
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM

Martin Galgon, Lukas Krämer, Bruno Lang

Counting eigenvalues and improving the integration in the
FEAST algorithm

October 2012

http://www-ai.math.uni-wuppertal.de

Counting eigenvalues and improving the
integration in the FEAST algorithm
Martin Galgona and Lukas Krämera∗and Bruno Langa

aFachbereich C – Mathematik und Naturwissenschaften,
Bergische Universität Wuppertal, 42097 Wuppertal, Germany

5 October 2012

Two techniques for improving the robustness and efficiency of the FEAST
eigensolver are presented. The FEAST algorithm relies on a Rayleigh–Ritz
procedure and on contour integration to determine eigenpairs such that the
eigenvalues are contained in a prescribed region Iλ. In this paper the focus
is on the symmetric standard eigenvalue problem Ax = λx, with a search
interval Iλ ⊂ R. We present and compare four methods for estimating the
number of eigenvalues contained in Iλ. These estimators can be used to ad-
just the size of the search space in FEAST dynamically, or as stand-alone
methods for counting eigenvalues. We also take a closer look at the numerical
integration. We compare two different integration schemes and introduce the
stretching of the interval Iλ, leading to faster convergence and more accurate
results.
Keywords: Symmetric eigenvalue problem; Counting eigenvalues; Numeri-
cal integration; FEAST algorithm
AMS subject classification: 65D30, 65F15, 65F35

1 Introduction
The FEAST algorithm [9] is a method for finding those eigenpairs (λ, x) of a generalised
eigenvalue problem Ax = λBx where the eigenvalue λ is contained in some prescribed
search area Iλ.
A recent analysis [6] showed that FEAST essentially implements a Rayleigh–Ritz

process with a particular subspace U := span(U), which is obtained via a contour inte-
gration,

U := 1
2πi

∫
C

(zB −A)−1dz Y.

∗Corresponding author. Email: lkraemer@math.uni-wuppertal.de

1

Here, C is a contour in the complex plane containing the search area Iλ, and Y is a
matrix of initial vectors with M̃ columns, where M̃ is an estimate of the number of
eigenvalues lying in Iλ. This number must be provided before starting FEAST.
Although the idea behind FEAST and related methods is appealingly simple, there

has not been too much work related to those methods. Roughly a decade ago, Sakurai
and Sugiura introduced the first method based on contour integration that was solely
dedicated to the solution of eigenvalue problems [12]; see also [11]. At about the same
time a method for counting eigenvalues was published [1]. The FEAST method as
stated below was introduced by E. Polizzi in 2009 [9]. A recent study [8] describes
the application of the method to a problem from computational chemistry. Beyn [2]
published a similar method for the solution of nonlinear eigenvalue problems. Integrating
the resolvent also appears in the context of matrix functions; see, e. g., [5].
In [6] several issues were identified that may arise when trying to use FEAST as a

robust black box solver. In the present article we give hints on how to overcome some
of these problems. For simplicity, we restrict ourselves to the (real) symmetric standard
eigenvalue problem,

• given a symmetric matrix A ∈ Rn×n and an interval Iλ = [λ, λ] ⊂ R,

• find all eigenpairs (xi, λi) of A (i. e., Axi = λixi) such that λi ∈ Iλ. Furthermore
we want the eigenvectors to be orthonormal, xTi xj = δij .

If not stated otherwise we assume the eigenvalues to be ordered ascendingly, λ1 ≤ λ2 ≤
. . . ≤ λn.
The FEAST method for this problem is summarised in Algorithm 1.

Algorithm 1 Skeleton of the FEAST algorithm
Input: An interval Iλ = [λ, λ] and an estimate M̃ for the number of eigenvalues in Iλ.
Output: M̂ ≤ M̃ eigenpairs in Iλ.
1: Choose Y ∈ Rn×M̃ of rank M̃ and compute

U := 1
2πi

∫
C

(zI −A)−1dz Y. (1)

2: Form the Rayleigh quotients AU := UTAU , BU := UTU .
3: Solve the size-M̃ generalised eigenvalue problem AU W = BU WΛ.
4: Compute the approximate Ritz pairs (Λ, X := U ·W).
5: If convergence is not reached then go to Step 1, with Y := X.

