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ANALYSIS OF THE DEFLATED CONJUGATE GRADIENT
METHOD BASED ON SYMMETRIC MULTIGRID THEORY

K. KAHL∗ AND H. RITTICH∗

Abstract. Deflation techniques for Krylov subspace methods and in particular the conjugate
gradient method have seen a lot of attention in recent years. They provide means to improve the
convergence speed of the methods in a rather straight forward way by enriching the Krylov subspace
with a deflation subspace. The most common approach for the construction of deflation subspaces
is to use (approximate) eigenvectors. However, there are many situations where a more general
deflation subspace is advisable.

We derive an estimate for the speed of convergence of the deflated conjugate gradient method us-
ing theory originally developed for algebraic multigrid methods. Our result holds for general deflation
subspaces and is based on the weak approximation property—known from multigrid methods—and
a measure of the A invariance of the subspace by the strengthened Cauchy-Schwarz inequality. In ad-
dition the result suggests that the techniques developed to construct efficient interpolation operators
in algebraic multigrid methods can also be applied to improve deflation subspaces.
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1. Preliminaries. Consider solving the linear system of equations

Ax = b , (1.1)

where A ∈ Kn×n (K = R or K = C) is self-adjoint and positive definite and x, b ∈ Kn.
In this paper we are interested in the case where the matrix A is large and sparse.
The conjugate gradient (cg) method [11, 17] is an iterative method which is often well
suited to solve these systems. The speed of convergence of the cg method depends
on the condition number κ of the matrix A, more precisely on the distribution of its
eigenvalues [17, 22]. When the condition number κ is large it can become necessary
to precondition the linear system such that a satisfactory speed of convergence is
obtained.

One possibility to precondition the cg method is via deflation as introduced by
Nicolaides [15] and Dostal [6], see also [9, 10, 14, 18]. We mention in particular the
paper [18], which derives a variant of Nicolaides’ deflated cg that is mathematically
equivalent but is algorithmically much closer to the standard cg algorithm. The basic
idea of deflation is to “hide” certain parts of the spectrum of the matrix A from
the cg method itself, such that the cg iteration “sees” a system that has a much
smaller condition number than A. The part of the spectrum that is hidden from cg
is determined by the so called deflation subspace S ⊆ Kn.

In [15] the space S is constructed as follows. The variables are combined into
aggregates Ai ⊆ {1, 2, . . . , n}, i = 1, . . . ,m such that

m⋃
i=1

Ai = {1, 2, . . . , n} and Ai ∩ Aj = ∅ for i 6= j .

Then S is spanned by the vectors v(i), i = 1, . . . ,m with

v
(i)
j =

{
1 if i ∈ Vj
0 otherwise

.
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This procedure can be motivated in the following way: Assume that the matrix
A arises from the discretization of a partial differential equation by a finite ele-
ment/difference/volume method. Components of vectors then correspond to grid
points of the underlying discretization scheme. When the aggregates Ai are chosen
appropriately, S is close to the space consisting of those vectors whose values vary
only slowly between neighboring grid points. Those vectors represent in many appli-
cations the eigenvectors corresponding to small eigenvalues. By deflating such vectors
the corresponding eigenvalues are removed from the spectrum and the deflated cg
method behaves as if the matrix had a much smaller condition number. Interestingly,
this procedure from [15] is completely analogous to the construction of prolongation
operators in (non-smoothed) aggregation based multigrid methods [4].

Another viable and widely used approach for deflation, consists of spanning S
directly by the eigenvectors corresponding to the smallest eigenvalues [18]. This im-
mediately leads to the removal of the smallest eigenvalues from the spectrum of A.
The major drawback of this approach is that it often does not scale when the size of
the system increases, because in many cases the number of eigenvalues below a given
threshold grows with the size of the system. Thus, as the system size increases, more
and more eigenvectors need to be computed to keep the convergence rate at a desired
level. However, in the case where only a few extremal, i.e., very small eigenvalues
exist, independent of the system size, however, this approach works reasonably well.

Recently a combination of the two approaches has been rediscovered in the context
of simulations in Quantum Chromodynamics [14]. Similarly to [15], aggregates Ai are
introduced, but since eigenvectors belonging to small eigenvalues do not necessarily
have slowly varying components in this application, a few eigenvectors w1, . . . , w`
corresponding to the smallest eigenvalues of the system are computed. Then for

every vector wj and every aggregate Ai the orthogonal projection w̃
(i)
j of wj onto

Vi = span{e(j) : j ∈ Ai}, where e(i) with e
(j)
` = δj,` is the jth canonical vector,

is computed and the deflation subspace S is spanned by w̃
(i)
j for i = 1, . . . ,m and

j = 1, . . . , `. This approach has the advantage that it often scales when the size of the
system is increased while the number of eigenvectors ` and the size of the aggregates
are chosen to be constant. This particular strategy to define the deflation subspace
resembles the setup of adaptive aggregation based algebraic multigrid methods [4],
where the prolongation operator is constructed in a similar way.

Motivated by these similarities to multigrid methods we investigate in this paper
more closely the relation between the ranges of good multigrid prolongation operators
and good deflation subspaces for the cg method. In doing so we analyze the conver-
gence of deflated cg with techniques known from algebraic multigrid methods, see
[3, 16, 20]. The theory of algebraic multigrid measures the quality of a prolongation
operator by a weak approximation property. We show that the speed of convergence
of deflated cg can be estimated using the weak approximation property, showing that
prolongation operators that work well in the multigrid setting also yield good results
when used to span the deflation subspace. Furthermore, with this choice of the de-
flation subspace, deflated cg exhibits similar scaling behavior as multigrid methods
for many applications. This means that the number of iterations stays constant when
we increase the system size due to finer discretizations, and, as opposed to standard
(algebraic) multigrid, deflated cg does not require a smoother.

