a uniaxial tensile test. Defining the von

Mises stress as σv =
√

3
2tr(σ

′2) the criterion can be rewritten in the form σv = Rp and used

to predict yielding of metal under any loading condition from results of uniaxial tensile tests.
Now, we present the Ramberg-Osgood equation which is used to locally derive strain levels

from scalar comparison stresses which determine strain-controlled fatigue life, confer [31]. This
equation describes stress-strain curves of metals near their yield points and is very accurate
in the case of smooth elastic-plastic transitions. The latter can be observed for metals that
harden with plastic deformations, for example. Let K denote the strain hardening coefficient
and n the strain hardening exponent. Then, the Ramberg-Osgood equation is given by

εv =
σv
E

+
(σv
K

)1/n
(3)

with Young’ modulus E = µ(3λ+2µ)
λ+µ and the equation defines the comparison strain εv. We

also write εv = RO(σv).
At the end of this section we introduce the method of stress shakedown by Neuber which

describes a conversion of elastic to elastic-plastic stress, confer [28] and [6]. If linear elasticity
leads to stress values which are greater than the material yield strength such a stress shakedown
can be performed to compute elastic-plastic stress values. The stress shakedown is based on
an energy-conservation ansatz which results in a relationship between the elastic von Mises
stress3 σev and the elastic-plastic von Mises stress σv:

(Kt σ
e
v)

2

E
= σv εv =

σ2v
E

+ σv

(σv
K

)1/n
. (4)

Here, the Ramberg-Osgood approach is used. Kt is the notch factor, which is set to one if
σev is obtained from the solution of a linear elastic equation (1) where notches are part of the
boundary definition. Given the elastic comparison stress σev, we can thus calculate the elastic-
plastic von Mises stress by solving (4) and thus we are able to obtain εv from (3). We also
write σv = SD−1(σev).

3Confer [24] for details on Neuber shakedown in conjunction with equivalent stresses. As an alternative to
Neuber’s rule we could have also used Glinka’s method, confer e.g. [26].
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3 Fatigue

In structural analysis, fatigue describes the damage or failure of material under cyclic loading,
confer [6] and [30]. Compared to the static case material is damaged by much lower load
amplitudes of cyclic loading. Moreover, in ductile materials under cyclic loading there are less
significant plastic deformations before failure so that an imminent damage is more difficult
to detect. In many engineering cases the functional description of the loading cycles is very
complex. This leads to a preference on constrained analyzes of representative cases of cyclic
loading. Figure 1 shows a triangle shaped uniaxial load-time-curve as an example, where
σa = (σmax − σmin)/2 is the stress amplitude. In material science standardized specimens
under such uniaxial load-time-curves are analyzed to predict the behavior of more complex
engineering parts.

For backgrounds on surface driven LCF failure mechanism with respect to polycrystalline
metal we refer to [6], [30], [15] and [36]. Furthermore, recall our introduction. We now discuss
models to describe failure times in fatigue. In fatigue specimen testing the number of cycles
until failure is determined and if the tests are strain controlled so-called E −N diagrams are
created, see the test points in Figure 2. The functional relationship of the corresponding strain
amplitude and number of cycles is called Wöhler curve. For the purpose of application and
analysis of fatigue one subdivides the range of cycles in low-cycle fatigue (LCF) and high-cycle
fatigue (HCF) although there is no sharp threshold between them, confer [33]. Note that LCF
loads are often strain controlled. However, HCF loads are mainly stress controlled so that
corresponding S −N diagrams are analyzed.

Figure 2 shows the relationship of strain amplitude εa and the life timeNi to crack initiation
measured in cycles. In the LCF range the plastic part εpla has the greater contribution to the
strain amplitude whereas in the HCF range the elastic part εela dominates. It is assumed that the
additive law εa = εela + εpla holds. The elastic part can be described with the Basquin equation

εela =
σ′

f

E (2Ni)
b, where σ′f is the fatigue strength coefficient, b is the fatigue strength exponent

and E is Young’s modulus. For the LCF range the Coffin-Manson equation εpla = ε′f (2Ni)
c

describes the denominating plastic part, where ε′i and c are empirical constants called fatigue
ductility coefficient and exponent, respectively. A discussion of the physical origin of this
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equation can be found in [36]. One finally obtains the Coffin-Manson-Basquin (CMB) equation

εa = εela + εpla =
σ′f
E

(2Ni)
b + ε′f (2Ni)

c. (5)

This equation can be calibrated according to the test points by means of maximum likelihood
methods, for example. For this and other methods confer [17] and [33].

Having analyzed standardized specimens one assigns that Wöhler curve to an engineering
part under cyclic loading which corresponds to the loading and temperature conditions at the
part’s surface position of highest stress. Safety factors are additionally imposed to account for
the stochastic nature of LCF, size effects4 and for uncertainties in the stress and temperature
fields. In the following we refer to this method as the standard method in fatigue which is
widely used in engineering, confer [30], [6] and [33].

Note that several extensions exist to (5). In particular, when approaching the HCF region
at ∼ 104 − 105 cycles, mean stress effects are of increasing importance. The modified Morrow
equation is one approach that would fit into the approach taken here without changing much
of the mathematics. We refer to [30] for further discussions on that topic.

4 From Reliability Statistics to Probabilistic LCF

Since fatigue tests show a great scatter in the life time of specimens several fatigue tests have
to be conducted to obtain statistical statements for life times. An overview over fatigue tests
and statistical methods can be found in [33] and [30]. In the following we employ the concept
of reliability to derive our probabilistic LCF model. From a materials engineering and mathe-
matical point of view our model has significant advantages compared to the standard method
in fatigue, recall Section 3. On the one hand it bypasses the standard specimen approach and
considers size effects, i.e. results from arbitrary geometries under LCF failure mechanism can
be used to calibrate our model and every position of the surface of an engineering part is taken
into account by a surface integral which does not need information on Wöhler curves of a
specific specimen. Thereby inhomogeneous stress fields are considered. On the other hand our
model fits into the setting of sensitivity analysis in shape optimization what we will address
in [19].

We model failure-time processes on continuous scale, although time in our context is a
number of load cycles and strictly speaking is an integer number. Let N denote a continuous
random variable on some probability space with values in R

+
0 which describes the time of

crack initiation here identified with failure of a system or component. Let P be the underlying
probability measure and recall the cumulative distribution function FN (n) = P (N ≤ n), the
density function fN (n) = dFN (n)/dn, the hazard function h(n) = fN (n)/(1 − FN (n)), the
cumulative hazard function H(n) =

∫ n
0 h(s)ds and the survival function SN (n) = 1−FN (n) =

exp(−H(n)), confer [13].

Let an LCF failure mechanism on a boundary of a domain Ω ⊂ R
3 be given whose failure-

time is described by the random variableN . Moreover, let {Ai}i=1,...,m be an arbitrary partition
of ∂Ω, i.e. ∂Ω = ∪m

i=1Ai with Ai pairwise disjoint. Now, we introduce and discuss the crucial
assumption for our local and probabilistic model of LCF in the case of polycrystalline metal:

4Note that different geometries of test specimens lead to different Wöhler curves, confer [30].
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Assumption (H)
The LCF failure mechanism on ∂Ω induces failure mechanisms on each Ai with crack initiation
times Ni for i = 1, . . . ,m such that the random variables {Ni}i=1,...,m are independent.