The integral (1) has to be evaluated using numerical quadrature, the basics of which
can be found many textbooks; see, e. g., [3, 7]. The main computational effort of the
FEAST algorithm lies in the solution of the linear systems (zjI − A)−1 Ũj = Yj . Each
node zj of the quadrature rule leads to a system of this form, and these systems have to
be solved either separately for each column in Yj or with a special block method. This
is the subject of current work and not discussed in the present article.

2

0 50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

Size of search space

M
in

im
a
l
a
n
d
 m

a
x
im

a
l
re

s
id

u
a
l

Figure 1: Minimal (lower line) and maximal (upper line) residuals among all eigenpairs
with eigenvalue in Iλ. The search interval was chosen such that it contains
exactly the 200 lowest eigenpairs, and FEAST was allowed to do at most
20 iterations.

The remainder of the article is structured as follows. In Section 2 we address the
problem of estimating the number of eigenvalues that are contained in Iλ and the control
of the size of the search space and discuss solution strategies to the problems that
were pointed out in [6]. We show that the presented methods are also applicable as
stand-alone methods for counting eigenvalues. In Section 3 we treat the numerical
integration schemes in more detail and propose a modification that improves convergence
for eigenpairs with eigenvalues close to the boundaries of Iλ. Section 4 summarises our
findings.
All methods described apply likewise for the generalised eigenvalue problem Ax = λBx

with A Hermitian and B Hermitian positive definite.

2 Counting eigenvalues and controlling the size of the search
space

In Algorithm 1, the user must supply, besides the matrix A and the search interval Iλ, a
number M̃ that is an estimate for the numberM of eigenvalues lying in Iλ. This number
determines the (initial) size of the subspace U , and it should be neither much too large
in order to avoid unnecessary computational effort, nor too small because the algorithm
cannot compute more than M̃ eigenpairs.
The phenomenon occurring with an undersized starting base is illustrated by Figure 1.

Here, we considered an interval Iλ containing the M = 200 lowest eigenpairs of a size-
1357 matrix, while varying the value M̃ . As can be seen, M̃ should be slightly larger
than M in order to reach convergence for all sought eigenpairs. If M̃ < M then possibly
even none of the eigenpairs may converge. For a more detailed discussion we refer to [6].
Typically the count of eigenpairs with eigenvalues inside an interval Iλ is not known

3

prior to computation, making it difficult to select a suitable search space size. However,
as we will show in this section, good estimates for this number become available quite
early during the FEAST algorithm. This makes it possible to check whether the initial
base was large enough and to shrink the base if it was too large.

2.1 Estimating the number of eigenvalues in an interval
In the following we discuss four different methods for estimating M , the number of
eigenvalues in Iλ.

1. The simplest method consists of counting, in Line 4 of Algorithm 1, those Ritz
values of the reduced generalised eigenvalue problem (i. e., diagonal entries of Λ)
that are contained in Iλ. This estimate comes almost for free, taking just O(M̃)
operations.

2. According to [6], the number of eigenvalues in C is given by the rank of U (and
BU), and thus can be estimated by counting the singular values of U or BU that
exceed a certain threshold. Computing the singular values of BU requires roughly
8M̃3/3 operations (Golub–Reinsch SVD, Σ only) [4, Section 5.4.5].

3. An alternative way to reliably determine the rank consists of computing a so-called
rank-revealing QR decomposition (rrQR), XΠ = QR, where X is either U or BU ,
and Π is a suitable permutation of X’s columns. The matrix Q is orthogonal, and
R is upper triagonal with diagonal entries rii ordered descendingly according to
their absolute value. Thus the rank of U or BU can be estimated by counting
those entries on the diagonal of R that exceed a certain threshold. An rrQR is less
expensive than the SVD, taking 4M̃2r − 4r2M̃ + 4r3/3 operations when applied
to a matrix BU with rank r [4, Section 5.4.1].

