

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics (IMACM)

Preprint BUW-IMACM 12/21

Hanno Gottschalk (BUW) and Horst Thaler (Università di Camerino)

A triviality result in the AdS/CFT correspondence for Euclidean quantum fields with exponential interaction

October 2012

http://www.math.uni-wuppertal.de

A triviality result in the AdS/CFT correspondence for Euclidean quantum fields with exponential interaction

Hanno Gottschalk¹ and Horst Thaler²

¹Fachbereich für Mathematik und Informatik, Bergische Universität Wuppertal, Germany hanno.gottschalk@uni-wuppertal.de

²Department of Mathematics and Informatics, University of Camerino, Italy horst.thaler@unicam.it

September 2012

Abstract

We consider scalar quantum fields with exponential interaction on Euclidean hyperbolic space \mathbb{H}^2 in two dimensions. Using decoupling inequalities for Neumann boundary conditions on a tesselation of \mathbb{H}^2 , we are able to show that the infra-red limit for the generating functional of the conformal boundary field becomes trivial.

Mathematics Subject Classification (2010) 81T08, 81T40.

1 Introduction

One motivation for the study of the AdS/CFD correspondence originally proposed by J. Maldacena in the context of string theory [15] in the framework of Euclidean, constructive quantum field theory [7] is the hope to discover new, interacting and at the same time confomally invariant boundary theories. In this article we show that this program is subject to a new class of infra red divergences leading to trivial generating functionals at the conformal boundary. This was already noted in [8], however the proof given in this reference for ϕ^4 -theory requires an ultra violet cut off for technical reasons. In this article we for the first time derive a related triviality result for the exponential interaction with sufficiently small coupling on the two dimensional hyperbolic space without any cut offs.

In a previous work [8], following the outline given in [5], we proved that the following functional integral describes the AdS/CFT-correspondence for scalar fields [5, 12, 19] both from a "scaling to the conformal boundary" and a "prescription of boundary values" point

of view

$$\tilde{Z}(h, V_{\Lambda})/\tilde{Z}(0, V_{\Lambda}) = \lim_{z \to 0} e^{-\operatorname{Corr}(h,h)} \int_{\mathscr{D}'} e^{-V_{\Lambda}(\phi)} e^{\phi(z^{-\Delta_{+}}\delta_{z}\otimes h)} d\mu_{+}(\phi)/\tilde{Z}(0, V_{\Lambda})
= e^{\frac{1}{2}\alpha_{+}(h,h)} \int_{\mathscr{D}'} e^{-V_{\Lambda}(\phi+H_{+}h)} d\mu_{+}(\phi)/\tilde{Z}(0, V_{\Lambda}).$$
(1)

Here, $\Delta_{+} = \frac{d-1}{2} + \frac{1}{2}\sqrt{(d-1)^{2} + 4m^{2}}$ is a conformal weight, V_{Λ} is an interaction restricted to a bounded region Λ , and $\mathscr{D}' = C_{0}^{\infty}(\mathbb{H}^{d})'$ stands for the space of non-tempered distributions over the d dimensional hyperboloc space \mathbb{H}^{d} , cf Appendix A. In the following we restict to the exponential interaction [2] and d = 2 [1]. μ_{+} is the Gaussian measure on \mathscr{D}' with covariance operator $G_{+} = (-\Delta_{\mathbb{H}^{2}} + m^{2})^{-1}$ with boundary conditions fo $\Delta_{\mathbb{H}^{2}}$ fixed by (10) and (11) below. H_{+} is the bulk-to-boundary propagator which accounts for the way how fluctuations in the bulk are transferred to the boundary and α_{+} is the boundary-toboundary propagator, [5, 8]. Corr(h, h) is some z-dependent correction factor and thus does not change the relativistic field content. It is however a necessary regularization factor for the Euclidean theory, even in the case of non interacting fields. The variable z is taken from the half-space model of \mathbb{H}^{2} , cf. Appendix A. The reason why (1) is qualified as the generating functional of a field theory with conformal invariance properties on the boundary $\partial_{c}\mathbb{H}^{2}$ rests essentially on the following two properties:

- Functional (1) is reflection positive (not necessarily stochastically positive).
- It obeys conformal invariance on $\partial_c \mathbb{H}^2$ in the following sense

$$\tilde{Z}(h, V_{\Lambda})/\tilde{Z}(0, V_{\Lambda}) = \tilde{Z}(\lambda_u^{-1}uh, V_{u\Lambda})/\tilde{Z}(0, V_{u\Lambda}),$$
(2)

where λ_u is a conformal density depending on $u \in O^+(2,1) = \operatorname{Iso}(\mathbb{H}^2)$.

In fact, if the following limit exists uniquely w.r.t. to nets $\Lambda \uparrow \mathbb{H}^2$, of bounded measurable subsets,

$$\tilde{Z}_{\rm lim}(h) = \lim_{\Lambda \to \infty} \tilde{Z}(h, V_{\Lambda}) / \tilde{Z}(0, V_{\Lambda}), \qquad (3)$$

then property (2) entails that the limit functional satisfies reflection positivity and conformal invariance with respect to the induced conformal group action of $O^+(2, 1)$ on the boundary, cf. [8, 9]. Still, this infra-red limit \tilde{Z}_{lim} may turn out to be trivial, revealing that the AdS/CFT-prescription is not meaningful, at least for the construction of conformal fields from fields that are defined on fixed \mathbb{H}^2 -backgrounds. In [9] we obtained a partial result in this direction when the UV-regularized potential $V_{\Lambda} =: \phi^4:$ is considered. Namely, in this case

$$\tilde{Z}_{\rm lim}(h) = \begin{cases} 0 & \text{for } h \neq 0; \\ 1 & \text{for } h = 0. \end{cases}$$

$$\tag{4}$$

As will be shown in this article this turns out to be true also for exponential interactions without cut-offs at small coupling.