The time of initiation of the first LCF surface crack on ∂Ω is always N = min(N1, . . . , Nm).
This is identified as the cycles to failure for the component. If hi denotes the hazard function
of Ni for i = 1, . . . ,m and assumption (H) holds it follows that h =

∑m
i=1 hi is the hazard

function of N . That is why we call the previous assumption the property of spatial additivity
of hazard rates. For polycrystalline metal assumption (H) will hold to a good approximation
if the surface zone that is affected from the crack initiation process of a single LCF crack is
small with respect to the surface of the component. This surface zone corresponds to faces of
a few grains. As long range order phenomena are unusual in polycrystalline metal, we pass to
the following stronger assumption:

Assumption (L)
In any measurable surface region A ⊆ ∂Ω the corresponding hazard rate hA is a local functional
of the elastic displacement field u in that particular region,

hA(n) =

∫

A
ρ(n;∇u,∇2u) dA. (6)

Here, ∇u is the Jacobian matrix and ∇2u the Hessian of u. Note that the loads that we
consider in the given context (mainly elastic plastic stresses and strains) can all be expressed
as functions of ∇u.

Let us motivate that assumption (L) is only slightly stronger than assumption (H). Consider
a surface portion A ⊆ ∂Ω over which the variation of loads is negligible. Then we can further
subdivide this region into m smaller pieces Aj of equal surface volume |Aj | = |A|/m. As the
loads are approximately constant over the Aj, we should have hAj

≈ hAi
, hence the hazard

functions for crack initiation in the respective portion of the surface are essentially equal. Since
for whatever subdivision hA =

∑m
j=1 hAj

by assumption (H), we get that hA ≈ m × hA1 =
|A|
|A1|

hA1 . For m → ∞ we thus see that the limit ρ = limm→∞ hA1/|A1| exists and one obtains
h ≈ A · ρ. Here, ρ stands for a hazard density function.

For mathematical simplicity, we restrict ourselves to most simplistic form of assumption
(L), namely the dependence on elastic strains (or equivalently stresses), only. Modeling damage

times in the spirit of elastic support factors depending on ∇2u via χ∗ = |∇σv|
σv

might be an
interesting option for the future.

In the case of inhomogeneous strain fields assumption (L) implies the previous ansatz to the
form h(n) =

∫

∂Ω ρ(n; ε
e) dA for some hazard density function ρ and where εe is the linearized

strain rate tensor. Finally, we obtain the cumulative distribution function which yields the
probability of failure in ∂Ω until cycle n:

FN (n) = 1− exp(−H(n)) = 1− exp

(

−
∫ n

0
h(t) dt

)

= 1− exp

(

−
∫ n

0

∫

∂Ω
ρ(t; εe) dAdt

)

.

(7)

The ansatz (7) can also be derived by the Poisson point process on [0,∞]×∂Ω with ρ(n; εe(x))
as the intensity measure. The advantage of this point of view is that also the probability of
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the occurrence of a given number of cracks initiated in A ⊆ ∂Ω within n load cycles can be
calculated via the Poisson statistics as

P (number of crack initiations on A = q) = e−z z
q

q!
for z =

∫ n

0

∫

A
ρ(t; εe) dAdt. (8)

But this approach will break down, if cracks have grown sufficiently large in order to mutually
influence their local stress fields. For an introduction into point processes confer [5] and [25].

Not having specified the hazard density function ρ we now establish a link to deterministic
LCF analysis which leads to an appropriate choice for ρ. Recall the CMB equation (5) which
determines the functional dependency of strain and cycle of failure for a standard specimen of
a fatigue test, confer Section 3 and [30]. The relation (5) refers to a specimen with a specific
geometry in a homogeneous strain field. In order to convey our approach so far to an arbitrary
geometry in inhomogeneous strain fields one has to interpret the CMB ansatz in a new way,
but such that the results for standard specimens under homogeneous conditions are included.

In order to be concrete, we will make the assumption that life cycles to crack initiation N
are Weibull distributed:

ρ(n;x) = ρ(n; εe(x)) =
m

Ndet(εe(x))

(

n

Ndet(εe(x))

)m−1

. (9)

Here, Ndet(ε
e) is the scale parameter and is computed as follows: Solving the elasticity problem

(1) results in the linearized strain rate tensor εe and the linear elastic von Mises stress field
σev. Applying the method of stress shakedown by Neuber to σev/2 yields the elastic-plastic von
Mises stress amplitude σa corresponding to uniaxial fatigue test. Using the Ramberg-Osgood
equation yields the corresponding strain field εa which is the left-hand side of the CMB equation
(5). The latter equation finally leads to Ndet(ε

e). The shape parameter m ∈ (0,∞) controls
the scatter with small m > 1 corresponds5 to large scatter and the limit m → ∞ is the
deterministic limit. The Weibull model is not necessarily true for real data. However, the
Weibull hazard rate can be easily replaced by any other differentiable hazard rate with scale
parameter Ndet, without changing much of the content of this paper. Combining (7) and (9)
yields

FN (n) = 1− exp

(

−
∫ n

0

∫

∂Ω

m

Ndet

(

s

Ndet

)m−1

dAds

)

= 1− exp

(

−
∥

∥

∥

∥

n

Ndet

∥

∥

∥

∥

m

Lm(∂Ω,R)

)

. (10)

Definition 4.1 (Local and Probabilistic Model for LCF)
Let Ω ⊂ R

3 be a domain whose boundary ∂Ω is subject to surface driven LCF failure mecha-
nism. Moreover, let the scale field Ndet(x) = Ndet(εa(x)), x ∈ ∂Ω, be the solution of the CMB
equation (5)

εa(x) =
σ′f
E

(2Ndet(x))
b + ε′f (2Ndet(x))

c, (11)

where εa(x) is calculated from εe(x) via6 linear isotropic elasticity, from the von Mises stress
σv(x), from σa(x) = SD−1(σv(x)/2) according to the method of stress shakedown by Neuber
and from the Ramberg-Osgood equation with εa(x) = RO(σa(x)). Then, the local and proba-
bilistic model for LCF is defined by the cumulative distribution function (10) for n ∈ R

+
0 and

some m ≥ 1, which yields the probability for LCF crack initiation in the interval [0, n].

50 < m ≤ 1 is not realistic for fatigue.
6Confer Sections 2 and 3.
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Note that CMB parameters in this approach are not the same as obtained from fitting
standard specimen data. In the local, probabilistic approach to LCF the CMB parameters need
to be fixed by the usual maximum likelihood methods of reliability statistics, confer [17] and
[13]. Volume driven HCF failure mechanism can be considered by replacing the surface integral
in (10) with a volume integral whose integrand only differs by different material parameters.
For a discussion of HCF failure mechanism confer [6] and [30]. In case of mixed LCF and HCF
failure mechanism a volume integral of similar form can added to (10).

In contrast to the probabilistic model the standard method in fatigue yields the following
deterministic LCF model:

Definition 4.2 (Deterministic Model for LCF)
Given the setting of the previous Definition 4.1 the deterministic model for LCF is determined
by inf{Ndet(x)|x ∈ ∂Ω}.