We finish this introduction explaining some basic notation. Assume that x̃ ∈ Kn
is an approximation to x, the solution of (1.1). Then the residual r ∈ Kn is given by
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r = b−Ax̃, the error by e = x− ẽ. Note that Ae = r.
Let 〈x, y〉 = y∗x be the euclidean inner product. Since A is self-adjoint and

positive definite we can define the A-inner product and the A-norm by

〈x, y〉A := 〈Ax, y〉 and ‖x‖A :=
√
〈x, x〉A .

We denote by Kk[t] the set of polynomials in the variable t with degree less than
or equal to k. Let S ⊆ Kn be a subspace, then S⊥ is its orthogonal complement with
respect to the 2-inner product and S⊥A is its orthogonal complement with respect to
the A-inner product. By π(S) ∈ Kn×n we denote the orthogonal projection onto S
for the 2-inner product and by πA(S) its counter part for the A-inner product. The
distance between a point x ∈ Kn and a subspace S ⊆ Kn is given by

dist(S, x) = min
y∈S
‖x− y‖ .

The rest of the paper is structured as follows. Section 2 gives a short introduction
into deflation methods. In Section 3 we analyze the convergence of deflation meth-
ods by analyzing the condition number of the matrix A(I − πA(S)) ∈ Kn×n which
we estimate by using some results from multigrid theory. In Section 4 we further
show that our general convergence result yields the known bounds derived for the
case, where eigenvectors are directly used to span the deflation space. Moreover we
demonstrate how prolongation operators from the classical algebraic multigrid theory
for M -matrices can be used to obtain deflation subspaces. Then, we present some
numerical experiments confirming the theory in Section 5. Finally in Section 6 we
discuss how accurately the the action of the operator πA(S) has to be computed to
achive overall convergence of the method.

2. Review of Deflated CG. The mth Krylov subspace Km(A, v) corresponding
to a matrix A ∈ Kn×n and a vector v ∈ Kn is given by

Km(A, v) := span{v,Av,A2v, . . . , Am−1v} = {P (A)v : P ∈ Km−1[t]} .

The cg method generates the iterates x1, x2, x3, . . . ∈ Kn for a given initial guess
x0 ∈ Kn, where

xi = x0 + ẽi and ẽi ∈ Ki(A, r0)

such that the error ei = x− xi fulfills

‖ei‖A = ‖x− xi‖A = min
x̃∈x0+Ki

‖x− x̃‖A .

Note that since ei = x− xi = x− (x0 + ẽi) = e0 − ẽi, in particular e0 = x− x0, and
putting ẽ = x̃− x0 this is equivalent to

‖ei‖A = ‖e0 − ẽi‖A = min
ẽ∈Ki

‖e0 − ẽ‖A .

By definition of the Krylov subspace, and since ẽi ∈ Ki, we can write

ẽi = P̃ (A)r0 = P̃ (A)Ae0

with P̃ ∈ Ki−1[t] and thus

ei = e0 − ẽi = e0 − P̃ (A)Ae0 = P (A)e0 where P = 1− tP̃ . (2.1)
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A polynomial P can be written in the form (2.1) if and only if P ∈ Ki[t] and P (0) = 1.
Hence

‖ei‖A = min
P∈Ki[t]
P (0)=1

‖P (A)e0‖A . (2.2)

Recall that the matrix A is self-adjoint positive definite so that there exists a uni-
tary matrix Q ∈ Kn×n and a corresponding diagonal matrix Λ = diag(λ1, . . . , λn) ∈
Kn×n with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 yielding the eigen-decomposition A = QΛQ∗. The
columns q1, . . . , qn ∈ Kn of Q form an orthonormal basis of eigenvectors corresponding
to the eigenvalues λ1, . . . , λn.

Writing the initial error e0 as e0 = Qξ =
∑n
j=1 ξjqj and using P (A)qj = P (λj)qj

equation (2.2) yields

‖ei‖2A = min
P∈Ki[t]
P (0)=1

‖
n∑
j=1

ξjP (A)e0‖2A = min
P∈Ki[t]
P (0)=1

n∑
j=1

|ξj |2|P (λj)|2λi . (2.3)

Thus the cg method implicitly constructs for each iterate xi a polynomial Pi of degree
at most i which interpolates the point (0, 1) and approximates the points (λi, 0)
by minimizing the sum in (2.3) where the values Pi(λj) are weighted by |ξj |2λj .
Clearly, the minimum in (2.3) will be smaller, and the convergence of the cg iteration
will thus be faster, if the weights are small, and—given the constraint Pi(0) = 1—
particularly so if the weights corresponding to small eigenvalues are very small. With
this interpretation of cg convergence, deflation can be regarded as a technique to make
the weights small by making |ξj | small for large j, i.e., small eigenvalues.

Assume that we are given a subspace S ⊂ Kn which contains (approximated)
eigenvectors corresponding to the smallest eigenvalues of A. Since deflation requires
a first preparatory step before starting the cg iteration, we from now on denote the
initial guess by x−1 with initial error e−1 = x − x−1. We want to compute a new
vector x0 with error ẽ0 such that the part of e0 belonging to S is “removed”. Setting
x0 = x−1 + ẽ0 and e0 = e−1 − ẽ0 we thus want ẽ0 to be a projection of e−1 onto S.
Taking the A-orthogonal projection, i.e., ẽ0 = πA(S)e−1 is particularly adequate: Let
the columns of V ∈ Kn×m be an arbitrary basis of S, i.e., range(V ) = S. Then

πA(S) = V (V ∗AV )−1V ∗A .