The paper is organized as follows: In Section 2 we define Euclidean functional integrals with free and Neumann boundary conditions on a tesselation of \mathbb{H}^2 . In Section 3 we

construct the exponential interaction on \mathbb{H}^2 and apply decoupling inequalities. In Section 4 we derive the triviality theorem for the generating functional $Z_{\text{lim}}(h)$ under the net limit $\Lambda \uparrow \mathbb{H}^2$ in the case of small coupling, which is the main result of this article.

2 Tessellations and the Neumann Green's Function

Since the proof of Theorem 4.1 below strongly relies on a decoupling of Neumann fields along isometric regions, we first provide some geometric features regarding regular tessellations. Here a tessellation of \mathbb{H}^2 is a family $(T_j)_{j\in\mathbb{N}}$ of convex polygons obeying

$$\mathbb{H}^2 = \bigcup_{j \in \mathbb{N}} T_j, \quad \mathring{T}_i \cap \mathring{T}_j = \emptyset \quad \text{for } i \neq j.$$

Regular means that the T_j 's are congruent, i.e., for all $j, k \in \mathbb{N}$ there is an isometry $g \in SO(2, 1)$ with $g(T_j) = T_k$. In this case \mathring{T}_1 is called a fundamental domain. The polygons are formed by n vertices together with n sides which are simply geodesic segments. Suppose we consider the angle between the two geodesics that pass through a given vertex and are perpendicular to the sides that have this vertex in common. If all these angles are of the form $\pi/k, k \in \mathbb{N}$, then a tessellation can be generated from the compact polygon T_1 by repeated reflections in its sides, see [17, Theorem 7.1.3]. Note that these reflections are isometries. First one reflects in the sides of T_1 , then in the sides of the new T_j 's that have just been generated and so on. By gathering all possible compositions of reflections into a group we obtain the reflection group Γ related to the tessellation. An example of a tessellation by means of hyperbolic triangles is given in Figure 1.

In the following we assume that the tessellation and corresponding reflection group Γ on \mathbb{H}^2 are given by means of a compact polygon as described above. We are ready to define a Green's function G_N that satisfies the Neumann boundary conditions on $\bigcup_{j \in \mathbb{N}} \partial T_j$. For this we first define

$$G_{N,j}(x,y) := \begin{cases} \sum_{\gamma \in \Gamma} G_+(x,\gamma(y)), & \text{if } x \neq y \in T_j \\ +\infty, & \text{if } x = y \in T_j \\ 0, & \text{otherwise.} \end{cases}$$
(5)

Then, for $x, y \in \mathbb{H}^2$, we set

$$G_N(x,y) := \sum_{j \in \mathbb{N}} G_{N,j}(x,y).$$
(6)

Let $N(\vartheta, x, y) := \operatorname{card}\{\gamma \in \Gamma | \rho(x, \gamma(y)) < \vartheta\}$ be the orbital counting function. For $m^2 > 0$ convergence of the sum in (5) can be seen by combining the following bound, cf. [16, Theorem 1.5.1],

$$N(\vartheta, x, y) < Ae^{\vartheta}, \quad A > 0, \tag{7}$$

with the fact that $G_+(x,y) \sim \text{const.} e^{-\Delta_+ \rho(x,y)}$ for large geodesic distances $\rho(x,y)$, see Appendix A.

Figure 1: A tessellation constructed by reflections of triangles with angles $\pi/3, \pi/4, \pi/4$.

Next we need to check the basic properties of a Neumann Green's function. The invariance property $G_+(x,y) = G_+(u(x), u(y))$, for $u \in \text{Iso}(\mathbb{H}^2)$, immediately entails the symmetry of G_N . Given $x, y \in \mathring{T}_j$, then each $T_k, k \neq j$, contains precisely one of the reflected points so that

$$(-\Delta_{\mathbb{H}^2} + m^2)G_N(x, y) = (-\Delta_{\mathbb{H}^2} + m^2)G_+(x, y) = \delta(x, y).$$
(8)

Since G_+ has a logarithmic singularity, see the Appendix, we find for the same reason that $G_N(x,y) \sim -1/(2\pi) \log(\rho(x,y))$, as $\rho(x,y) \to 0$.

In order to see that (6) satisfies Neumann boundary conditions we consider any normal derivative w.r.t. an arbitrary side s. For this we take any geodesic $y \equiv y(t)_{-t_0 \leq t \leq t_0}$ with $t_0 > 0$ such that y intersects s perpendicularly at t = 0. Then, if $\tilde{\gamma}$ denotes reflection in the side s we have $\tilde{\gamma}(y(-t)) = y(t)$. Let us define the function

$$f(t) := \begin{cases} G_N(x, y(t)), & \text{if } t \le 0, \\ G_N(\tilde{\gamma}(x), y(t)), & \text{if } t > 0. \end{cases}$$
(9)

Now, owing to the invariance $G_N(x,y) = G_N(\tilde{\gamma}(x), \tilde{\gamma}(y))$ it follows that f is an even function w.r.t. t = 0, so that its derivative has to vanish at this point, which is what we wanted to verify.

As can be seen from uniqueness of the Neumann problem, $G_N(x, y)$ is the integral kernel of $(-\Delta_N + m^2)^{-1}$, where $-\Delta_N$ is the Laplacian with Neumann boundary conditions on $\bigcup_{j \in \mathbb{N}} \partial T_j$. The operators $-\Delta_{\mathbb{H}^2}$ and $-\Delta_N$ are associated with the following quadratic forms

ł

$$\mathscr{B}_{+}(f,g) = \mathscr{B}_{N}(f,g) = \int_{\mathbb{H}^{2}} \langle \nabla f, \nabla g \rangle \, dx, \tag{10}$$

with $\langle ., . \rangle$ the canonical scalar product on $T\mathbb{H}^2$ and form domains given by

$$\mathscr{D}_{+} = H^{1}(\mathbb{H}^{2}) \subset \bigoplus_{j \in \mathbb{N}} H^{1}(T_{j}) = \mathscr{D}_{N}, \qquad (11)$$

where we have introduced the Sobolev space $H^1(\mathbb{H}^2) = \{f \in L^2(\mathbb{H}^2) | \nabla f \in L^2(\mathscr{X}(\mathbb{H}^2))\}$, with $L^2(\mathscr{X}(E))$ denoting the space of square intagrable vector fields on $E \subset \mathbb{H}^2$. Moreover, $H^1(T_j)$ consists of those $f \in L^2(T_j)$ with weak derivative $\nabla f \in L^2(\mathscr{X}(T_j))$. The embedding (11) is realized through the mapping $f \mapsto \bigoplus_{j \in \mathbb{N}} f|_{T_j}$. Let us recall the following comparison theorem, see [14, Ch.6, Theorem 2.21].