In the next sections we will prove the existence of optimal shapes for Definitions 4.1 and 4.2.

5 Shape Optimization and Ck-Admissible Domains

In the following we introduce into an abstract setting of shape optimization and discuss so-
called Ck-admissible domains. This leads to a theoretical frame for an existence proof of
optimal designs with respect to a general class of cost-functionals which include functionals
of LCF and HCF failure mechanism in our probabilistic and deterministic sense. First, we
address basic notations and closely follow Section 2.4 in [20]. For further introductions into
shape optimization confer [35], [8] and [32], for example.

Notation (Family of Admissible Domains, State Space)
Let Õ denote a family of admissible domains and let V (Ω) for every Ω ∈ Õ denote a state
space of real functions defined in Ω.

Notation (Convergence of Sets and of Functions with Variable Domains)

Let (Ωn)n∈N be a sequence in Õ and let Ω ∈ Õ. Then Ωn
Õ−→ Ω as n → ∞ denotes the

convergence of (Ωn)n∈N against Ω. If (yn)n∈N is a sequence of functions with yn ∈ V (Ωn) for
every n ∈ N and if y ∈ V (Ω) then yn  y as n → ∞ denotes the convergence of (yn)n∈N
against y. Moreover, it is assumed that any subsequence of a convergent sequence converges
against the limit of the original one.

In every Ω ∈ Õ one solves a state problem which can be a PDE or a variational inequality,
for example. Assuming that every state problem has a unique solution and associating with
any Ω ∈ Õ the corresponding unique solution u(Ω) ∈ V (Ω) one obtains the map u : Ω 7−→
u(Ω) ∈ V (Ω). Let O be a subfamily of Õ, then G = {(Ω, u(Ω)) |Ω ∈ O} is called the graph of
the mapping (u(·)) restricted to O.

Definition 5.1 (Cost Functional, Optimal Shape Design Problem)
A cost functional J on Õ is given by a map J : (Ω, y) 7−→ J(Ω, y) ∈ R, where Ω ∈ Õ and
y ∈ V (Ω). Let O be a subfamily of Õ and for every Ω ∈ O let u(Ω) be the unique solution of
a state problem given in Ω. An optimal shape design problem can then be defined by

{

Find Ω∗ ∈ O such that
J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) ∀Ω ∈ O. (12)
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Now, we present a statement regarding the existence of optimal shapes. Note that this
theorem will structure the following section where we prove of our main existence results.

Theorem 5.2 (Existence of An Optimum in Shape Design Problems)
Let Õ be a family of admissible domains and O a subfamily. Moreover, let J be a cost functional
on Õ and assume that every Ω ∈ Õ has a state problem with state space V (Ω) where each such
state problem has a unique solution u(Ω) ∈ V (Ω). Finally, conjecture

• Compactness of G = {(Ω, u(Ω)) |Ω ∈ O}:
Every sequence (Ωn, u(Ωn))n∈N ⊂ G has a subsequence (Ωnk

, u(Ωnk
))nk∈N which satisfies

Ωnk

Õ−→ Ω, k → ∞,

u(Ωnk
) u(Ω), k → ∞

for some (Ω, u(Ω)) ∈ G.

• Lower semi-continuity of J :

Let (Ωn)n∈N with Ωn ∈ Õ, n ∈ N, and (yn)n∈N with yn ∈ V (Ωn), n ∈ N, be sequences
and let Ω and y be some elements in Õ and in V (Ω), respectively. Then

Ωn
Õ−→ Ω, n→ ∞,

yn  y, n→ ∞

}

=⇒ lim infn→∞ J(Ωn, yn) ≥ J(Ω, y).

Under these assumptions the optimal shape design problem (12) possesses at least one solution.

According to the previous theorem and abstract setting we have to define the family of
admissible domains Õ. In this work we consider so-called Ck-admissible domains which have
smooth boundaries. For the sake of simplicity we only optimize a part of the boundary of
these shapes. This method is described in Section 2.8 of [35] and in [20], too. Importantly,
Ck-admissible domains satisfy compactness properties as required in Theorem 5.2 according
to the Arzela-Ascoli theorem.

At first, admissible domains are defined which are determined by uniformly bounded func-
tions. Later on, these functions are assumed to be sufficiently smooth to obtain Ck-admissible
domains. On these domains we will later impose boundary value problems of linear elasticity
which are characterized by disjoint Dirichlet and Neumann boundaries. In the following we
employ so-called uniform cone properties which are defined in Appendix A of [20].

Definition 5.3 (Basic Design, Design Variables, Admissible Domains)
Let Ω̂ ⊂ R

3 be a simply connected and bounded domain which is called basic design under the
following assumptions:

• Ω̂ has a uniform cone property and a Ck-boundary7 for some k ∈ N, k ≥ 1.

• There is some αmin ∈ R so that the cross section Ω2d = {(x1, x2) ∈ R
2 | (x1, x2, αmin) ∈ Ω̂}

is a nonempty domain in R
2.

7This leads to a local description of ∂Ω̂ by a finite number of hemisphere transformations of class Ck, confer
Definitions A.1 and A.2 and Remark A.3.
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x3

α

Ω(α)

αmin

x1

x2

Ω2d

B(z, r)

Figure 3: Admissible shape.

• There are some z ∈ Ω̂ and r > 0 such that B(z, r) ⊂ Ω̂ and z3 + r < αmin.

For αmax > αmin and positive constants L1, L2, L3 the elements of

Ũad =

{

α ∈ Ck(Ω2d)

∣

∣

∣

∣

αmin ≤ α ≤ αmax in Ω2d, α|∂Ω2d
= αmin,

∫

Ω2d

α(x)dx = L1, ‖α‖Ck ≤ L2,

∣

∣

∣
α(k)(x)− α(k)(y)

∣

∣

∣
≤ L3‖x− y‖2 ∀x, y ∈ Ω2d

}

are called design variables. Let α ∈ Ũad define the set

Ω(α) = {x ∈ Ω̂ |x3 ≤ αmin} \B(z, r) ∪ {x ∈ R
3 | (x1, x2) ∈ Ω2d, αmin < x3 < α(x1, x2)},

see Figure 3. Varying only functions α ∈ Ũad the domains Õ = {Ω(α) |α ∈ Ũad} with Lipschitz
continuous boundaries are called admissible domains. Finally, choose a superset Ωext such that
extension Lemma A.4 can be applied.

Lemma 5.4 Ũad is compact in
(

Ck(Ω2d), ‖ · ‖Ck

)

.

Proof: Applying the Arzela-Ascoli theorem several times to

{

α ∈ Ck(Ω2d)
∣

∣

∣ ‖α‖Ck ≤ L2,
∣

∣

∣α(k)(x)− α(k)(y)
∣

∣

∣ ≤ L3‖x− y‖2 ∀x, y ∈ Ω2d

}

(13)

shows the compactness in
(

Ck(Ω2d), ‖ · ‖Ck

)

. Ũad being a closed subset of (13) proves the
statement of this lemma.