Since

ẽ0 = πA(S)e−1 = V (V ∗AV )−1V ∗Ae−1 = V (V ∗AV )−1V ∗r−1

we can compute ẽ0 and thus x0 without explicit knowledge of e−1. Moreover, because
of

‖e−1 − ẽ0‖2A = ‖e0‖2A =

n∑
i=1

|ξi|2λi

the choice ẽ0 = πA(S)e−1 precisely minimizes the sum of all weights in (2.3).
Computationally, since

e−1 = πA(S)e−1 + (I − πA(S))e−1 = ẽ0 + e0
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and x = x−1 + e−1, we obtain the solution x of (1.1) once we have computed (I −
πA(S))e−1, the A-orthogonal projection of e−1 onto S⊥A . Modifying the cg method
to restrict the search directions to the subspace S⊥A and thus minimizing the A-norm
of the error over the subspace S⊥A yields the deflated cg algorithm from [18] which
computes the desired projection, described in Algorithm 1.

Algorithm 1 Deflated Conjugate Gradients Method

choose x−1 ∈ Kn
r−1 ← b−Ax−1

ẽ0 ← V (V ∗AV )−1V ∗r−1

x0 ← x−1 + ẽ0

r0 ← b−Ax0

p0 ← r0 − V (V ∗AV )−1V ∗Ar0

for i← 0, 1, . . . , n− 1 do

αi ← 〈ri,ri〉
〈Api,pi〉

xi+1 ← xi + αipi
ri+1 ← ri − αiApi
βi ← 〈ri+1,ri+1〉

〈ri,ri〉
pi+1 ← ri+1 − V (V ∗AV )−1V ∗Ari+1 + βipi

end for

There is another, mathematically equivalent, formulation of the method which
lends itself more easily for an analysis. To derive the method, we summarize some
important properties in the following lemma.

Lemma 2.1. Consider the singular linear system

A(I − πA(S))x̂ = (I − πA(S))∗b , (2.4)

which we call the deflated (linear) system. We have the following properties:
1. The following equalities holds

A(I − πA(V )) = (I − πA(V ))∗A = (I − πA(V ))∗A(I − πA(V )) . (2.5)

2. The matrix A(I − πA(S)) is self-adjoint and positive semi-definite.
3. The system is consistent, i.e., the right hand side (I − πA(S))∗b is in the

range of A(I−πA(S)). This implies that the system has at least one solution.
4. If x̂ is a solution of (2.4) then

(I − πA(S))x̂ = (I − πA(S))x ,

where x is the solution of the linear system Ax = b.
Proof. Let the columns of the matrix V ∈ Kn×m form an arbitrary basis of S.

Using the relation

A(I − πA(V )) = A−AV (V ∗AV )−1V ∗A = (I − πA(V ))∗A

and the fact that (I − πA(V )) is a projection yields

A(I − πA(V )) = A(I − πA(V ))(I − πA(V )) = (I − πA(V ))∗A(I − πA(V )) .

This proves the first assertion and also shows that A(I − πA(V )) is self-adjoint. Due
to (2.5) we have

〈A(I − πA(V ))x, x〉 = 〈(I − πA(V ))x, (I − πA(V ))x〉A = ‖(I − πA(V ))x‖2A ≥ 0
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which proves the second assertion.
Again due to (2.5) and the fact that A has full rank we have

range
[
A(I − πA(S))

]
= range

[
(I − πA(S))∗A

]
= range

[
(I − πA(S))∗

]
.

Hence the system is consistent which proves the third assertion. Using (2.4) and (2.5)
yields

A(I − πA(S))x̂ = (I − πA(S))∗b = (I − πA(S))∗Ax = A(I − πA(S))x .

Multiplying with A−1 from the left we get

(I − πA(S))x̂ = (I − πA(S))x .

Since

πA(S)x = V (V ∗AV )−1V ∗Ax = V (V ∗AV )−1V ∗b

we can compute πA(S)x without explicit knowledge of x. Thus due to Lemma 2.1
if we have a solution x̂ for the deflated system (2.4) we obtain the solution for the
original system by

x = (I − πA(S))x+ πA(S)x

= (I − πA(S))x̂+ V (V ∗AV )−1V ∗b .

We now want to solve the deflated system (2.4). Since the matrix A is positive semi-
definite we can apply the cg method. The lack of regularity is no impediment to the
standard cg iteration (cf. [12]) as long as (2.4) is consistent, which was shown to be
the case in Lemma 2.1.

Assume that x̂0, x̂1, . . . are the iterates and r̂0, r̂1, . . . are the corresponding resid-
uals of the cg method applied to the deflated linear system (2.4). If Algorithm 1 is
initialized with x0 = x̂0 we have the relation (see [10])

xi = (I − πA(S))x̂i + V (V ∗AV )−1V ∗b and ri = r̂i . (2.6)

Thus Algorithm 1 is mathematically equivalent to solving (2.4) via the cg method
and then computing the approximation for the solution by (2.6).

Hence, for the purpose of an analysis we can think of deflated cg as applying the
standard cg algorithm with the matrix A(I − πA(S)) to solve (2.4). In a practical
implementation Algorithm 1 is to be preferred, since numerically the action of (I −
πA(S)) is not computed exactly and we are thus facing an inconsistent system which
may introduce instabilities [12]. There are various other formulations of the deflated
cg method that are mathematically equivalent (for an overview see [10]) for which our
analysis will hold as well.