Theorem 2.1 Let \mathscr{B}_A and \mathscr{B}_B be two quadratic forms defined on a Hilbert space H with form domains \mathscr{D}_A and \mathscr{D}_B , respectively. If $\mathscr{D}_A \subset \mathscr{D}_B$ and $\mathscr{B}_A(f, f) \geq \mathscr{B}_B(f, f) \geq \alpha$ for $\alpha \in \mathbb{R}$ and all $f \in \mathscr{D}_A$, then

$$(A+\zeta)^{-1} \le (B+\zeta)^{-1}, \quad \forall \zeta < \alpha,$$

where A, B are the operators associated with the forms \mathscr{B}_A and \mathscr{B}_B , respectively.

The L^2 spectrum of $-\Delta_{\mathbb{H}^2}$ is $[1/4, \infty)$, cf. [4, Theorem 5.7.1]. Therefore, Theorem 2.1, applied with $A = (-\Delta_{\mathbb{H}^2} + m^2)$ and $B = (-\Delta_N + m^2)$, shows that

$$G_{+} = (-\Delta_{\mathbb{H}^{2}} + m^{2})^{-1} \le (-\Delta_{N} + m^{2})^{-1} = G_{N}, \text{ for } m^{2} > -1/4.$$
 (12)

Inequality (12) allows to apply the theory of conditioning as described in [18] or in [10]. According to the latter we can write $\phi_N(f) = \phi_+(f) + \phi_R(f)$, where $R = G_N - G_+$ and the random fields are indexed by a common Hilbert space H. The precise definitions are as follows. Let H_N, H_+ and H_R be the Hilbert spaces that are obtained upon completing $C_0^{\infty}(\mathbb{H}^2)$ w.r.t. the norms $\|f\|_N = G_N(f, f)^{\frac{1}{2}}, \|f\|_+ := G_+(f, f)^{\frac{1}{2}}$ and $\|f\|_R := G_R(f, f)^{\frac{1}{2}},$ respectively. Let $\widetilde{H} := H_+ \oplus H_R$ equipped with the direct sum norm, denoted by $\|\cdot\|$ $\|_{\widetilde{H}}$. These Hilbert spaces are accompanied by measure spaces $(Q_{\natural}, \mathcal{Q}_{\natural}, \mu_{\natural})$, on which the random fields ϕ_{\natural} are defined as random variables. The symbol \natural indicates one of the Hilbert spaces, such that the μ_{\flat} 's are the measures associated with G_{\flat} . For $\flat = +, N, R$ we consider $(Q_{\mathfrak{b}},\mathscr{S}_{\mathfrak{b}}) = (\mathscr{D}',\mathscr{B})$, where \mathscr{B} is the Borel σ -algebra generated by the weak*-topology of \mathscr{D}' . Especially, $\mu_{\widetilde{H}} = \mu_+ \otimes \mu_R$, where the latter is defined on $(Q_+ \times Q_R, \mathscr{Q}_+ \otimes \mathscr{Q}_R)$. Since it holds that $G_+ \leq G_N$ and $G_R \leq G_N$, each $f \in H_N$ can be identified with unique elements $f_+ \in H_+$ and $f_R \in H_R$. In other words there is a natural embedding $H_N \hookrightarrow H$ given by $f \mapsto (f_+, f_R)$ so that the Neumann field should correctly be written as $\phi_N(f) := \phi_{\widetilde{H}}(f_+, f_R) = \phi_+(f_+) + \phi_R(f_R)$. If $P_+f := (f_+, 0)$, the projection on the first component, then obviously $\phi_N(P_+f) = \phi_+(f_+)$. Therefore one says that ϕ_+ is obtained from ϕ_N by conditioning. Even more is true as will be explicated in the next section. In the sequel we shall simply write $\mu = \mu_{\widetilde{H}}, Q = Q_+ \times Q_R, \mathscr{Q} = \mathscr{Q}_+ \otimes \mathscr{Q}_R, \phi = \phi_{\widetilde{H}}.$

3 The exponential interaction and a conditioning estimate

Below ϕ_{\natural} will denote one of the fields ϕ_{+} or ϕ_{N} . In order to define the exponential interaction we start from the *k*th Wick power : ϕ_{\natural}^{k} : (g). Here it is tacitly understood that the Wick ordering is taken with respect to the Green function G_{\natural} . In the previous section we recalled that ϕ_{N} can also be realized as a random variable on the measure space (Q, \mathcal{Q}, μ) . Therefore, without any further notice, statements regarding $L^{2}(\mu_{N})$ -limits will at the same time be regarded as statements about $L^{2}(\mu)$ -limits. As the following lemma shows the exponential interaction can be defined in terms of the series

$$:\exp(\alpha\phi_{\natural}):(g) := \sum_{k=0}^{\infty} \frac{\alpha^k}{k!} : \phi_{\natural}^k:(g).$$
(13)

Lemma 3.1 Assume that $\Lambda \subset \mathbb{H}^2$ is a compact measurable set and let $g \in L^{1+\varepsilon}(\mathbb{H}^2, dx)$, where $\varepsilon > 0$. For d = 2, $|\alpha| < \sqrt{4\pi}$ the following statements hold

- (i) The Wick power : $\phi_{\mathfrak{h}}^{k}(g)$: exists in $L^{p}(\mu_{\mathfrak{h}})$ for any $k \in \mathbb{N}_{0}$ and $0 \leq p < \infty$.
- (ii) : $\exp(\alpha \phi_{\natural})$: (g) exists in $L^2(\mu_{\natural})$. In particular

$$:\exp(\alpha\phi_{\natural}):(1_{\Lambda}g) \equiv \int_{\Lambda}:\exp(\alpha\phi_{\natural}(x)):g(x)dx$$
(14)

is a well defined $L^2(\mu_{\natural})$ random variable.