Definition 5.5 (Ck-Convergence of Sets)

Ω(αn)
Õ−→ Ω(α) as n → ∞ is defined by αn → α in Ck(Ω2d) as n → ∞, where α,αn and

Ω(α),Ω(αn) for n ∈ N are defined as in Definition 5.3.
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In order to apply regularity results of linear elasticity we have to require a sufficiently
smooth boundary of the admissible domains. Therefore, additional boundary conditions on
the design variables α are introduced which enable the construction of such domains.

Definition 5.6 (Ck-Admissible Domains)
Let Ũad be the set of design variables of Definition 5.3 and let Sβ : ∂Ω2d → R be functions for

multi-indices β with 1 ≤ |β| ≤ k. Define Uad =
{

α ∈ Ũad
∣

∣∇βα|∂Ω2d
= Sβ ∀|β| ∈ {1, ..., k}

}

.

Choosing Sβ so that Ω(α) has a Ck-boundary for every α ∈ Uad the set O = {Ω(α) |α ∈ Uad}
denotes the family of so-called Ck-admissible domains.

Lemma 5.7 Uad is compact in
(

Ck(Ω2d), ‖ · ‖Ck

)

.

Proof: Note that Uad is a closed subset of Ũad, where Ũad is already compact according to
Lemma 5.4.

6 Existence of Optimal Shapes

We consider optimal shape design problems in linear elasticity which in particular include shape
optimization problems given by the cost functional (10) of our local and probabilistic model
for LCF. The state problems are described by mixed problems of linear elasticity. We analyze
a very general class of cost functionals which are not constraint by convexity assumptions and
we optimize shapes within the family of Ck-admissible domains. As already announced in the
previous section only a part of the boundary is subject of optimization. The abstract setting of
Section 5 and Theorem 5.2 determine the structure of this section which leads to our existence
results. Therefore, the technical steps will be addressed here in the following order:

• Linear elasticity and regularity properties.

• State equation and space given by the mixed problem of linear elasticity.

• Convergence of functions with variable Ck-admissible domains.

• Compactness shown by the Arzela-Ascoli theorem and by Schauder estimates.

• Class of cost functionals and continuity properties.

• Proof of the main existence result.

• Applying the existence result to our probabilistic and deterministic models of fatigue.

At first, we outline important results in linear elasticity which will influence our choice of
state space and of the definition of convergence of functions with variable domains. Recall the
mixed problem (1) which is called pure displacement problem if ∂Ω = ∂ΩD and pure traction
problem if ∂Ω = ∂ΩN . But in the following we consider the so-called disjoint displacement-
traction problem where ∂ΩD and ∂ΩN are disjoint.

Since we assume a homogeneous temperature field the Lame coefficients λ and µ are con-
stant. Regularity results for the mixed problem depend crucially on the properties of the
domain’s boundary in which the elasticity equations are posed. The following statement of
[10] ensures the existence of a weak solution of the mixed problem.

Theorem 6.1 (Existence of a Weak Solution)
Let Ω ⊂ R

n be a domain and ∂ΩD ⊂ ∂Ω be measurable where ∂ΩD has a positive area. Let
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the Lame coefficients λ, µ be positive constants and let f ∈ [L6/5(Ω)]3, g ∈ [L4/3(∂ΩN )]3 where
∂ΩN = ∂Ω \ ∂ΩD. Moreover, define on VDN =

{

v ∈ [H1(Ω)]3 | v = 0 a.e. on ∂ΩD

}

:

B(u, v) =

∫

Ω
λ∇u∇v dx+

∫

Ω
2µ





3
∑

i,j=1

εij(u)εij(v)



 dx,

L(v) =

∫

Ω
f · v dx+

∫

∂ΩN

g · v dA.

Then, there exists a unique u ∈ VDN that satisfies

B(u, v) = L(v) ∀v ∈ VDN (14)

and additionally J(u) = inf{J(v) | v ∈ VDN}, where J(v) = 1
2B(v, v)− L(v).

The unique solution u ∈ VDN of (14) is called the weak solution of (1). The following
inequality can be found in [7]: If Ω ⊂ R

3 is a domain the so-called Korn’s second inequality

c‖v‖[H1
0 (Ω)]3 ≤





∫

Ω

∑

ij

εe(v)ijε
e(v)ijdx





1/2

= ‖εe(v)‖H0(Ω) (15)

holds for all v ∈ VDN . The disjoint displacement-traction problem has additional regularity
properties if ∂Ω and the forces f and g are sufficiently regular, confer Section 6.3 of [10]:

Theorem 6.2 (Regularity of the Weak Solution for the Disjoint Displacement-
Traction Problem)
Let Ω ⊂ R

3 be a domain with a C4-boundary, let f ∈ [W 2,p(Ω)]3 and let g ∈ [W 1−1/p,p(∂Ω)]3

for some p ≥ 6/5. Consider on Ω a disjoint displacement-traction problem. Then, there exists
a unique solution u ∈ VN of B(u, v) = L(v) for all v ∈ VN , where VN , B and L are defined as
in Theorem 6.1. Moreover, u is an element of [W 4,p(Ω)]3.

The key to the proof is to employ the fact that the previous problems (pure displacement,
pure traction, disjoint displacement-traction problem) are uniformly elliptic and satisfy the
so-called supplementary and complementing conditions. These conditions are introduced in
[2] where Schauder estimates are also described in detail which can be applied to solutions of
mixed problems. The Schauder estimates are an important ingredient in our proof of existence
for optimal shapes in this section.

In the following we consider on C4-admissible shapes8 Ω(α) ∈ O the state problem which
is given by the mixed problem, here in a rewritten form of (1):

λ

3
∑

j=1

∂2uj
∂xi∂xj

+ µ

3
∑

j=1

(

∂2ui
∂xj∂xj

+
∂2uj
∂xj∂xi

)

= −fi in Ω(α), i = 1, 2, 3,

ui = 0 on ∂Ω(α)D, i = 1, 2, 3, P(α)

λ νi

3
∑

j=1

∂uj
∂xj

+ µ

3
∑

j=1

νj

(

∂ui
∂xj

+
∂uj
∂xi

)

= gi on ∂Ω(α)N , i = 1, 2, 3,

8C4 is needed for Theorem 6.2. Therefore, set k = 4 in the definition of O.
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where ∂Ω(α)D = ∂B(z, r) is the complete interior boundary of Ω(α) , ∂Ω(α)N = ∂Ω(α) \
∂Ω(α)D the exterior boundary9 and where ν is the normal of ∂ΩN (α). See Figure 3, too.
We choose V (Ω(α)) = [C3(Ω(α))]3 as state space for P(α) so that we can additionally analyze
stress gradients in our fatigue models. Therefore, we employ the following definition with q = 3
for the convergence of functions with variable domains in O, also confer Section 2.5.2 in [20].

Definition 6.3 (Cq-Convergence of Functions with Variable Domains)
Recalling the sets Õ and Ωext of Definition 5.3 let pΩ : [Cq(Ω)]3 → [Cq

0(Ω
ext)]3 be the extension

operator which can be derived from Lemma A.4 for q ∈ N \ {0}. For u ∈ [Cq(Ω)]3 set
uext = pΩu. For (Ωl)l∈N ⊂ Õ, Ω ∈ Õ and (ul)l∈N with ul ∈ [Cq(Ωl)]

3, l ∈ N, and u ∈ [Cq(Ω)]3

the expression ul  u as l → ∞ is defined by uextl → uext in [Cq
0(Ω

ext)]3.