Let µ1 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of the self-adjoint and positive semi-
definite matrix A(I − πA(S)). Let ` ∈ N denote the largest index such that µ` 6= 0.
The errors of the cg iterates then satisfy

‖ei‖A ≤ 2

(√
κeff − 1
√
κeff + 1

)i
‖e0‖A for i = 0, 1, 2, . . . ,

where κeff = µ1

µ`
, see [9, 18]. We call κeff the effective condition number of the deflated

matrix A(I − πA(S)) to distinguish it from the condition number κ of the original
matrix A. Thus in order to analyze the convergence of deflated cg it suffices to
estimate the largest and smallest non-zero eigenvalue of the matrix A(I − πA(S)).
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3. Convergence Analysis. In this section we give an estimate for the speed of
convergence of the deflated cg method by estimating the effective condition number
κeff of the matrix A(I − πA(S)).

3.1. Eigenvalue Bounds. In order to estimate the speed of convergence of the
deflated cg method we need estimates for the largest and smallest non-zero eigenvalue
of A(I − πA(S)). The largest eigenvalue of the matrix A(I − πA(S)) is the maximum
of the Rayleigh quotient (cf. [23]), i.e.,

µ1 = max
x∈Kn\{0}

〈A(I − πA(S))x, x〉
〈x, x〉

.

In addition, from the fact that AπA(S) = AV (V ∗AV )−1V ∗A is positive semi-definite
and thus

〈A(I − πA(S))x, x〉 = 〈Ax, x〉 − 〈AπA(S)x, x〉 ≤ 〈Ax, x〉 ,

we obtain

µ1 ≤ max
x∈Kn\{0}

〈Ax, x〉
〈x, x〉

= λ1 = ‖A‖ . (3.1)

This gives a simple upper bound for the largest eigenvalue of A(I − πA(S)).
The following auxiliary result will be used to derive a lower bound for the smallest

non-zero eigenvalue. It can be regarded as a special case of the min-max (or Courant-
Fischer-Weyl) theorem, cf. [23].

Lemma 3.1. Let M ∈ Kn×n be self-adjoint, M = UDU∗ with U ∈ Kn×n unitary
and D = diag(µ1, . . . , µn) with µ1 ≥ . . . ≥ µn ≥ 0. Then for k = 1, . . . , n

µk = min
x∈Kn\{0}

x⊥span{uk+1,...,un}

〈Mx, x〉
〈x, x〉

.

Proof. Let uj denote the columns of U which form an orthonormal basis of

eigenvectors of M . Let x ⊥ span{uk+1, . . . , un}. Then x =
∑k
j=1 ξjuj and we have

〈Mx, x〉 = 〈UDU∗x, x〉 = 〈DU∗x, U∗x〉 = 〈Dξ, ξ〉

with ξ = (ξ1, . . . , ξk, 0, . . . , 0)T . Thus

〈Dξ, ξ〉 =

k∑
j=1

µj |ξj |2

≥ µk
k∑
j=1

|ξj |2 = µk 〈ξ, ξ〉 ,

which yields

〈Mx, x〉 ≥ µk 〈ξ, ξ〉 = µk 〈U∗Uξ, ξ〉 = µk 〈Uξ, Uξ〉 = µk 〈x, x〉 .

The assertion now follows since

〈Muk, uk〉 = 〈µkuk, uk〉 = µk 〈uk, uk〉
7



and uk ⊥ span{uk+1, . . . , un}.
Lemma 3.1 characterizes the smallest non-zero eigenvalue µ` of A(I − πA(S))

using span{u`+1, . . . , un}, the kernel of A(I − πA(S)). Since the matrix A has full
rank, the kernel of A(I − πA(S)) is the kernel of (I − πA(S)) which is the deflation
subspace S. Thus

µ` = min
x∈S⊥\{0}

〈A(I − πA(S))x, x〉
〈x, x〉

,

and due to (2.5)

µ` = min
x∈S⊥\{0}

〈(I − πA(S))∗A(I − πA(S))x, x〉
〈x, x〉

= min
x∈S⊥\{0}

〈A(I − πA(S))x, (I − πA(S))x〉
〈x, x〉

= min
x∈S⊥\{0}

‖(I − πA(S))x‖2A
‖x‖22

. (3.2)

We are now ready to employ techniques developed for the analysis of algebraic
multigrid methods to further advance our analysis.

3.2. Weak Approximation Property. In order to estimate the smallest non-
zero eigenvalue µ` of A(I−πA(S)) we introduce some basic ideas of algebraic multigrid
convergence analysis.

Algebraic multigrid methods [5, 16, 20] are based on the assumption that the error
of a given iterate can be split into highly oscillatory and slowly varying components
of the error. The so-called smoother reduces the highly oscillatory components while
the coarse grid correction reduces the slowly varying ones. In many applications
the highly oscillatory components are spanned by the eigenvectors corresponding to
large eigenvalues while the slowly varying components are spanned by the eigenvalues
corresponding to the small eigenvalues of the matrix. In order to quantify those
properties, classical algebraic multigrid theory (cf. [2]) measures how well the coarse
grid correction, defined by the prolongation operator, is able to reduce the slowly
varying error components. In order to measure the quality of interpolation operators
we define the weak approximation property as follows.