(*iii*)
$$\int_{\Lambda} :\exp(\alpha\phi_{\natural,\varepsilon}(x)):g(x)dx = \int_{\Lambda} \frac{\exp(\alpha\phi_{\natural,\varepsilon}(x))g(x)}{\exp(\frac{\alpha^2}{2}G_{\varepsilon,\natural}(x,x))}dx \to \int_{\Lambda} :\exp(\alpha\phi_{\natural}(x)):g(x)dx, as$$
$$\varepsilon \to 0 \text{ in } L^2(\mu_{\natural}).$$

Remark: The smoothed fields $\phi_{\sharp,\varepsilon}$ are defined as $\phi_{\sharp,\varepsilon} = \chi_{\varepsilon} * \phi_{\sharp}$, where $(\chi_{\varepsilon})_{\varepsilon>0}$ is a family of nonnegative functions from $C_0^{\infty}(\mathbb{H}^2)$, which approximate δ_o the Dirac distribution at the origin o. Further we shall assume that the integral of each member χ_{ε} is one, since in this case the norm of the operator $\mathscr{T}_{\varepsilon}(f) := \chi_{\varepsilon} * f$ is bounded by one in any $L^p(\mathbb{H}^d, dx) \equiv L^p$ space with $p \in [1, \infty]$, see the statement after inequality (33).

Proof of Lemma 3.1. (i) The kth Wick power $:\phi_{\natural}^{k}:(g)$ is defined as the unique element in $\mathcal{H}_{k}^{\natural} = H_{\natural}^{\otimes k}$ such that

$$\langle :\phi_{\natural}^{k} : (g), :\phi_{\natural}(h_{1}) \cdots \phi_{\natural}(h_{k}) : \rangle = k! \int_{(\mathbb{H}^{2})^{k+1}} g(x) \prod_{j=1}^{k} G_{\natural}(x, y_{j}) h_{j}(y_{j}) dy_{j} dx, \quad \text{for all } h_{j} \in \mathscr{D}.$$

$$(15)$$

A sufficient condition for : ϕ_{\natural}^k : (g) to exist is given by the ensuing bound, cf. [18, Proposition V.1]

$$\int_{(\mathbb{H}^2)^2} g(x) G_{\natural}(x, y)^k g(y) dy dx \le \text{const.} |||g|||, \tag{16}$$

with $\|\|\cdot\|\|$ denoting a norm that is continuous on \mathscr{D} . If the latter bound is valid then, as will be shown below, the $L^2(\mu_{\natural})$ -norm can be calculated by

$$\|:\phi_{\natural}^{k}:(g)\|_{L^{2}(\mu_{\natural})} = k! \int_{(\mathbb{H}^{2})^{2}} g(x)G_{\natural}(x,y)^{k}g(y)dydx.$$
(17)

Since $G_N \leq cG_+^1$, for some constant c > 0, we may reduce the proof of existence of $:\phi_N^k:$, by a conditioning argument, to that of $:\phi_+^k:$. In fact, by the conditioning comparison result [10, Theorem III.1] one gets $||:\phi_N^k(g):||_{L^p(\mu_N)} \leq ||:\phi_+^k(g):||_{L^p(\mu_{c+})}$, where μ_{c+} is the measure related to cG_+ . By hypercontractivity it is possible to estimate $||:\phi_+^k(g):||_{L^p(\mu_{c+})}$ in terms of $||:\phi_+^k(g):||_{L^2(\mu_+)}$, see the proof of Lemma III.7 in [10], so that we only need to show existence for the ϕ_+ field. Due to left-invariance of $G_+(x, y)$ we may always shift yto a fixed origin $o \in \mathbb{H}^2$, so that G_+ becomes a function of one variable. Using convolution on \mathbb{H}^2 , as described in the Appendix, the integral of (16) can be written as

$$\int_{\mathbb{H}^2} g(x)(g * G^k_+)(x)dx, \quad g \in L^{1+\varepsilon}.$$
(18)

Employing Hölder's and Young's inequalities we obtain

$$\int_{\mathbb{H}^2} g(x)(g * G_+^k)(x) dx \le \|g\|_{1+\varepsilon}^2 \|G_+^k\|_q, \quad q = \frac{1+\varepsilon}{2\varepsilon},$$
(19)

see [10, Lemma III.7]. Existence of $||G_{+}^{k}||_{q}$ can be deduced from the logarithmic singularity and the exponential decay $\sim e^{-\Delta_{+}\rho}$ of G_{+} in combination with the representation $dx = \sinh \rho d\rho d\omega$, where $d\omega$ is the standard measure on \mathbb{S}^{1} . It should be noted that for $g \in \mathscr{D}$ identity (17) is valid, see Proposition 8.3.1 and its Corollaries in [7]. Now, let $g \in L^{1+\varepsilon}$ and let $(g_{n})_{n \in \mathbb{N}}, g_{n} \in \mathscr{D}$, be a sequence with $\lim_{n\to\infty} g_{n} = g$ in $L^{1+\varepsilon}$. Employing linearity of $: \phi_{+}^{k}: (\cdot)$ and the bound (19) we obtain that $:\phi_{+}^{k}: (g_{n})$ is a Cauchy sequence in $L^{p}(\mu_{+})$. Hence, the limit denoted by $: \phi_{+}: (g)$ exists. The bilinear form corresponding to the integral of (19) can be bounded by $||f||_{1+\varepsilon} ||g||_{1+\varepsilon} ||G_{+}^{k}||_{q}, f, g \in L^{1+\varepsilon}$. Hence it is continuous and from this it is readily seen that (17) is also valid for $g \in L^{1+\varepsilon}$.