4. Additional savings are possible by making use of the fact that ‖X‖F = (
∑r
j=1 σj)1/2

for any matrix X with rank r and singular values σj . Furthermore, with exact inte-
gration, the matrices U and BU only have singular values 0 and 1 if Y was orthonor-
mal. (Even with a random starting base, this condition will be reached at least
approximately after one FEAST iteration.) It follows that ‖U‖F = ‖BU‖F =

√
r,

and thus (except for the first FEAST iteration) the rank can be obtained by com-
puting the Frobenius norm of U or BU , requiring approximately 2M̃2 operations
in the latter case.

The behaviour of the different methods is exhibited by three increasingly demanding
experiments. In each experiment, an interval progression is performed (meaning that a
fixed-size search interval Iλ is moved step by step over a known group of eigenvalues),
and for each position of the search interval two FEAST iterations are performed and
the estimates provided by the above methods are monitored. All experiments where
performed with an 8-point Gauß–Legendre integration scheme.
Experiment 2.1. This experiment assesses the methods’ ability to correctly detect single
eigenvalues that are well separated from the remainder of the spectrum. To this end

4

we chose the eigenvalue λ = λ1755 of the matrix bcsstkm131 as isolated target. The
top picture in Figure 2 shows this eigenvalue as well as the first and the last position
of the search interval in the interval progression. The nearest eigenvalue (marked by a
“+”) is far enough away so that, throughout the progression, Iλ always covers either
no eigenvalue or just λ. The step size was chosen such that for two of the positions
in the progression the target eigenvalue lies on the left or right, resp., boundary of Iλ.
Two iterations of the FEAST algorithm were applied for each interval with a random
orthogonal starting base and a search space size of 10.

4.03 4.0305 4.031 4.0315 4.032 4.0325

x 10
−4

0 50 100 150 200
0

0.5

1

1.5

2

Eigenvalue in interval

Ritz count

0 50 100 150 200
0

0.5

1

1.5

2

Eigenvalue in interval

SVD count of U

SVD count of B
U

Figure 2: Top: First and last interval of the interval progression over λ (indicated by
⊕). Bottom: Ritz value count of the reduced eigenproblem (left) and Frobenius
norms of U and BU (right) for each interval in the progression. The values on
the abscissae indicate the number of the interval within the progression. Light
gray background implies that the considered eigenvalue is inside the respective
interval.

As can be seen in the bottom left picture of Figure 2, the Ritz count tends to over-
estimate the true number of eigenvalues even in this simple situation. (This behaviour
was also confirmed in other experiments.)
By contrast, the three remaining methods yield accurate estimates, at least if the

eigenvalue is not too close to the boundaries of Iλ; see the bottom right picture. Only
the data for the SVD count are shown, the curves for the Frobenius norm of U and BU
and for the largest entry |r11| of the rrQR coincide with these. (Since all other singular
values and diagonal entries of R were considerably smaller, the rank is determined by
just σ1 and |r11|.)

1A modified version of the matrix with the same name from matrix market, see
http://http://math.nist.gov/MatrixMarket/. The spectrum now is quite challenging with large
clusters of eigenvalues.

5

20 22 24 26 28 30
0

0.5

1

1.5

2

Eigenvalue in interval

SVD count of U

SVD count of B
U

Figure 3: Zoom into Figure 2.

Since counting the Ritz values often gives wrong results even in the case of a single
eigenvalue this approach should not be taken if very good estimates are needed. In other
situations Ritz counts may prove useful; see the discussion at the end of this subsection.
To get a closer look on the singular values of U and BU when the interval boundaries

are close to the target value, we give in Figure 3 a detail of the right plot in Figure 2.
This behaviour is typical. It reveals that each time when an eigenvalue λ enters

(leaves) the search interval, one more singular value σλ becomes larger (smaller) than
0.5 for U and 0.25 for BU . Thus, singular values

σ(U) > 0.5 and σ(BU) > 0.25, resp.,

correspond to eigenvalues in Iλ, and counting them gives an estimate for the number of
eigenvalues in the search interval. Singular values that are very close to these thresholds
correspond to eigenvalues at the interval boundaries, whereas singular values close to
one come with eigenvalues “well in the interior.”
Thus we expect the Frobenius norms of U and BU to be approximately