We want to find an optimal shape Ω(α) ∈ O which minimizes a functional of the form
J(Ω, u) = Jvol(Ω, u) + Jsur(Ω, u) with

Jvol(Ω, u) =

∫

Ω
Fvol(x, u(x),∇u(x),∇2u(x)) dx, Jsur(Ω, u) =

∫

∂Ω
Fsur(·, u(·),∇u(·),∇2u(·)) dA

and u uniquely given by Ω(α) as the solution of the state problem P(α). The uniqueness is
realized by introducing appropriate assumptions with respect to the setting of P(α) what is
shown in the following. As an important result we use the Schauder estimates of Theorem
9.3 in [2] and validate if the corresponding assumptions are satisfied. At first, we present two
lemmas which show the existence of sufficiently regular hemisphere transformations – confer
Definition A.1 – and the validity of a certain inequality, respectively. These two lemmas will
be used in the proof for the next theorem. In the following statements Banach spaces Cq,φ for
φ ∈ (0, 1) occur whose definition can be found in Section 1 of [3] and in Section 7 of [2].

Lemma 6.4 Each Ω ∈ O satisfies a hemisphere property where the corresponding hemisphere
transformations are of class C3,φ for φ ∈ (0, 1) and have a uniform bound κ with respect to O.

Proof: Regarding Definition A.1 we have to show that every x ∈ Ω within a certain distance
d > 0 of ∂Ω has a neighborhood Ux with B(x, d/2) ⊂ Ux and

Ux ∩Ω = Tx(ΣR(x)), 0 < R(x) ≤ 1, Ux ∩ ∂Ω = Tx
(

FR(x)

)

,

for some hemisphere10 ΣR(x) and transformations Tx, T
−1
x of class C3,φ. At first we consider

x ∈ Ω within a sufficiently small distance d > 0 of Γ(α) where Γ(α) denotes the portion of
∂Ω = ∂Ω(α) which is determined by the design variable α, see Figure 4:

Because of the definition of the basic design and of the admissible shapes α ∈ Uad there
is a C4-extension αext : Ωext

2d → R of α with Ω2d ⊂ Ωext
2d which describes a portion Γext(α)

of the boundary ∂Ω(α) beyond Γ(α) and where Ωext
2d is the image of a C4-diffeomorphism

T̃2d : B(0, R̃) ⊂ R
2 → Ωext

2d for some R̃ > 0. This extension is needed in order to consider
all x ∈ Ω(α) within a sufficiently small distance d > 0 of Γ(α). Now, we are able to define a
hemisphere transformation with the required properties:

Tx : ΣR̃ → R
2, Tx(x1, x2, x3) =





(T̃2d(x1, x2))1
(T̃2d(x1, x2))2

αext((T̃2d(x1, x2))1, (T̃2d(x1, x2))2)− x3



 , (16)

9Note that this decomposition of the boundary depends continuously on α ∈ Uad and the two-dimensional
Lebesgue measure of ∂Ω(α)D is greater than a positive constant for all α ∈ Uad.

10FR(x) denotes the flat boundary of the hemisphere ΣR(x).
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x3

αmin

x1

Ω(α)
B(z, r)

−R R
x1

Tx

Uxα

x2
x3

Ωext
2d x2

Figure 4: Hemisphere transformation.

see Figure 4, too. The neighborhood Ux can be chosen so that Ux ∩ Ω = Tx(ΣR(x)) and

Ux ∩ ∂Ω = Tx
(

FR(x)

)

. This can be achieved by sufficiently expanding Tx(ΣR(x)) beyond α
ext.

Because of the definition of the basic design and of the design variables α one can find a bound
for the norms of the hemisphere transformations which is valid for all α ∈ Uad. Analogously
the remaining hemisphere transformations can be constructed which are of a finite number and
all have a uniform bound denoted by κ.

The following lemma contains an inequality which can be found in Section 7 of [1]. Using
only a few additional technical arguments a statement about the inequality’s constant C can
be added regarding its dependency on cone properties of the underlying domain Ω.

Lemma 6.5 Let M be a set of bounded domains in R
n with a uniform cone property and let

Ω ∈ M. Then, for every ε > 0 there is a C(ε) > 0 uniform with respect to M such that
‖v‖C0(Ω) ≤ ε‖v‖C1(Ω) +C

∫

Ω |v|dx holds for all v ∈ C1(Ω).

Before applying the Schauder estimates of Theorem 9.3 in [2] to the solutions of P(α) we
introduce the following technical notations: For arbitrary multi-indices ̺ and β define δ̺β to
be one if ̺ = β and to be zero in any other case. A vector and a matrix of multi-indices is
given by ̺(i) and β(ij) for i = 1, . . . , n and j = 1, . . . ,m, respectively, where each ̺(i) and
β(ij) represents a multi-index. The k-th component is given by ̺(i)k and β(ij)k, respectively.

Theorem 6.6 Let the boundary value problem P(α) be given on a domain Ω(α) ∈ O. Suppose
that the Lame coefficients are constants. Moreover, let fi ∈ C1,φ(Ωext) and gi ∈ C2,φ(∂Ω(α))
for i = 1, 2, 3 and φ ∈ (0, 1) and let their corresponding norms be bounded by a constant kfg
which is independent of α. Then, there are hemisphere transformations of class C3,φ with
uniform bound κ and a unique solution u ∈ V (Ω(α)) of the boundary value problem P(α)
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which also belongs to
[

C3,φ(Ω(α))
]3

and satisfies

‖uj‖C3,φ(Ω) ≤ C

(

3
∑

i=1

‖fi‖C1,φ(Ω) +
3
∑

h=1

‖gh‖C2,φ(∂Ω) +
3
∑

k=1

‖uk‖C0(Ω)

)

, j = 1, 2, 3, (17)

for some constant C. The terms ‖uk‖C0(Ω) can be replaced by
∫

Ω |uk|dx for k = 1, 2, 3 and C
can be chosen uniformly with respect to O.

Proof: The existence of a unique solution u ∈ V (Ω(α)) is a consequence of Theorem 6.2:
Because Ω(α) has C4-boundary we have a unique solution u ∈ [W 4,p(Ω(α))]3 for arbitrary
p ≥ 6/5. Then, the general Sobolev inequalities – confer Section 5.6 in [14] – will lead to
u ∈ [C3,φ(Ω(α))]3 for some φ ∈ (0, 1) if p is sufficiently large11.