(ii) and (iii) Both cases can be treated along the same lines as in [2]. Assertion (i) follows from equality (17) that leads to

$$\|:\exp(\alpha\phi_{\natural}):(g)\|_{L^{2}(\mu)}^{2} = \sum_{k=0}^{\infty} \frac{\alpha^{2k}}{k!} (g, G_{\natural}^{k}g)_{L^{2}} = (g, \exp(\alpha^{2}G_{\natural})g)_{L^{2}}.$$
 (20)

The last inner product exists due to the logarithmic singularity of G_{\natural} for $|\alpha| < \sqrt{4\pi}$. Claim (ii) can be verified following the reasoning in [2, eqs (5.7)-(5.12)].

¹this fact has been proved in the references and carries over to our case, cf. [10, Theorem III.4] and [11, Lemma III.5B]

Lemma 3.2 If ϕ_+ is obtained from ϕ_N by conditioning then we have for $h \in C^{\infty}(\partial_c \mathbb{H}^2)$

$$\int_{Q_{+}} e^{-V_{\Lambda}(\phi_{+}+H_{+}h)} d\mu_{+}(\phi_{+}) \leq \int_{Q} e^{-V_{\Lambda}(\phi_{N}+H_{+}h)} d\mu(\phi).$$
(21)

Proof. Lemma 3.1(iii) together with a limiting argument entail that it is sufficient to prove this statement for the smoothed fields $\phi_{+,\varepsilon}$ and $\phi_{N,\varepsilon}$. But for this case the assertion can be proved like in the Appendix of [1].

4 Triviality for small coupling

In this section we show that if V_{Λ} is the exponential interaction with coupling constant $\lambda > 0$ as defined in Lemma 3.1,

$$V_{\Lambda}(\phi) = \lambda : \exp(\alpha \phi) : (1_{\Lambda}) = \lambda : \exp(\alpha \phi) : {}_{+}(1_{\Lambda}), \quad |\alpha| < \sqrt{4\pi}.$$
(22)

Then, in the limit when $\Lambda \uparrow \mathbb{H}^2$, the functional (1) tends to zero. In this discussion the finite prefactor $e^{\alpha_+(h,h)}$ in (1) is irrelevant.

Proposition 4.1 Let $X_j = V_{T_j}/\lambda \in [0, \infty]$ with V_{T_j} being defined as a function of ϕ_N , however with + Wick ordering, i.e.

$$X_j = :\exp(\alpha\phi_N): _+(1_{T_j}) = :\exp(\alpha\phi_N): (1_{T_j}e^{\frac{\alpha^2}{2}\Delta G_N}).$$

$$(23)$$

Here $\Delta G(x) = G_N(x,x) - G_+(x,x) \ge 0$. With $k_j := \min_{x \in T_j} (H_+h)$ and $\Lambda = \bigcup_{j=1}^n T_j$, $\mathscr{L}_{X_1}(s) = \mathbb{E}_{\mu}[e^{-sX_1}]$ we have

$$0 \le \tilde{Z}(h,\Lambda) = \int_{Q_+} e^{-V_{\Lambda}(\phi_+ + H_+ h)} d\mu_+(\phi_+) \le \prod_{j=1}^n \mathscr{L}_{X_1}(\lambda k_j).$$
(24)

Proof. First we notice that the X_j 's are i.i.d. random variables under the measure μ , since the T_j 's are congruent and G_N is given by (6). Then, employing Lemma 3.2 and independence, we deduce

$$0 < \tilde{Z}(h,\Lambda) \le Z_N(h,\Lambda) = \int_Q \prod_{j=1}^n e^{-V_{T_j}(\phi_N + H_+ h)} d\mu(\phi)$$

= $\prod_{j=1}^n \int_Q e^{-V_{T_j}(\phi_N + H_+ h)} d\mu(\phi) \le \prod_{j=1}^n \mathscr{L}_{X_1}(\lambda k_j).$ (25)

Proposition 4.2 For Λ as above we get for the effective action

$$-\infty < \log\left(\tilde{Z}(h,\Lambda)\right) - \log\left(\tilde{Z}(0,\Lambda)\right) \le \sum_{j=1}^{n} \left[\log(\mathscr{L}_{X_1}(\lambda k_j)) + \lambda |T_1|\right].$$
(26)

Proof. Just employ (24) and Jensen's inequality

$$\tilde{Z}(0,\Lambda) = \mathbb{E}_{\mu_{+}}\left[e^{-V_{\Lambda}}\right] \ge \exp\left\{-\mathbb{E}_{\mu_{+}}\left[V_{\Lambda}\right]\right\} = e^{-\lambda|\Lambda|}.$$

Theorem 4.1 ("Triviality") Let the coupling constant λ fulfill

$$0 < \lambda < \frac{-\log(\mu(X_1 = 0))}{|T_1|},\tag{27}$$

where $\varepsilon > 0$ can be chosen arbitrarily small. Let $h \in C^{\infty}(\partial_{c}\mathbb{H}^{2})$ with h > 0 on a nondegenerate segment (α_{0}, α_{1}) of $\partial_{c}\mathbb{H}^{2} \simeq \mathbb{S}^{1}$. Then there exists a sequence of sets $\Lambda_{q} \uparrow \mathbb{H}^{2}$ such that

$$\lim_{q \to \infty} \tilde{Z}(h, \Lambda_q) / \tilde{Z}(0, \Lambda_q) = 0.$$
(28)