√
M if M

eigenvalues are located inside the interval with a certain distance to the interval borders,
as is confirmed by the following experiment.
Experiment 2.2. In this experiment an interval Iλ, large enough to cover the first five
eigenvalues of A, is used for the interval progression. Starting at the left of the spec-
trum, the interval is moved to the right until it contains five eigenvalues. The positions
are chosen so that every 10 steps another eigenvalue enters the interval and is exactly
located at the right interval boundary; thus the step size is constant only between two
eigenvalues, i. e., for 10 successive steps. The results are depicted in Figure 4.
Furthermore, if the M -th eigenvalue enters the interval then we have

‖U‖2F ≥ (M − 1) + 0.52 and ‖BU‖2F ≥ (M − 1) + 0.252.

We thus can give an estimate for the eigenvalue count as

Mest =
⌈
‖U‖2F − 0.52

⌉
resp. Mest =

⌈
‖BU‖2F − 0.252

⌉
. (2)

6

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Frobenius norm U

Frobenius norm B
U

Figure 4: Frobenius norms of U and BU during the interval progression of Experi-
ment 2.2. The values on the abscissa indicate the number of the interval
in the progression.

While working well in most circumstances, the estimate (2) may fail in the presence
of tight clusters of eigenvalues because, e. g., ‖U‖F ≈ 1 may come either from one
eigenvalue in the interior of Iλ (as suggested by Mest = 1) or from four eigenvalues on
the boundary. This problem indeed led to wrong results in some of our experiments,
under-estimating the total number of eigenvalues while over-estimating the number of
those lying “far enough” in the interior. From the above, one would expect the norm-
based method to under-estimate the number of eigenvalues. The following experiment
shows that this expectation cannot be relied on. This is due to the fact that singular
values corresponding to eigenvalues within (outside of) Iλ are not exactly 1 (0, resp.) if
the integration is done numerically, cf. Section 3.
Experiment 2.3. To address the general case, where intervals might contain an arbitrary
number of eigenvalues, we set up an interval progression where the interval width was
chosen arbitrarily but fixed for all intervals in the progression. Further, the initial posi-
tion and (constant) step size were chosen arbitrarily. In particular all parameters were
chosen in such a way that no special behaviour could be expected. We then tested all
four methods with that progression. This was done with several matrices and config-
urations of interval progressions. In Figure 5 we present the results for one run with
the matrix A = bsstkm13, which is exceptionally demanding due to the structure of its
spectrum (very strongly clustered eigenvalues, eigenvalues of small absolute value).
The SVD and rrQR estimations were only performed for BU , and the results for rrQR

are not shown because they are identical to those for SVD. These two methods provided
excellent estimations while the Ritz value count gave a larger number than the correct
one. The Frobenius norms of U and BU also deviated from the exact value, but not in
a predictable way.
The behaviour shown in Figure 5 is typical. In most of our experiments, the estimators

based on the rrQR and SVD (of U or BU) gave correct results up to at most one or two
eigenvalues. The advantage of the more expensive SVD and rrQR of U is that they also

7

−5 0 5 10 15 20

x 10
−8

0 2 4 6 8 10 12 14
10

15

20

25

30

Eigenvalue count

Ritz estimation

0 2 4 6 8 10 12 14
10

15

20

25

30

Eigenvalue count

SVD estimation

0 2 4 6 8 10 12 14
10

15

20

25

30

Eigenvalue count

Frobenius estimation (U)

0 2 4 6 8 10 12 14
10

15

20

25

30

Eigenvalue count
Frobenius estimation (B

U
)

Figure 5: Top: Interval progression for Experiment 2.3. Gray shading indicates the first
and last interval of the progression, respectively. Below: Results. For each
interval we plotted the exact number of eigenvalues in it (solid lines) and the
number estimated with the method indicated in the legend.