Now, we show that the assumptions for the Schauder estimates of Theorem 9.3 in [2]
are satisfied. Main assumptions are complementing and supplementary boundary conditions,
uniform ellipticity with the corresponding constant A, a positive minor constant ∆∂Ω and the
existence of hemisphere transformations12 of class C3,φ with corresponding norms uniformly
bounded by a constant κ, confer Sections 1, 2, 7 and 9 of [2] for a detailed description. We
start by rewriting the equations of P(α) in the form of

∑3
j=1 lij(x,∇)uj(x) = fi(x) for x ∈ Ω

and of
∑3

j=1Bhj(x,∇)uj(x) = gh(x) for x ∈ ∂ΩN , see (1.1) and (2.1) in [2]. Therefore, we
write

lij(x,Ξ) =
2
∑

|̺|=0

aij,̺(x)Ξ
̺

=
∑

|̺|=2



µ(δij(δ̺(2,0,0) + δ̺(0,2,0) + δ̺(0,0,2)) + δ̺γ(ij)) + λ
∑

β(i)i>0

δ̺β(i)



Ξ̺,

(18)

where γ(ij) = (δ1i+δ1j, δ2i+δ2j , δ3i+δ3j) and where
∑

β(i)i>0 is the sum over all multi-indices
with β(i)i > 0. Corresponding to the Neumann boundary conditions on ∂ΩN we write

Bhj(x,Ξ) =

1
∑

|̺|=0

bhj,̺Ξ
̺ =

∑

|̺|=1

(λνh(x)δ̺β(j) + δhjµν̺(x) + µνj(x)δ̺β(h))Ξ
̺, (19)

where β(1) = (1, 0, 0), β(2) = (0, 1, 0), β(3) = (0, 0, 1), ν(1,0,0) = ν1, ν(0,1,0) = ν2, ν(0,0,1) = ν3.
Regarding Theorem 9.3 in [2] and equations (18) and (19) we have si = 0, tj = 2 and rh = −1
for the Neumann condition and rh = −2 for the the Dirichlet condition13 which implies l0 =
max{0, rh} = 0 and allows to choose 1 = l ≥ l0 for i, j, h ∈ {1, 2, 3}.

Consider that the complementing conditions and the supplementary boundary conditions
are satisfied, confer Section 6.3 of [10]. The existence of appropriate hemisphere transforma-
tions of class C3,φ is shown in Lemma 6.4 where the constants d and κ can be chosen uniformly
with respect to O. According to Section I.3 of [37] the minor constant ∆∂Ω is positive and
determined by the Lame coefficients which are constant in our case.

11Note that fi and gi, i = 1, 2, 3, are continuously differentiable.
12Recall Definition A.1 where also constant d is defined.
13Note that homogeneous Dirichlet conditions on ∂ΩD lead to Bhj(x,Ξ) = δhj , gh(x) = 0 for all x ∈ ∂ΩD

and to rh = −2.
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Now, we analyze the effect of the hemisphere transformation Tx on the ellipticity con-
stant and follow Section 9 of [2]. Let c(∇) =

∑

φ cφ∇φ =
∑

i1,i2,...
ci1,i2,...

∂i1

∂x
i1
1

∂i2

∂x
i2
2

. . . be

an arbitrary linear combination of differentiation operators. It is transformed into ĉ(∇̂) =
∑

i1,i2,...
ĉi1,i2,...

∂i1

∂x̂
i1
1

∂i2

∂x̂
i2
2

. . . , where ∂
∂x̂j

=
∑

i
∂xi

∂x̂j

∂
∂xi

and each ĉi1,i2,... is a linear combination

of the ci1,i2,... with coefficients that are products of the
∂x̂j

∂xi
. Correspondingly, we obtain

c(ξ) = ĉ(ξ̂) with ξ̂ = ∂xi

∂x̂j
ξi. According to Section 1 in [2] uniform ellipticity is described

by the inequality A−1‖Ξ‖2m2 ≤ |L(x,Ξ)| ≤ A‖Ξ‖2m2 for all Ξ ∈ R
n+1 and all x ∈ Ω, where

L(x,Ξ) is the characteristic determinant of the PDE-system. The determinant is invariant un-
der the hemisphere transformation in the sense that L̂(x̂, ξ̂) = L(x, ξ). As the first derivatives
of Tx and T−1

x exist and as these maps are in x uniformly bounded with respect to the norm
‖ · ‖C3,φ there is a constant ω such that ω−1‖ξ̂‖2 ≤ ‖ξ‖2 ≤ ω‖ξ̂‖2 for every x ∈ A, ξ ∈ ΣR(x)

and ξ̂ = Tx(ξ). Confer Chapter I.6.2 of [18], too. Finally, this results in the uniform ellipticity
of the transformed system with the new ellipticity constant Aω2m.

Applying the Schauder estimates to both cases of Neumann boundary and homogeneous
Dirichlet conditions yields the inequality statement. A uniform choice of the constant C in
(17) with respect to O is justified by the previous analysis of the constants d, κ,∆∂Ω and A.
The replacement of ‖uk‖C0(Ω) by

∫

Ω |uk|dx for k = 1, 2, 3 is a consequence of a uniform cone
property of O and of Lemma 6.5.

By means of the following theorem and the properties of Ck-admissible domains we can
show compactness of G = {(Ω, u(Ω)) |Ω ∈ O} where u(Ω) uniquely solves P(Ω).

Theorem 6.7 There is a positive constant C such that the solution u ∈ V (Ω(α)) of the
previous theorem satisfies ‖uj‖C3,φ(Ω) ≤ C for j = 1, 2, 3, where C can be chosen uniformly

with respect to O and forces fi ∈ C1,φ(Ωext), gi ∈ C2,φ(∂Ω(α)) for i = 1, 2, 3, φ ∈ (0, 1) whose
corresponding norms are uniformly bounded by kfg.

Proof: The main part of the proof consists of showing that there is a constant C independent
of Ω ∈ O such that ‖u‖H1(Ω(α)) ≤ C. We follow ideas of the proof of Lemma 2.24 in [20]:

The weak formulation (14) of P(α) can be rewritten in the form

∫

Ω

3
∑

i,j=1

σij(v)εij(v)dx =

∫

Ω

3
∑

i=1

fividx+

∫

∂ΩN

3
∑

i=1

gividA

where σij =
∑3

k,l=1Cijklεkl. The ellipticity constant Cijkl = δijδklλ+µ(δikδjl + δilδjk) is given

by the Lame coefficients λ, µ and so a constant element of C(Ωext). Moreover, the constant
satisfies the symmetries Cijkl = Cjikl = Cklij and there exists a constant q > 0 such that

Cijkl(x)ξijξkl ≥ qξijξkl for all x ∈ Ωext. This results in

Bα(v, v) =

∫

Ω(α)

3
∑

i,j=1

σij(v)εij(v)dx ≥ q

∫

Ω(α)

3
∑

i,j=1

εij(v)εij(v)dx = q‖ε(v)‖2[H0(Ω(α))]3

for all v ∈ VDN . Because of the assumptions for f and g

Lα(u) =

∫

Ω

3
∑

i=1

fividx+

∫

∂ΩN

3
∑

i=1

gividA ≤ C‖u‖[H1(Ω(α))]3
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holds and the constant is independent of α ∈ Uad. The previous inequalities and the weak
equation (14) lead to q‖ε(u)‖2[H0(Ω(α))]3 ≤ C‖u‖[H1(Ω(α)]3 . This and Korn’s second inequality

(15) imply q‖ε(u)‖2[H0(Ω(α))]3 ≤ C‖u‖[H1(Ω(α))]3 ≤ C‖ε(u)‖[H0(Ω(α))]3 , where C also depends on

the constant of Korn’s second inequality. As [29] shows, this constant is uniform with respect
to a class of domains possessing a uniform cone property. Applying once more Korn’s second
inequality one obtains ‖u‖H1(Ω(α)) ≤ C with C independent of α.