Remark. The interval (α_0, α_1) stands for the open subset of \mathbb{S}^1 whose points have angle between α_0 and α_1 . For the proof below we shall work in the disk (ball) model, i.e., $\mathbb{H}^2 = \{x \in \mathbb{R}^2 | \|x\| < 1\} =: \mathbb{B}^2$ with boundary $\partial_c \mathbb{H}^2 = \mathbb{S}^1$, see the Appendix. We need to introduce the notion of "conical limit points". Suppose $B(x, \delta)$ denotes a hyperbolic ball of radius δ and center x. The point $p \in \mathbb{S}^1$ is called a conical limit point for Γ if there is an $a \in \mathbb{B}^2$, a sequence $(\gamma_i)_{i \in \mathbb{N}}$ of elements of Γ , a geodesic σ in \mathbb{B}^2 ending at p, and a constant c > 0 such that $(\gamma_i(a))_{i \in \mathbb{N}}$ converges to p within the c-neighborhood $N(\sigma, c) = \{\bigcup_{b \in \sigma} B(b, \delta) | \delta < c\}$ of σ in \mathbb{B}^2 . In fact, in this case it can be shown that for each geodesic μ ending at p, there is a constant t > 0 such that $(\gamma_i(o))_{i \in \mathbb{N}}$ converges within $N(\mu, t)$. Hence we may assume, without loss of generality, that σ is the segment of the line containing o and p. For the reflections groups we are considering it further holds that "the set of conical limit points" = \mathbb{S}^1 , cf. [16, Theorem 2.4.8].

Proof of Theorem 4.1. Step 1. By the preceding remark we can find, for an arbitrary point $p \in \mathbb{S}^1$, a sequence $(\gamma_i(a))_{i \in \mathbb{N}}$ that converges to p in the sense described above. If necessary, we rotate our disk such that $p \in (\alpha_0, \alpha_1)$, while keeping the position of h fixed. Let us consider the sector, denoted by $S(r_0)$, which in Euclidean polar coordinates (r, α) is given by $S(r_0) = \{x \in \mathbb{B}^2 | r(x) \ge r_0 > 0, \alpha(x) \in (\alpha_0, \alpha_1)\}$. Note that the boundary segment at infinity of $S(r_0)$ is naturally identified with (α_0, α_1) . We choose one of the polygons, indicated by T_a , that contains $\gamma_1(a)$. Let C_1 be the hyperbolic circumcircle of T_a . To the sequence $(\gamma_i(a))_{i \in \mathbb{N}}$ there corresponds a sequence of circumcircles $(C_i)_{i \in \mathbb{N}} := (\gamma_i(C_1))_{i \in \mathbb{N}}$. Note that the diameters of these circles, when \mathbb{B}^2 is seen in the Euclidean metric, will necessarily tend to zero, and thus also the distances between the C_i 's and p will tend to zero, since $\gamma_i(a) \in C_i$. Therefore, there is an $i_0 \ge 1$ such that for all $i \ge i_0$ we have $C_i \subset S(r_0)$ and hence $T_i \subset S(r_0)$.

Step 2. By means of an isometry we may identify \mathbb{B}^2 with the upper half-space model \mathbb{U}^2 with coordinates $\underline{\zeta} = (z, \zeta) \in \mathbb{R}_{>0} \times \mathbb{R}$. For $x \in S(r_0)$ one then finds by explicit computation $z(x) \leq \text{const. } e^{-\rho(o,x)}$. Next we investigate the growth behavior of H_+h on

 $S(r_0)$. For this we use its representation in \mathbb{U}^2 which reads [5]

$$(H_{+}h)(z,\zeta) = \int_{\mathbb{R}} \frac{z^{\Delta_{+}}}{(z^{2} + (\zeta - \eta)^{2})^{\Delta_{+}}} h(\eta) d\eta$$

$$= z^{-\Delta_{+}+1} \int_{\mathbb{R}} \frac{1}{(1+\eta)^{\Delta_{+}}} h(z\eta + \zeta) d\eta$$

$$\geq \text{ const. } z^{-\Delta_{+}+1}, \qquad (29)$$

because in this case we have $h(z \cdot + \zeta) \ge \text{const.}' > 0$ on (α_0, α_1) if z > 0 is small enough and $\Delta_+ > 1$. In \mathbb{U}^2 the *c*-neighborhood $N(c, \sigma)$ is simply a cone having σ as symmetry axis. Thus inequality (29) will hold on $S(r_0)$ whenever r_0 is sufficiently large.

Step 3. Now, for $q \in \mathbb{N}_0$ let $j_1 = 1, \ldots, j_q = q$ and let r_0 be such that inequality (29) is valid. By step 1 we can pick j_{q+1}, j_{q+2}, \ldots with $j_{q+1} \ge j_q$ so that T_{j_l} approaches $\partial_c \mathbb{H}^2$ in the sector $S(r_0)$. Thus $k_{j_l} \to \infty$ and

$$\mathscr{L}_{X_1}(\lambda k_{j_l}) \to \mu(X_1 = 0) \text{ as } l \to \infty,$$

where the r.h.s. is independent of λ . It follows that $\exists n_0(q) \geq q$ such that

$$\sum_{l=1}^{n_0(q)} \left[\log \left(\mathscr{L}_{X_1}(\lambda k_{j_l}) \right) + \lambda |T_1| \right] \le -\varepsilon q,$$

with $\varepsilon > 0$ such that $\lambda \leq (-\log(\mu(X_1 = 0) - \varepsilon)/|T_1|)$. Consequently, for $\Lambda_q = \bigcup_{l=1}^{n_0(q)} T_{j_l} \uparrow \mathbb{H}^2$ as $q \to \infty$, we get by Proposition 4.2

$$\tilde{Z}(h,\Lambda_q)/\tilde{Z}(0,\Lambda_q) \le e^{-\varepsilon q},$$

which proves the assertion choosing choose a subsequence q_n such that $\Lambda_{q_n} \subseteq \Lambda_{q_{n+1}}$. \Box

Let us finally show that the condition in Theorem 4.1 can always be fulfilled for some $\lambda > 0$.