8

provide approximate bases for the spaces spanned by the eigenvectors corresponding to
eigenvalues in Iλ. These bases can be used in subsequent iterations or as starting base in
a restart of the complete algorithm; see Section 2.2. The Ritz estimator always counted
a number of Ritz values that was larger or equal than the actual number of eigenvalues
in the interval. Given the negligible cost of this method, its results are not too bad,
and they may be sufficient for certain purposes; see Section 2.2. The behaviour of
the Frobenius estimators is quite unpredictable when eigenvalues cluster at the interval
boundaries.
Note that over-estimating the number of eigenvalues during the FEAST algorithm is

not a real problem. This is because the search space should be kept somewhat larger
than the true eigenspace, and Ritz pairs with Ritz values outside Iλ can be removed
once all Ritz pairs have converged.
In addition, all results can be improved when using higher precision in the numerical

integration, i. e., more integration points.
The methods presented can also be used as stand-alone methods for counting eigen-

values. Another integration-based method for counting eigenvalues in a given domain
was proposed by Bertrand and Philippe [1].

2.2 Using the estimates to control the size of the search space
If the dimension of the search space is less than M , the number of eigenvalues contained
in Iλ, then FEAST will not converge [6]. If, on the other hand, too many vectors are
carried through the algorithm then the number of right-hand sides for the linear systems
as well as the dimensions of the reduced eigenvalue problem and of other computations
are unnecessarily large. The objective therefore is to reduce the size of the search space
as far as possible. In practice, a value slightly larger than M gives best convergence
[6]. As was shown in the preceding subsection, good estimates for M become available
during the second iteration of FEAST.
The most critical situation occurs right at the start of the algorithm. Since the dimen-

sion of the initial search space is determined by some initial guess M̃ for M , a space too
small may be chosen if M̃ < M . We cannot exclude this possibility, but this situation
can at least be detected during the two first iterations using the above estimates. (The
Ritz count can be used even in the first iteration. Although slightly inaccurate at this
point, it will report an upper bound for the eigenvalue count early in the algorithm.) If
the current estimate Mest is equal to the initial M̃ then this strongly hints at M̃ having
been too small. In this case one should increase M̃ and restart the algorithm. Polizzi’s
FEAST implementation [10] does this, based on the Ritz count.
If Mest is well below M̃ then the current search space is too large and may be reduced

(to a dimension slightly larger than M̃). To not discard part of the information already
computed, one should not remove vectors whose corresponding eigenvalues are contained
in Iλ. Using the SVD or rrQR of U allows us to identify such vectors, since these
decompositions also provide orthonormal bases of the space spanned by U . The selection
of “good” vectors is also possible when the rank of BU and the Ritz count coincide. In
this case one would keep those Ritz vectors belonging to Ritz values in Iλ. In Section 3

9

we will see that the selection function implies that vectors associated with certain Ritz
values outside Iλ may also influence overall convergence and should hence be kept as
well.
In addition to shrinking the search space, already converged eigenpairs may be “locked,”

i. e., no longer be included in the computations. Locking further reduces the number of
linear systems to solve and the size of the reduced eigenvalue problem without hindering
still missing pairs to converge in later iterations.

2.3 Detection of empty intervals
One method for using multiple processors in the eigenvalue computation consists of
subdividing Iλ into subintervals and running FEAST in parallel on these subintervals.
Since the initial interval subdivision cannot take the (yet unknown) structure of the
spectrum into account, probably some of the subintervals will not contain any eigenvalue.
If it is possible to detect such subintervals cheaply then they can be discarded before
running the more expensive “full” FEAST algorithm on them. We propose the following
method as a preprocessing step.

1. Perform two FEAST iterations with a search space of size ≥ 1.

2. Check if σ(BU) > 0.25 for at least one singular value (or apply one of the other
methods from Section 2).

This will deliver the correct answer “interval empty/not empty,” since the singular values
of BU will always be larger than the threshold as long as one eigenvalue is on the
boundary of the subinterval or inside.
Several numerical experiments confirm the reliability of this method. Only in the

case that all starting vectors are orthogonal to the eigenvectors belonging to the con-
sidered subinterval, this method will fail. For this reason one should not use just a
one-dimensional search space; in our experiments M̃ = 3 gave a reasonable compromise
between reliability and efficiency.

3 Numerical integration
In this section we analyse the numerical integration that is necessary in Step 1 of Al-
gorithm 1 to some detail. It is clearly one of the most vital aspects in the algorithm
concerning numerical robustness and effectiveness. We propose and evaluate a modifi-
cation yielding improvement with respect to both aspects.