This result, the inequality ‖v‖L1(Ω) ≤
√

vol(Ω) ‖v‖L2(Ω) for v ∈ L2(Ω) and the results of
the previous theorem show the statement of this corollary.

Lemma 6.8 Let the setting of the previous theorem be given on an arbitrary sequence of
domains (Ω(αn))n∈N ⊂ O. For φ ∈ (0, 1) and i = 1, 2, 3 let fi ∈ C1,φ(Ωext) and gi ∈ C2,φ(Ωext)
such that gi|∂Ω(α)N ∈ C2,φ(∂Ω(α)N ) for α ∈ Uad and such that their corresponding norms
are uniformly bounded by a constant kfg. Let (αn, un)n∈N be a sequence of admissible shapes
αn ∈ Uad and of the corresponding solutions un ∈ V (Ω(αn)) of P(αn). Then, there exists a

subsequence (αnk
, unk

)nk∈N such that Ω(αnk
)

Õ−→ Ω(α) and unk
 u as nk → ∞ for some

α ∈ Uad and for the corresponding solution u ∈ V (Ω(α)) of P(α).

Proof: Due to Lemma 5.7 there is a subsequence (αnl
)nl∈N with Ω(αnl

)
Õ−→ Ω(α) as nl → ∞

for some α ∈ Uad. According to Theorem 6.6 unl
∈ [C3,φ(Ω(αnl

))]3 holds for every nl ∈ N.
Moreover, according to Theorem 6.7 there is a constant C > 0 independent of every Ω ∈ O
such that ‖unl

‖[C3,φ(Ω(αnl
))]3 ≤ C. Because of Lemma A.4 there is a constant C such that

uextnl
= pΩ(αnl

)unl
satisfies

∥

∥uextnl

∥

∥

[C3,φ(Ωext)]3
≤ C‖unl

‖[C3,φ(Ω(αnl
))]3 . Chapters I.6.2 and I.6.9

of [18] show that the constant can be chosen to be independent of the design variables α.
The previous inequalities result in a uniform bound for all

∥

∥uextnl

∥

∥

[C3,φ(Ωext)]3
. As the unit

ball in C3,φ(Ωext) is compact in C3(Ωext) due to the Arzela-Ascoli theorem we find a further
subsequence (αnk

, unk
)nk∈N such that

Ω(αnk
)

Õ−→ Ω(α), uextnk

C3

−→ v as nk → ∞ for some v ∈ [C3(Ωext)]3.

Because of uextnk

C3

−→ v as nk → ∞ the function v|
Ω(α)

solves P(α). According to Theorem 6.2

P(α) has a unique solution u ∈ V (Ω(α)) and v is an extension uext of u.

As already mentioned we consider functionals which are volume or surface integrals with
continuous integrands. In order to show continuity of the functionals we apply Lebesgue’s
dominated convergence theorem.

Lemma 6.9 Let Fvol,Fsur ∈ C0(R40,R) and let the set O only consist of C0-admissible shapes.
For Ω ∈ O and u ∈ [C3(Ω)]3 with q ≥ 1 and φ ∈ (0, 1) consider the volume integral

Jvol(Ω, u) =

∫

Ω
Fvol(x, u(x),∇u(x),∇2u(x)) dx.

Let (Ωn)n∈N ⊂ O with Ωn
Õ−→ Ω as n→ ∞ and let (un)n∈N be a sequence with un ∈ [C3(Ωn)]

3

and un  u as n→ ∞ for some u ∈ [C3(Ω)]3. Then, Jvol(Ωn, un) → Jvol(Ω, u) as n→ ∞.
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If the set O only consists of C1-admissible shapes and if we consider a surface integral

Jsur(Ω, u) =

∫

∂Ω
Fsur(·, u(·),∇u(·),∇2u(·))) dA,

one obtains Jsur(Ωn, un) → Jsur(Ω, u) as n→ ∞ as well.

Proof:
At first, we consider the volume integral. Using the characteristic function one obtains

J(Ωn, un) =

∫

Ωext

χΩn(x) · Fvol(x, u
ext
n (x),∇uextn (x),∇2uextn (x)) dx.

Because of Fvol ∈ C0(R40,R) and un  u as n → ∞ there is a constant C > 0 such that
the inequality

∣

∣χΩn(x) · Fvol(x, u
ext
n (x),∇uextn (x),∇2uextn (x))

∣

∣ ≤ C holds for all n ∈ N almost

everywhere in Ωext. Moreover, Ωn
Õ−→ Ω and uextn → uext in [C3

0 (Ω
ext)]3 as n → ∞ ensure the

existence of

lim
n→∞

(

χΩn(x) · Fvol(x, u
ext
n (x),∇uextn (x)),∇2uextn (x))

)

= χΩ(x) · Fvol(x, u
ext(x),∇uext(x),∇2uext(x))

for all x ∈ Ωext. Lebesgue’s dominated convergence theorem can now be applied to permute
integral and limit:

lim
n→∞

J(Ωn, un) = lim
n→∞

∫

Ωext

χΩn(x) · Fvol(x, u
ext
n (x),∇uextn (x),∇2uextn (x)) dx

=

∫

Ωext

lim
n→∞

(

χΩn(x) · Fvol(x, u
ext
n (x),∇uextn (x)),∇2uextn (x))

)

dx

=

∫

Ω
Fvol(x, u(x),∇u(x),∇2u(x)) dx = J(Ω, u).

With respect to the surface integral similar arguments can be used and so we only address
technical steps which are special to integrating over a surface. Because of their definition the
boundary of every Ω ∈ O is a differentiable submanifold and the surface integral

J(Ωn, un) =

∫

∂Ωn

Fsur(·, un(·),∇un(·),∇2un(·)) dA

is the sum of integrals over a finite number |I| of map areas {Ai
n}i∈I . This number is the same

for every Ω ∈ O due to the definition of the basic design Ω̂ and of the design variables α ∈ Uad.
The integrals have the form

∫

Ai
n

Fsur(ϕn(s), un(ϕn(s)),∇un(ϕn(s)),∇2un(ϕn(s)))
√

gϕn(s)ds

where ϕi
n : Ai

n → R
3 is a chart and gϕn(s) the corresponding Gram determinant. The map

ϕα
n : Ω2d → R

3, ϕα
n(s1, s2) = (s1, s2, αn(s1, s2))

T , is the chart for the portion of the boundary
∂Ωn which is described by the design variable14 αn ∈ C1(Ω2d). Because of Fsur ∈ C0(R40,R)
and un  u as n → ∞ and because of the fact that gϕ

α
n is bounded we can apply Lebsgue’s

dominated convergence theorem again to prove J(Ωn, un) → J(Ω, u) as n→ ∞.

14This is the only part of the boundary which varies over the different domains of O.
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Now, we can prove the existence of optimal shapes and present our main result.