Lemma 4.1 With the same assumptions as in Theorem 4.1 we have

$$\mu(X_1 = 0) < 1 \tag{30}$$

Proof. Note that by (23) and $\Delta G(x) \ge 0, X_1 \ge \exp(\alpha \phi_N) : (1_{T_1})$. Thus

$$\mu(X_1 = 0) \le \mu(: \exp(\alpha \phi_N): (1_{T_1}) = 0) < 1,$$

since $\mathbb{E}_{\mu}[:\exp(\alpha\phi_N):(1_{T_1})] = |T_1| > 0.$

A Appendix

There are different isometric models of the *d*-dimensional hyperbolic space \mathbb{H}^d . We give three examples that have been used in this article.

(i) Given the pseudo-Riemannian manifold $(\mathbb{R}^{d+1}, ds_L^2 = dx_1^2 + \cdots + dx_d^2 - dx_{d+1}^2)$, then the Lorentzian model is given by the submanifold

$$\mathbb{L}^{d} = \{ (x_1, \dots, x_{d+1}) \in \mathbb{R}^{d+1} | (x, x)_L := x_1^2 + \dots + x_d^2 - x_{d+1}^2 = -1, x_{d+1} > 0 \},\$$

equipped with the induced metric. The group $SO_0(d, 1)$ acts transitively on \mathbb{L}^d and the isotropy group of $(0, \ldots, 0, 1)$ is given by SO(d) so that this model can also be seen as the homogenous space $\mathbb{L}^d = SO_0(d, 1)/SO(d)$, a noncompact Riemannian symmetric space.

(ii) The upper half-space model defined by

$$\mathbb{U}^d = \{\underline{\zeta} := (z,\zeta) = (z,\zeta_1,\ldots,\zeta_{d-1}) \in \mathbb{R}^d | z > 0\},\$$

- equipped with the metric $ds_U^2 = (dz^2 + d\zeta_1^2 + \dots + d\zeta_{d-1}^2)/z^2$.
- (iii) The ball model, which is defined through

$$\mathbb{B}^{d} = \{ x = (x_1, \dots, x_d) \in \mathbb{R}^{d} | ||x|| < 1 \},\$$

endowed with the metric $ds_B^2 = 4(dx_1^2 + \dots + dx_d^2)/(1 - ||x||^2)^2$.

In the ball model every geodesic is either a line through the origin or an arc on a circle which is orthogonal to the sphere \mathbb{S}^{d-1} . This sphere with the standard topology provides a natural boundary of \mathbb{H}^d , albeit not in the usual sense. To see this, points on \mathbb{S}^{d-1} are identified with appropriate equivalence classes of geodesics. The equivalence class corresponding to $p \in \mathbb{S}^{d-1}$ just comprises all geodesics whose corresponding circles intersect at p. An intrinsic definition can be given by saying that two geodesics $\gamma_1(t), \gamma_2(t), t \geq 0$, are equivalent if $\sup_{t\geq 0} \rho(\gamma_1(t), \gamma_2(t)) < \infty$, cf. [3, Proposition A.5.6]. Therefore one finds a natural boundary (at infinity) given by $\partial_c \mathbb{B}^d = \mathbb{S}^{d-1}$. Obviously the boundary has to be the same for all models. In fact, the following results hold true: $\partial_c \mathbb{U}^d = \{\underline{\zeta} \in \mathbb{R}^d | z = 0\} \cup \infty \simeq \mathbb{S}^{d-1}$ and $\partial_c \mathbb{L}^d = (C_L \setminus \{0\}) / \sim \simeq \mathbb{S}^{d-1}$, where $C_L := \{x \in \mathbb{R}^{d+1} | (x, x)_L = 0\}$ and the equivalence relation \sim is given by $x \sim y :\Leftrightarrow x = \lambda y, \lambda \neq 0$.

Hyperbolic spaces are of the form X = G/K, where G is a noncompact semisimple Lie group and K is a maximal compact subgroup. By means of the group structure a convolution can be defined

$$f * g(u \cdot o) = \int_G f(v \cdot o)g(v^{-1}u \cdot o)dv, \quad \text{with } o = eK,$$
(31)

where dv denotes the left-invariant Haar measure on G. Alternatively, expression (31) can be written in terms of the volume measure $d\overline{v}$ on X. Writing $\overline{u} \equiv uK$, it reads

$$f * g(\overline{u}) = \int_X f(\overline{v})g(v^{-1} \cdot \overline{u})d\overline{v}, \qquad (32)$$

where v is any representative of \overline{v} . In the text above we write $dx \equiv d\overline{v}$. Formula (32) is a consequence of the disintegration formula (9) in [13, Ch.I,§1, Theorem 1.9]. The

convolution product belongs to $L^p(X, d\overline{v})$, whenever $f \in L^1(X, d\overline{v}), g \in L^p(X, d\overline{v})$ with $p \in [1, \infty]$, and obeys by Young's inequality

$$||f * g||_p \le ||f||_1 \cdot ||g||_p.$$
(33)