Definition 3.2. A subspace S ⊆ Kn fulfills the weak approximation property
with constant K ≥ 0 if

dist(S, x)2
2 ≤

K

‖A‖
‖x‖2A for all x ∈ Kn . (3.3)

If the diagonal entries aii of A fulfill aii = 1 then Definition 3.2 coincides with the
definition from [2, 3, 16, 20] for a weak approximation property. It is called “weak”
because it is only sufficient for a two-level convergence theory [16, Section 4.5] instead

of multi-level one. Unit diagonal entries may be achieved by using Ã = D−
1
2AD−

1
2

instead of A which would be reflected in a change of the constant K.
Assume that V ∈ Kn×m is a multigrid prolongation operator. Then often a

restriction operator R ∈ Km×n and a constant C ∈ R can be determined, such that

‖x− V Rx‖22 ≤ C ‖x‖2A .
8



is derived where C is independent of the size of the matrix (cf. [2, 3, 16, 20]). The
following lemma shows that this implies that the weak approximation property is
fulfilled for K = C ‖A‖.

Lemma 3.3. Let V ∈ Kn×m, R ∈ Km×n and assume that

‖x− V Rx‖22 ≤ C ‖x‖2A for all x ∈ Kn

for a constant C ≥ 0 holds. Then the subspace S = rangeV fulfills the weak approxi-
mation property with constant K = C ‖A‖.

Proof. We have for an arbitrary x ∈ Kn

dist(S, x)2
2 = min

y∈S
‖x− y‖22 = min

z∈Km
‖x− V z‖22

≤ ‖x− V Rx‖22 ≤ C ‖x‖2A =
K

‖A‖
‖x‖2A .

Strictly speaking, any subspace S fulfills a weak approximation property, just by
choosing K large enough, since

dist(S, x)2
2 ≤ ‖x‖22 ≤ λn‖x‖2A for all x ∈ Kn .

The interest of Definition 3.2 is in cases where the subspace S is such that that
K is small and in situations where K is constant for a whole family of matrices
A and subspaces S, the family of matrices A representing, e.g., different levels of
discretization of a continuous operator.

The following theorem now gives an estimate for the smallest eigenvalue of the
matrix A(I−πA(S)) in terms of the constant K of the weak approximation property.

Theorem 3.4. Let S ⊆ Kn be a subspace such that the weak approximation
property (3.3) is fulfilled with constant K. Then the effective condition number κeff =
µ1

µ`
of the matrix A(I − πA(S)) satisfies

κeff ≤
K

ξ
where ξ := min

x∈S⊥\{0}

‖x− πA(S)x‖2A
‖x‖2A

∈ (0, 1] . (3.4)

Proof. Denote by π(S) the orthogonal projection onto S with respect to the
2-inner product. Then

‖x− π(S)x‖22 = min
y∈S
‖x− y‖22 = dist(S, x)2

2 . (3.5)

For x ∈ S⊥ we have π(S)x = 0 and thus due to (3.5)

‖x‖22 = ‖x− π(S))x‖22 = dist(S, x)2
2

which, using (3.3) gives

‖x‖22 ≤
K

‖A‖
‖x‖2A for x ∈ S⊥ .

By applying this estimate to the denominator in (3.2) we obtain

µ` ≥
‖A‖
K

min
x∈S⊥\{0}

‖x− πA(S)x‖2A
‖x‖2A

=
‖A‖
K

ξ . (3.6)
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Hence, by (3.1) and (3.6),

κeff =
µ1

µ`
≤ ‖A‖‖A‖

K ξ
=
K

ξ
.

It remains to show that ξ ∈ (0, 1]. Since πA(S)x = x if and only if x ∈ S, we have
‖x − πA(S)x‖2A > 0 for x ∈ S \ {0}. Thus ξ > 0. The A-orthogonal projection
minimizes the distance in the A-norm, i.e.,

‖x− πA(S)x‖2A = min
y∈S
‖x− y‖2A .

Hence ‖x− πA(S)x‖2A ≤ ‖x‖2A, which proves ξ ≤ 1.
Now that we have derived a connection between the effective condition number

and the weak approximation property used in the analysis of algebraic multigrid
methods, it remains to interpret the quantity ξ which is what we do in the next
section.

3.3. Strengthened Cauchy-Schwarz Inequality. We first introduce the con-
cept of abstract angles between subspaces which are defined by the strengthened
Cauchy-Schwarz inequality.

For two subspaces H1, H2 ⊆ Kn with H1 ∩ H2 = {0} there exists a constant
γ ∈ [0, 1) such that

| 〈u, v〉 | ≤ γ
√
〈u, u〉

√
〈v, v〉 ∀u ∈ H1, ∀v ∈ H2 (3.7)

[7, Theorem 2.1]. Equation (3.7) is called strengthened Cauchy-Schwarz inequality
and γ can be interpreted as the abstract angle between H1 and H2.

Inequality (3.7) implies that for u ∈ H1, v ∈ H2 we have

| 〈u, v〉 | ≤ γ 〈u, u〉
1
2 〈v, v〉

1
2 ≤ γ

2 [〈u, u〉+ 〈v, v〉] ,

since for any two numbers a, b we have |ab| ≤ 1
2 (|a|2 + |b|2). Hence

(1− γ) [〈u, u〉+ 〈v, v〉] ≤ [〈u, u〉+ 〈v, v〉]− γ [〈u, u〉+ 〈v, v〉]
≤ [〈u, u〉+ 〈v, v〉]− 2 | 〈u, v〉 |
≤ [〈u, u〉+ 〈v, v〉]− 2 Re 〈u, v〉
= 〈u+ v, u+ v〉 .

Taking the infimum over all v ∈ H2 yields

(1− γ)‖u‖2 ≤ inf
v∈H2

‖u+ v‖2 ∀u ∈ H1 . (3.8)

We now apply this general result in the case where H1 = S⊥, H2 = S and 〈·, ·〉 is
the A-inner product, like in [1] and [8]. The A-orthogonal projection πA(S)u yields
the vector in S which is closest to u in the A-norm. Thus the infimum in (3.8) is
obtained for v = −πA(S)u and therefore

(1− γ)‖u‖2A ≤ ‖u− πA(S)u‖2A ∀u ∈ S⊥ .