3.1 The selection function
For the numerical integration of some function f defined on a compact interval [a, b],
a numerical integration scheme (ωj , tj)j=1:p can be employed, e. g., a Gauß–Legendre

10

scheme [3]. Then the integral of f is approximated as
b∫
a

f(t)dt ≈
p∑
j=1

ωjf(tj)

with weights ωj > 0 and integration points tj ∈ [a, b]. To compute U , this is combined
with a parametrisation map ϕ : [a, b]→ C, yielding

U = 1
2πi

∫
C

(zI −A)−1dz Y

= 1
2πi

b∫
a

(ϕ(t)I −A)−1 ϕ′(t)dt Y

≈ 1
2πi

p∑
j=1

ωj (ϕ(tj)I −A)−1 ϕ′(tj)Y

=
p∑
j=1

ω′j (zjI −A)−1 Y, (3)

where zj = ϕ(tj) and ω′j = 1
2πiϕ

′(tj)ωj .
Let {x1, . . . , xn} be a complete system of orthonormal eigenvectors to the eigenvalues

λ1, . . . , λn. Then

(zjI −A)−1 =
n∑
k=1

1
zj − λk

· xkxTk ,

and therefore (3) can be written as

U ≈
n∑
k=1

 p∑
j=1

ω′j
zj − λk

xkxTk Y.
The same representation occurs in [8], in the context of non-Hermitian complex eigen-
problems stemming from computational chemistry. Therein, Laux calls the number in
brackets the selection function and interprets it as a function of λ,

S(λ) :=
p∑
j=1

ω′j
zj − λ

. (4)

(More precisely, it is considered to be a function of the eigenvalues λk.) It only depends
on C and the chosen integration scheme.
If A is real symmetric, as assumed in this work, and if in addition the curve C is

symmetric with respect to the real axis, i. e., z ∈ C ⇔ z̄ ∈ C, then the integral in (1)
simplifies to [9]

U = 1
π

∫
C+

Im((zI −A)−1) dz Y. (5)

Here, C+ denotes the upper half of the contour. Since we must only integrate over one
half of the contour, we can hope to obtain better results with the same amount of work
invested. In the following we therefore consider parametrisations of C+ instead of C.

11

−2 −1 0 1 2

0.7

0.8

0.9

1

1.1

1.2

1.3

−2 −1 0 1 2

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 6: Absolute values of S for midpoint rule (left) and Gauß–Legendre (right), each
with 16 integration points.

3.2 Stretching Iλ

In [8] it is also noted that the integration is exact if S is 1 at every eigenvalue inside C and
0 at all others. Since S is a continuous function at all points λ 6= zj , we cannot optimise
it in such a way that it acts as a perfect “indicator” (1 inside C, 0 outside). However, we
still should seek for a function S, i. e., for an integration contour and integration scheme,
such that this property is met as closely as possible.
The integration schemes typically used are Gauß–Legendre and trapezoidal or mid-

point type rules. For a general overview on numerical integration, see, e. g., [3]. In the
following we use a circle as the contour for the integration. This is not the only choice
one can make; see, e. g., [8].
The use of trapezoidal and midpoint rules in combination with a circle contour is

motivated by the fact that these schemes converge exponentially for periodic functions
[3, Section 2.9]. Gauß–Legendre integration, i. e., Gauß quadrature with weight function
1, is widely used, and its use in FEAST was proposed by Polizzi in [9].
In Figure 6 the values of |S| are depicted for the midpoint and Gauß–Legendre rules.