Theorem 6.10 (Existence of Optimal Shapes for SO Problems in Linear Elasticity)
Let Fvol,Fsur ∈ C0(R40,R) and recall Õ, O of the previous definitions15. Consider the state
problem P(α) and the functional J(Ω, u) = Jvol(Ω, u) + Jsur(Ω, u) with

Jvol(Ω, u) =

∫

Ω
Fvol(x, u(x),∇u(x),∇2u(x)) dx, Jsur(Ω, u) =

∫

∂Ω
Fsur(·, u(·),∇u(·),∇2u(·)) dA

and u = u(Ω) unique solution of P(α). With respect to P(α) let the Lame coefficients λ, µ
be constant and for φ ∈ (0, 1) and i = 1, 2, 3 let fi ∈ C1,φ(Ωext) and gi ∈ C2,φ(Ωext) such
that gi|∂Ω(α)N ∈ C2,φ(∂Ω(α)N ) for every α ∈ Uad. Moreover, let their corresponding norms be

uniformly bounded by a constant kfg independent of α ∈ Uad. Then, there exists an optimal
shape Ω∗ ∈ O such that J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) for all Ω ∈ O.

Proof: Let (αn, un)n∈N be a minimizing sequence of inf{J(Ω, u(Ω) |Ω ∈ O)}, where un =
u(Ωn) = u(Ω(αn)) is the unique solution of the state problem P(αn). Then, because of

Lemma 6.8 there exists a subsequence (αnk
, unk

)nk∈N such that Ω(αnk
)

Õ−→ Ω(α) and unk
 u

as nk → ∞ for some α ∈ Uad and for the corresponding solution u ∈ V (Ω(α)) of P(α). Since
all prerequisites of Lemma 6.9 are satisfied we obtain J(Ωnk

, unk
) → J(Ω, u) as nk → ∞.

Because (αnk
, unk

)nk∈N is also a minimizing sequence of inf{J(Ω, u(Ω) |Ω ∈ O)} the admissible
shape Ω∗ = Ω(α) is an optimal shape.

Next, we apply the result of the previous theorem to the cost functional (10), where now
the number of cycles n is fixed but where the domains Ω = Ω(α) ∈ O are variable.

Theorem 6.11 (Optimal Reliability)
Let the admissible shapes Ω = Ω(α) of O be subject to surface driven LCF failure mechanism.
Regarding P(α) let the assumptions of Theorem 6.10 be imposed and let u be the unique solution
of P(α). Let Ndet be the solution of the CMB equation (11) and consider the cost functional

Jsur(Ω, u) =

∫

∂Ω

(

1

Ndet(εa(∇u(x)))

)m

dA =

∥

∥

∥

∥

1

Ndet(εa(∇u(·)))

∥

∥

∥

∥

m

Lm(∂Ω)

, (20)

where x 7→ εa(∇u(x)) represents x 7→ RO ◦ SD−1 ◦ σe
v(·)
2 ◦ σe(·) ◦ ∇u(x). Then, there exists an

optimal shape Ω∗ ∈ O such that Jsur(Ω
∗, u(Ω∗)) ≤ Jsur(Ω, u(Ω)) for all Ω ∈ O.

Proof: As all prerequistes of Theorem 6.10 are satisfied we directly obtain the existence of an
optimal shape Ω∗ ∈ O.

Theorem 6.11 proves that there is an optimal design Ω∗ ∈ O which minimizes the expected
number of LCF crack initiations divided by nm. This results in a minimum for the proba-
bility for LCF crack initiation and ensures optimal reliability. According to the remarks to
Definition 4.1 volume driven HCF failure mechanism can be considered by volume integrals
whose integrands only differ from the LCF integrands by the material parameters. In that
case the existence of an optimal reliable design can be proven by means of Theorem 6.10 as

15O consists of C4-admissible shapes.
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well. Moreover, note that a possible extension of our models to an inclusion of ∇2u and stress
gradients can be considered via Theorem 6.10.

At the end of this section we prove the existence of an optimal design in case of the
deterministic LCF model according to Definition 4.2. Note that the following result can also
be extended to deterministic HCF.

Theorem 6.12 (Deterministic LCF and Shape Optimization)
Under the setting of Theorem 6.11 consider the functional

Jsur(Ω, u) = sup
Ω∈O

inf
x∈∂Ω

Ndet(εa(∇u(Ω)(x))).

There exists an optimal shape Ω∗ ∈ O such that Jsur(Ω
∗, u(Ω∗)) ≥ Jsur(Ω, u(Ω)) for all Ω ∈ O.

Proof: The proof of Theorem 6.10 yields all arguments needed except for the continuity
property of Jsur. But this follows from uniform convergence required in Definition 6.3.

We have proven the existence of optimal designs for a general class of cost functionals
without convexity constraints. The cases of our local and probabilistic model and of the
deterministic model for LCF are included. Moreover, we have shown that these results can
be extended to the case of volume driven HCF. In [19] we address sensitivity analysis and the
existence of shape gradients in conjunction with our probabilistic model for fatigue.

A Appendix

Definition A.1 (Hemisphere Property, Hemisphere Transformation) [2]
Let A ⊂ Ω be a subdomain such that ∂A ∩ ∂Ω is in the interior of Γ in the n-dimensional
sense and let d > 0 be a positive constant. If every x ∈ A within a distance d of ∂Ω has a
neighborhood Ux with Ux ∩ ∂Ω ⊂ Γ, B(x, d/2) ⊂ Ux and

Ux ∩ Ω = Tx(ΣR(x)), Ux ∩ ∂Ω = Tx
(

FR(x)

)

, 0 < R(x) ≤ 1

for some hemisphere ΣR(x) and functions Tx, T
−1
x of some class Ck,φ, A is said to satisfy a

hemisphere property. Moreover, the functions Tx are called hemisphere transformations.

Definition A.2 (Ck,φ-Boundary, Lipschitz Boundary) [18]
Let Ω ⊂ R

n be a bounded domain, let k ∈ N and 0 ≤ φ ≤ 1. The subset Ω has a Ck,φ-boundary
if at each point x0 ∈ ∂Ω there exists B = B(x0, r) for some r > 0 and an injective Ck,φ-map
ψ : B → D ⊂ R

n such that ψ(B ∩ Ω) ⊂ R
n
+ = {x ∈ R

n |xn ≥ 0}, ψ(B ∩ ∂Ω) ⊂ ∂Rn
+ and

ψ−1 ∈ Ck,φ(D). If the maps ψ are only Lipschitz continuous Ω has a Lipschitz boundary.

Remark A.3 [18]
Let Ω be a bounded domain in R

n and let k ∈ N and 0 ≤ φ ≤ 1. If every x0 ∈ ∂Ω has a
neighbourhood in which the boundary is locally described by a graph of a Ck,φ-function of
n− 1 of the coordinates x1, . . . , xn the domain Ω has a Ck,φ-boundary. Note that the converse
is true if k ≥ 1.

Lemma A.4 (Extension Lemma) [18], Part I, Section 6
Let Ωext ⊂ R

n be open and let Ω be a Ck,φ-domain with Ω ⊂ Ωext, k ≥ 1 and 0 ≤ φ < 1. For
φ = 0 it is Ck,0 = Ck. If u ∈ Ck,φ(Ω) there is a function w ∈ Ck,φ

0 (Ωext) such that w = u in Ω
and ‖w‖Ck,φ(Ωext) ≤ C‖u‖Ck,φ(Ω) for a constant C depending only on k,Ω and Ωext.
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