This yields a bound for ξ as

ξ = min
x∈S⊥\{0}

‖x− πA(S)x‖2A
‖x‖2A

≥ (1− γ) . (3.9)
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Using (3.9) we can show the following lemma which states that we can interpret ξ as
a measure of approximate A-invariance of the subspace S, i.e., a small value of γ, and
thus large value for ξ, indicates that AS is close to S.

Lemma 3.5. If S is A-invariant, i.e., AS = S, then γ = 0 and thus ξ = 1.
Proof. Since the subspace S is A-invariant, we have Av ∈ S and thus

〈u, v〉A = 〈u,Av〉 = 0 ∀u ∈ S⊥, ∀v ∈ S.

This gives γ = 0 and thus ξ = 1.
We can now formulate our main result.
Theorem 3.6. Let S ⊆ Kn, S = range(V ), V ∈ Kn×m and let V fulfill the weak

approximation property (3.3) with constant K. Let S ⊆ Kn be the subspace spanned
by the columns of V . Furthermore let γ ∈ [0, 1) be the smallest constant such that

| 〈u, v〉A | ≤ γ 〈u, u〉
1
2

A 〈v, v〉
1
2

A ∀u ∈ S⊥, ∀v ∈ S . (3.10)

Then the effective condition number κeff = µ1

µ`
of the matrix A(I − πA(V )) satisfies

κeff ≤
K

(1− γ)
. (3.11)

Proof. Equation (3.11) follows from (3.4) and (3.9).
This theorem gives a bound on the effective condition number of the deflated

matrix A(I − πA(S)) which depends solely on the weak approximation constant K
and the measure ξ on the A-invariance of the deflation subspace S.

4. Applications. In this section we apply our theory developed so far to the
classical case where the deflation subspace S is spanned by the eigenvectors corre-
sponding to the (n− k) smallest eigenvalues. In addition we consider the case where
S is the range of a prolongation operator from the the classical algebraic multigrid
method described in [5, 16, 20].

4.1. The Case of Exact Eigenvalue Deflation. Let S be spanned by the
eigenvectors corresponding to the (n−k) smallest eigenvalues, e.g., V = [qk+1| . . . |qn],
where k ∈ N. It has been shown for this case (cf. [9, Section 1]) that κeff = λ1

λk
. To

demonstrate the quality of the bound K
(1−γ) from Theorem 3.6 we now show that in

this case we actually have K
(1−γ) = κeff , i.e., the bound is best possible.

We first consider ξ. Since the subspace S is A-invariant, we have ξ = 1 due to
Lemma 3.5.

We now compute the smallest value for K, such that the weak approximation
property (3.3) is fulfilled. If π(S) is the orthogonal projection onto S (in the 2-inner
product) then

‖x− π(S)x‖22 = min
y∈S
‖x− y‖22 = dist(S, x)2

2 .

We expand x in terms of the orthonormal eigenvectors qi of A,

x =

n∑
i=1

ξiqi .
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Then the orthogonal projection π(V )x of x onto S fulfills π(V )x =
∑n
i=k+1 ξiqi and

thus

dist(S, x)2
2 = ‖x− π(V )x‖22 = ‖

k∑
i=1

ξiqi +

n∑
i=k+1

(ξi − ξi)qi‖22 =

k∑
i=1

|ξ|2 .

This yields

‖x‖2A =

n∑
i=1

|ξi|2λi ≥
k∑
i=1

|ξi|2λi ≥ λk
k∑
i=1

|ξi|2 = λk dist(S, x)2
2 .

Hence the weak approximation property (3.3) holds with K = ‖A‖
λk

= λ1

λk
.

Putting things together we see that the bound from Theorem 3.6 is K
(1−γ) = λ1

λk
,

i.e., the bound is equal to the effective condition number κeff and thus best possible.

4.2. Deflation Subspaces for M-Matrices. The classical algebraic multigrid
method [5, 16, 20] was specifically designed for the case that A ∈ Rn×n is an M -
matrix, i.e., A is symmetric positive definite and aij ≤ 0 for i 6= j. In this section we
show that we can use the prolongation operators constructed in the classical algebraic
multigrid method as the operator V which spans the deflation subspace S and derive a
priori bounds on the effective condition number following the analysis done in [16, 20].

The construction of prolongation operators is done by inspecting the graph G(A)
of a matrix A ∈ Kn×n which is given by

G(A) = (W,E) where W = {1, 2, . . . , n}
E = {(i, j) ∈W ×W : aij 6= 0, i 6= j} .

The neighborhood of a node i ∈W is given by

Ni := {j ∈W : (i, j) ∈ E} .

To construct the prolongation operator, or equivalently the deflation subspaces, we
split the variables W into coarse and fine variables C and F , such that W = C ∪̇F
and Ni ∩ C 6= ∅ for i ∈ F . The coarse variables have a direct representation on the
coarse grid, or equivalently the deflation subspace, while the fine variables interpolate
from the coarse ones. For simplicity of notation assume that the variables in C have
a smaller index than those in F , i.e., C = {1, 2, . . . ,m}, F = {m + 1,m + 2, . . . , n}.
For every fine variable i ∈ F choose a set of variables Pi ⊆ Ni ∩ C. The value for
the variable i is then interpolated from the variables in Pi. Defining the interpolation
weights

wik = αi
−aik
aii

with αi =

∑
k∈Ni

aik∑
k∈Pi

aik
for i ∈ F

yields the prolongation operator V ∈ Rn×m by

(
V ec

)
i

=

{
eci for i ∈ C∑
k∈Pi

wike
c
k for i ∈ F

. (4.1)