In particular, the operator $T_f(g) := f * g$ defined on $L^p(X, d\overline{v})$ has norm $||T_f|| \leq ||f||_1$. Suppose now that $\mathscr{T}_{\varepsilon}(f) = \chi_{\varepsilon} * f$ as in the Remark above, then $||\mathscr{T}_{\varepsilon}|| \leq 1$. But any of the L^p 's is densely and continuously embedded into the spaces H_+, H_N and therefore $\mathscr{T}_{\varepsilon}$ has a continuous norm preserving extension to the latter. Due to the isomorphisms $L^2(\mathscr{D}', \mu_{\natural}) \simeq \bigoplus_{n=0}^{\infty} \mathscr{H}_n^{\natural}$, with $\mathscr{H}_n^{\natural} = H_{\natural}^{\otimes n}$, see [18, Theorem I.11], there is a natural second quantization $\widehat{\mathscr{T}_{\varepsilon}}$ of $\mathscr{T}_{\varepsilon}$ that again satisfies $||\widehat{\mathscr{T}_{\varepsilon}}|| \leq 1$ and $\widehat{\mathscr{T}_{\varepsilon}} \to id$, strongly as $\varepsilon \to 0$. Finally, we should mention that the Green's function G_+ is given, in the upper half-space model, by

$$G_{+}(\underline{\zeta},\underline{\zeta}') = \gamma_{+}(2u)^{-\Delta_{+}}{}_{2}F_{1}(\Delta_{+},\Delta_{+}+\frac{2-d}{2};2\Delta_{+}+2-d;-2u^{-1}),$$
(34)

where $u = \frac{(z-z')^2 + (\zeta-\zeta')^2}{2zz'}$ and $\Delta_+ = \frac{d-1}{2} + \frac{1}{2}\sqrt{(d-1)^2 + 4m^2}$, $\gamma_+ = \frac{\Gamma(\Delta_+)}{2\pi^{(d-1)/2}\Gamma(\Delta_+ + 1 - \frac{d-1}{2})}$. On the other hand, the geodesic distance ρ in the upper half-space model is given by $\cosh(\rho(\underline{\zeta},\underline{\zeta}')) = 1 + \frac{|\underline{\zeta}-\underline{\zeta}'|^2}{2zz'} = 1 + u$, so that (34) becomes

$$G_{+}(\rho(\underline{\zeta},\underline{\zeta}')) = \gamma_{+}2^{-2\Delta_{+}}(\sinh\frac{\rho}{2})^{-2\Delta_{+}}{}_{2}F_{1}(\Delta_{+},\Delta_{+}+\frac{2-d}{2};2\Delta_{+}+2-d;-\sinh^{-2}\frac{\rho}{2}).$$
 (35)

From (35) it can be seen that $G_+(\rho) \sim \text{const.} e^{-\Delta_+\rho}$ as $\rho \to \infty$. An alternative expression for (35) is

$$G_{+}(\rho) = \gamma_{+} 2^{-\Delta_{+}} w^{-\Delta_{+}} {}_{2}F_{1}(\Delta_{+}, \Delta_{+}; 2\Delta_{+}; w^{-1}) = \frac{1}{2\pi} Q_{\Delta_{+}-1}(\cosh\rho),$$
(36)

where $w = (1 + \cosh(\rho))/2$ and Q_{ν} denotes the Legendre function. Equality of expressions (35) and (36) can be seen upon applying the transformation

$${}_{2}F_{1}(\alpha,\beta;2\beta;z) = \left(1 - \frac{z}{2}\right)^{-\alpha} {}_{2}F_{1}\left(\frac{\alpha}{2},\frac{\alpha+1}{2};\beta+\frac{1}{2};\left(\frac{z}{z-2}\right)^{2}\right),$$

to the latter, cf. [6, p.66]. Therefore, the logarithmic singularity of the Green's function is a consequence of

$$Q_{\Delta_{+}-1}(\cosh\rho) \sim -\frac{1}{2}\log(\cosh\rho-1) \quad \text{as } \rho \to 0,$$

see [6, p.163].

References

[1] S. Albeverio, G. Gallavotti, R. Høegh-Krohn: Some results for the exponential interaction in two or more dimensions, Comm. Math. Phys. **70**, 187-192 (1979).

- [2] S. Albeverio, R. Høegh-Krohn: The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time, J. Funct. Anal. 16, 39-82 (1974).
- [3] R. Benedetti: Lectures on Hyperbolic Geometry. Springer-Verlag 1992, Berlin.
- [4] E.B. Davies: Heat kernels and spectral theory. Cambridge University Press 1989, Cambridge.
- [5] M. Dütsch, K.-H. Rehren: A comment on the dual field in the AdS/CFT correspondence, Lett. Math. Phys. 62, 171-184 (2002).
- [6] A. Erdelyi et al.: Higher Transcendental Functions. Vol. 1. Mc Graw Hill 1953, New York.
- [7] J. Glimm, A. Jaffe: Quantum physics. A functional integral point of view. Second edition. Springer-Verlag 1987, New York.
- [8] H. Gottschalk, H. Thaler: AdS/CFT correspondence in the Euclidean context, Commun. Math. Phys. 277, 83-100 (2008)
- [9] H. Gottschalk, H. Thaler: A comment on the infra-red problem in the AdS/CFT correspondence, Proc. Int. Conf. "Recent Developments in QFT", Leipzig (2007).
- [10] F. Guerra, L. Rosen, B. Simon: Boundary conditions for the $P(\phi)_2$ euclidean field theory, Ann. Inst. Henri Poincaré (A) **25**, 231-334 (1976).
- [11] F. Guerra, L. Rosen, B. Simon: The $P(\Phi)_2$ Euclidean quantum field theory, Ann. Math. t. **101**, 111-259 (1975).
- [12] Z. Haba, Quantum field theory on manifolds with boundary, J. Phys. A 38, 10393–10401 (2005).
- [13] S. Helgason: Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators and Spherical Functions. Academic Press, Inc. 1984, Orlando.
- [14] T. Kato: Perturbation Theory of Linear Operators. Springer 1995, Berlin.
- [15] J. Maldacena: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231252 (1998).
- [16] P.J. Nicholls: The Ergodic Theory of Discrete Groups. Cambridge University Press 1989, Cambridge.
- [17] J.G. Ratcliffe: Foundations of Hyperbolic Manifolds, 2nd edition. Springer 2006, New-York.
- [18] B. Simon: The $P(\Phi)_2$ Euclidean (Quantum) Field Theory. Princeton University Press 1974, Princeton.
- [19] E. Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253-291 (1998).