Here, the integral (5) was used, i. e., only the upper half of the circle was taken into
account. The curves are produced by taking for each integration point also its conjugate
value with the same integration weight. This amounts to integrating over the whole
circle C, but over the upper and lower part separately. The relatively high peaks of
the curve in the right plot can be explained by the fact that the integration points in
Gauß–Legendre are closer to the boundary of the considered interval. Thus ϕ maps them
closer to the real axis, and the denominator in (4) becomes small. This effects becomes
more pronounced with more integration points.
The plots in Figure 6 reveal a potential problem with the numerical integration. They

show a decrease of |S| to about 0.65 toward the boundaries of Iλ, but still inside the
interval. This decrease leads to problems with eigenvalues that lie very close to the
boundaries of the interval, in particular, if they are clustered there. Several numerical

12

−2 −1 0 1 2

0.7

0.8

0.9

1

1.1

1.2

1.3

−2 −1 0 1 2

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 7: Absolute values of S for midpoint rule (left) and Gauß–Legendre (right), each
with 16 integration points. Integration is on [−1.1, 1.1], i. e., γ = 1.1.

experiments confirmed exactly this expected behaviour. In particular it can happen
that eigenpairs with eigenvalue well inside Iλ have already converged while those at the
boundary require some additional iterations or even fail to converge.
The remedy for this problem is to stretch the interval in such a way that |S| ≈ 1 inside

Iλ. In practice, this is done by using one interval Iλ for searching eigenvalues in another
(larger) interval I ′λ = [λ′, λ′] ⊃ Iλ for integration.
For simplicity, I ′λ is chosen symmetrically around Iλ. For different integration schemes

and different integration curves, suitable stretching factors

γ := |λ
′ − λ′|
|λ− λ|

can be determined systematically via experiments. In our experience γ = 1.1 is adequate
for 8 to 16 integration points on C+. We then have |S| ≥ 1 inside Iλ and a steep descent
to about 0.65 outside. The resulting curves for |S| can be seen in Figure 7.
Stretching the integration interval can improve the convergence of some of the de-

sired eigenpairs, in particular if the eigenvalues are piled around the boundaries of Iλ.
We observed that in this case, with the original interval Iλ for integration, the inner
eigenvalues (where |S| ≈ 1) always converge some iterations earlier than the outer ones.
In the extreme case, where all eigenvalues lie at the two interval boundaries, stretching
the integration interval led to significant savings in terms of iteration numbers. The
following experiment illustrates the benefits of stretching.
Experiment 3.1. We took again the size-2003 matrix bcsstkm13 from Section 2 and chose
an interval Iλ containing 295 eigenvalues in four clusters. Two of these clusters are very
close to the boundaries of Iλ, the remaining two are well inside. We ran the FEAST algo-
rithm using the midpoint and Gauß–Legendre rule, respectively, for different values for γ.
We always used a subspace of dimension 310. We then counted the necessary number of
iterations and measured the relative residuals

13

Table 1: Results of Experiment 3.1. The symbol “—” indicates that the algorithm failed
to converge.

γ Midpoint Gauß–Legendre

1.0
3 iterations

orth = 1.2 · 10−13

res = 1.2 · 10−12
—

1.1
3 iterations

orth = 5.7 · 10−15

res = 1.5 · 10−13

3 iterations
orth = 1.1 · 10−14

res = 9.5 · 10−13

1.2
4 iterations

orth = 6.4 · 10−15

res = 8.2 · 10−14

4 iterations
orth = 9.4 · 10−14

res = 8.4 · 10−13

1.3
2 iterations

orth = 6.6 · 10−15

res = 8.9 · 10−16

3 iterations
orth = 6.6 · 10−15

res = 1.0 · 10−12

1.4
2 iterations

orth = 3.5 · 10−14

res = 6.2 · 10−15

2 iterations
orth = 6.6 · 10−15

res = 9.8 · 10−15

res = ‖AX −XΛ‖ / ‖A‖ as well as the maximum deviation from orthogonality,

orth = max
λi,λj∈Iλ, i 6=j

∣∣∣xTi xj∣∣∣ .
The results are given in Table 3.1. They indicate that the midpoint rule was more

robust when integrating over the original interval Iλ. Using a slightly larger integration
interval I ′λ with γ = 1.1, both schemes led to convergence of the FEAST algorithm. For
values γ > 1.4, the results in terms of the three indicators given became worse again.
The best overall result was obtained by the combination of midpoint rule and γ = 1.3.