Under the assumption that the C/F-splitting is reasonably well chosen the classi-
cal multigrid theory yields an estimate for the constant K of the weak approximation
property (3.3).
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Theorem 4.1. Let A ∈ Rn×n be a symmetric weakly diagonally dominant M -
matrix, i.e., aij ≤ 0 for i 6= j and

∑
j aij ≥ 0 for all i. If for fixed τ ≥ 1 a

C/F-splitting exists such that for each i ∈ F there is a Pi ∈ C ∩Ni with∑
k∈Pi

|aik| ≥
1

τ

∑
j∈Ni

|aij | for i ∈ F (4.2)

then there exists a matrix R ∈ Rm×n such that the operator V from (4.1) fulfills

‖e− V Re‖2D ≤ τ‖e‖2A

where D = diagA is the diagonal matrix containing the diagonal entries aii of A.
Proof. Define the restriction R ∈ Rm×n as

R =

[
Im
0

]
where Im ∈ Rm×m is the identity matrix. Thus R maps a coarse variables to itself
and a fine variables to zero. Then the result follows from [20, Theorem A.4.3].

Corollary 4.2. Under the same assumptions as in Theorem 4.1 we have that
V fulfills the weak approximation property (3.3) with

K =
‖A‖

mini aii
τ .

Proof. Directly follows from Lemma 3.3, the fact that (mini aii) ‖x‖22 ≤ ‖x‖2D for
x ∈ Rn and Theorem 4.1.

Example 4.3. Let N ∈ N be odd. Consider the discrete 9-point Laplacian, i.e.,
the block tridiagonal matrix

A =


B C

C B
. . .

. . .
. . . C
C B

 ∈ RN
2×N2

with B,C ∈ RN×N ,

B =


8 −1

−1 8
. . .

. . .
. . . −1
−1 8

 and C =


−1 −1

−1 −1
. . .

. . .
. . . −1
−1 −1


The graph G(A) of A is a regular N × N grid with added diagonal connections, see
figure 4.1. We set C as the variables in odd rows and columns (�), F as the remaining
variables (�, • and ?).

The requirement (4.2) is equivalent to τ ≥ αi for i ∈ F . A straight forward
computation yields αi = 2 for i ∈ •, αi = 4 for i ∈ � and αi = 5

2 for i ∈ ?. Hence
τ = 4 fulfills (4.2). Due to Gershgorin’s theorem [23] the eigenvalues λi of A fulfill
λi ∈ [0, 16] and thus ‖A‖ ≤ 16 and due to (4.2) the weak approximation property is
fulfilled for K = 8.

13



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

•

•

•

•

•

•

•

•

•

?

?

?

?

?

?

?

?

?

?

?

?

Figure 4.1. The graph of A split into C and F .

p Iterations Residual Error
4 8 5.64429 · 10−7 1.53486 · 10−7

5 8 8.4304 · 10−7 4.64197 · 10−7

6 9 5.27683 · 10−7 1.63928 · 10−6

7 9 6.11646 · 10−7 5.74174 · 10−6

8 9 6.36346 · 10−7 2.56345 · 10−5

9 9 6.57814 · 10−7 6.60374 · 10−5

Table 5.1
Number of iterations where N = 2p − 1.

5. Numerical Experiments. To carry out our numerical experiments we con-
sider the matrix V from (4.1) with A, C and F from example 4.3. Thus the deflation
subspace S is rangeV .

5.1. Independence of the Grid Size. In Example 4.3 we have seen that the
constant K is independent of the grid size N . Thus we expect the method to converge
in a constant number of iterations if the abstract angle γ is independent of N . Hence
we measure the number of iterations for different sizes N = 2p−1 of the linear system.

We choose a random right hand side b such that the solution x fulfills ‖x‖ = 1.
Then we run the deflated cg method [18] until the residual ri of the ith iterate satisfies
‖ri‖ ≤ 10−6. The number of iterations is listed in table 5.1 where we observe that
the number of iterations stays constant.

5.2. Numerical Computation of the Constants. In this subsection we want
to verify our theory by numerically computing the condition numbers κ, κeff the
constants K and γ and the estimate for the effective condition number K

1−γ for a
small linear system. This computation is only possible for small linear systems since
it involves the computation of eigenvectors of dense matrices which are of the same
size as the linear system.

We are interested in the smallest K such that the weak approximation property
with constant K holds. For small linear systems such K can be computed numerically
as follows: From Definition 3.2 it follows that K is given by

K = ‖A‖ sup
x∈Kn\{0}

dist(S, x)2
2

‖x‖2A
.

Let the columns of W ∈ Kn×m form an orthonormal basis of S⊥. Then the orthogonal
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A A(I − πA(V ))
λ1 0.0577 6.0708 µ1

λn 11.9616 11.9586 µ`
κ 207.3403 1.9698 κeff

1.9703 K
0.3369 γ
2.9715 K

1−γ
Table 5.2

Condition number of the linear systems for N = 25 − 1.

projection (I − π(S)) onto S⊥ fulfills (I − π(S)) = WW ∗ and thus due to (3.5)

K = ‖A‖ sup
x∈Kn\{0}

‖(I − π(S))x‖22
‖x‖2A

= ‖A‖ sup
x∈Kn\{0}

‖WW ∗x‖22
‖x‖2A

. (5.1)

Using the eigendecomposition A = QΛQ∗ yields

‖x‖2A = 〈Ax, x〉 = 〈QΛQ∗x, x〉 =
〈

Λ
1
2Q∗x,Λ

1
2Q∗x

〉
= ‖Λ 1

2Q∗x‖22 . (5.2)

Since we are interested in the supremum over all vectors in Kn \{0} we can substitute

x by QΛ−
1
2 z in (5.1). This yields due to (5.2) that

K = ‖A‖ sup
z∈Kn\{0}

‖WW ∗QΛ−
1
2 z‖22

‖z‖22
= ‖A‖‖WW ∗QΛ−

1
2 ‖2 .

The matrix norms on the right hand side can numerically be computed via the sin-
gular value decomposition. The constant γ from the strengthened Cauchy-Schwarz
inequality is computed by the method from [13] which is also based on the singular
value decomposition.

The results for N = 25 − 1 are given in Table 5.2. We see that K
1−γ is a good

estimate for the condition number κeff of the deflated matrix in this example.

6. Influence of the Accuracy of Computations. The deflated cg method
involves the solution of the “inner” linear system

(V ∗AV )zi+1 = V ∗Ari+1 (6.1)

in every step of the iteration. If the dimension m of the deflated subspace, i.e., the
number of columns of V is small, we can solve (6.1) exactly up to numerical errors,
e.g., by using a factorization of V ∗AV . Often, however, m will be large (we had
m = n/4 in the numerical experiments of Section 5), so that solving (6.1) will be
done using an “inner” iteration. Its accuracy will be decisive for the convergence
process of the overall iteration. This can be motivated explained as follows.

Recall that we can think of deflated cg as applying the cg method to the linear
system

A(I − V (V ∗AV )−1V ∗A︸ ︷︷ ︸
=(I−πA(S))

)x̂ = (I −AV (V ∗AV )−1V ∗)b .

In here, the kernel of (I − πA(S)) is S, the column range of V . Let us now assume
that we are given an approximation M ∈ Km×m for the matrix (V ∗AV )−1. If we
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then replace (V ∗AV )−1 by M in I − V (V ∗AV )−1V ∗A, the operator is usually not
a projection anymore, and S is not its kernel. That is, in general the matrix of the
approximately deflated system

A(I − VMV ∗A)

is non-singular. The approximately deflated system will thus loose the property of
having a considerable number of zero eigenvalues, an essential ingredient to estimate
the effective condition number κeff in Theorem 3.6. Even worse, the eigenvalues
that would be mapped to zero by the exact A-orthogonal projection now remain as
small non-zero eigenvalues making the condition number of the approximately deflated
system potentially larger than that of the original system.

Initially we split the error into e−1 = e0 + ẽ0, where e0 ∈ S⊥A and ẽ0 ∈ S. If this
is done inexactly, e0 will not be in S⊥A , but its A-orthogonal projection on S will be
small, i.e., we have

e0 = eex
0 + eerr

0 with eex
0 ∈ S⊥A , eerr

0 ∈ S and ‖eerr
0 ‖ ≤ ρ ,

for some tolerance τ ≥ 0. The eigenvectors corresponding to zero eigenvalues of the
exactly deflated matrix A(I − πA(S)) span the subspace S. Thus, in the case where
we work with the matrix A(I − VMV ∗A), its eigenvectors u` corresponding to very
small eigenvalues µ` will be close to S, i.e.,

u` = uex
` + uerr

` with uex
` ∈ S, uerr

` ∈ S⊥A and ‖uerr
` ‖ ≤ ρ .

Hence those components in the expansion of e0 in the basis of eigenvectors of A(I −
VMV ∗A) corresponding to small eigenvalues are very small. Together with (2.3) and
the subsequent discussion this explains that the cg method does not “see” these error
components as long as they are substantially smaller than the other error components,
resulting in an initial phase of fast convergence. However, when the norm of the
current error approaches ρ, the error components belonging to the small eigenvalues
will not be negligible anymore, and the cg iteration slows down dramatically.

The question remains how to determine a suitable stopping criterion for the inner
iteration based on the stopping criterion of the outer iteration

‖ri‖ ≤ τ ‖b‖ =: ε (6.2)

for some 0 < τ � 1. More precisely, how do we have to choose τ c for the inner
stopping criterion

‖ri‖ ≤ τ ‖b‖ =: ε ,

to achieve (6.2)? A first strategy may be to set τ c = ε but it turns out that we
can relax this requirement. Since, our problem is equivalent to the question, how
accurately we have to compute the matrix vector product A(I − πA(S))p for p ∈ Kn
in the outer cg iteration, we can use the results from [19, 21]. There it is suggested
to use

τ c = max

{
ε

‖ri‖
, ε

}
· c with 0 < c ≤ 1

in the ith outer iteration. That is the relative tolerance for the inner iteration can be
relaxed while the outer iteration advances.
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7. Conclusions. In this paper we derived a convergence estimate for the de-
flated cg method based on algebraic multigrid theory. We have shown that our theory
recovers the exact result for the convergence estimate for eigenvector deflation. By
combining the deflation ansatz with the ideas of algebraic multigrid we not only gave
a proof of convergence for deflation subspaces spanned by multigrid prolongation
operators, but also pave the way for the theoretical analysis of more general defla-
tion subspaces that are not necessarily A-invariant and do not need to be spanned
by (approximate) eigenvectors. In this manner all the tools developed for the con-
struction of efficient (algebraic) multigrid interpolation operators can be facilitated to
construct improved deflation subspaces. Finally, the developed theory suggests that
using the multigrid coarse-grid correction in a deflated conjugate gradient method
yields a scalable—in the sense of constant number of iterations when increasing the
resolution of the discretization—iterative method without the need of constructing a
suitable smoothing iteration. This might be attractive in situations where such an
iteration is hard to come by or not known all together.
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