3.3 Considering S outside of Iλ

By stretching the interval we can achieve that |S| is not smaller than 1 inside Iλ and
also not much larger, but |S| also takes values considerably larger than 0 outside Iλ,
such that vectors belonging to unwanted eigenvalues enter the calculation. Laux states
[8] “M0 [M̃ in our notation] must be as large as the number of convergent eigenvalues
within C and its surrounding fringe.” One possibility is then to adapt M̃ and take the
value of |S| into account when determining M̃ with the techniques from Section 2. One
still can delete vectors from the calculation that belong to Ritz values outside I ′λ. This
is essentially the Ritz count technique from Section 2, but here the Ritz values in I ′λ and
not in Iλ are counted.

14

4 Conclusion
This paper contributes in two ways to making the FEAST algorithm faster and more
robust.
The first contribution are four methods for estimating the number of eigenvalues in

a given interval Iλ. The methods are based on counting Ritz values, singular value
decomposition, rank-revealing QR decomposition, and the Frobenius norm, respectively.
The estimate can be used to check whether the setup of the algorithm, where the user
had to supply a number M̃ of eigenvalues that are presumed to be in Iλ, was appropriate.
In the course of the algorithm, the estimates can be used to reduce the dimension of the
search space, leading to higher efficiency. The methods based on SVD and rrQR of the
small-scale matrix BU show a good balance of reliability and cost. They can also be used
as stand-alone methods for counting eigenvalues. The advantage of the more expensive
estimates based on the SVD or rrQR of U is that they also provide approximate bases
for the spaces spanned by the eigenvectors corresponding to eigenvalues in Iλ. These
can be used in subsequent iterations or as starting base in a restart of the complete
algorithm with the estimated number of eigenvalues. For a very rough estimation within
the FEAST algorithm, the extremely cheap Ritz count may be sufficient. We further
proposed a scheme for the detection of intervals that contain no eigenvalues. This scheme
is much cheaper than that one for counting eigenvalues.
The second aspect proposed is taking a closer look at the numerical integration. We

evaluated two different integration schemes and introduced the stretching of the interval
Iλ, leading to faster convergence and more accurate results.

References
[1] O. Bertrand and B. Philippe. Counting the eigenvalues surrounded by a closed

curve. Sib. Zh. Ind. Mat., 4(2):73–94, 2001.

[2] Wolf-Jürgen Beyn. An integral method for solving nonlinear eigenvalue problems.
Linear Algebra Appl., 436(10):3839–3863, 2012.

[3] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press,
Orlando, FL, 2nd edition, 1984.

[4] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[5] Nicholas Hale, Nicholas J. Higham, and Lloyd N. Trefethen. Computing Aα,
log(A) and related matrix functions by contour integrals. SIAM J. Numer. Anal.,
46(5):2505–2523, 2008.

[6] Lukas Krämer, Edoardo Di Napoli, Martin Galgon, Bruno Lang, and
Paolo Bientinesi. Dissecting the FEAST algorithm for generalized
eigenproblems. Preprint BUW-IMACM 12/09, http://www.imacm.uni-
wuppertal.de/imacm/research/preprints.html, 2012.

15

[7] Arnold R. Krommer and Christoph W. Ueberhuber. Computational Integration.
SIAM, Philadelphia, PA, 1998.

[8] S. E. Laux. Solving complex band structure problems with the FEAST eigenvalue
algorithm. Phys. Rev. B, 86:075103, 2012.

[9] E. Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Phys.
Rev. B, 79:115112, 2009.

[10] Eric Polizzi. A high-performance numerical library for solving eigenvalue problems:
FEAST solver v2.0 user’s guide, 2012. arXiv:1203.4031v1.

[11] T. Sakurai, Y. Kodaki, H. Tadano, D. Takahashi, M. Sato, and U. Nagashima. A
parallel method for large sparse generalized eigenvalue problems using a GridRPC
system. Future Generation Computer Systems, 24:613–619, 2008.

[12] T. Sakurai and H. Sugiura. A projection method for generalized eigenvalue problems
using numerical integration. J. Comput. Appl. Math., 159:119–128, 2003.

16

	Introduction
	Counting eigenvalues and controlling the size of the search space
	Estimating the number of eigenvalues in an interval
	Using the estimates to control the size of the search space
	Detection of empty intervals

	Numerical integration
	The selection function
	Stretching I
	Considering S outside of I

	Conclusion

