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VERIFIED STABILITY ANALYSIS USING THE LYAPUNOV
MATRIX EQUATION

ANDREAS FROMMER∗ AND BEHNAM HASHEMI†

Abstract. The Lyapunov matrix equation AX + XA∗ = C arises in many applications, par-
ticularly in the context of stability of matrices or solutions of ordinary differential equations. In
this paper we present a method, based on interval arithmetic, which computes with mathematical
rigor an interval matrix containing the exact solution of the Lyapunov equation. We work out two
options which can be used to verify, again with mathematical certainty, that the exact solution of
the equation is positive definite. This allows to prove stability of the (non-Hermitian) matrix A if we
chose C as a negative definite Hermitian matrix. Our algorithm has computational cost comparable
to that of a state-of-the art algorithm for computing a floating point approximation of the solution
because we can cast almost all operations as matrix-matrix operations for which interval arithmetic
can be implemented very efficiently.

Keywords: Lyapunov stability analysis, Lyapunov matrix equation, interval arithmetic, Brouwer’s
fixed point theorem, Krawczyk’s method, verified computation

1. Introduction. Let A and C be two given (real or) complex matrices of size
n× n. The equation

AX +XA∗ = C,(1.1)

is called the Lyapunov matrix equation. It is well-known that this equation has a
unique solution if and only if λi + λj 6= 0 for all i and j where λ1, λ2, · · · , λn are the
eigenvalues of A, see [20], e.g. The Lyapunov matrix equation is of interest in control
and system theory especially in controllability and observability Grammians, balanc-
ing transformation, stability robustness to parameter variations, robust stability and
performance study of large scale systems, reduced-order modeling and control filtering
with singular measurement noise [13]. Of particular interest is the case in which the
right-hand side matrix C is Hermitian [4, 16, 40] for which, if unique, the solution X
is also Hermitian.

The matrix A is called stable (also negative stable or Hurwitz stable in the liter-
ature), if all its eigenvalues lie in the open left half plane. Negative (positive) definite
matrices are a special case of stable (positive stable) matrices [20]. An important tool
for checking stability of a given matrix A is to solve the Lyapunov matrix equation
(1.1) with C chosen to be a negative definite matrix and then check X for positive
definiteness, because the following theorem holds.

Theorem 1.1. A matrix A ∈ Cn×n is stable if and only if there exists a positive
definite solution to the Lyapunov equation (1.1) where C is Hermitian negative defi-
nite.
A proof of this basic theorem can be found in [11, Thm 4.4] or [20, Thm 2.2.1], e.g.;
see also [25, Thm 13.24]. Checking the stability of a matrix based on Theorem 1.1
has the advantage that the question of stability for an arbitrary matrix A ∈ Cn×n is
transferred to the simpler question of checking positive definiteness for a Hermitian
matrix X [20].
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To further highlight the importance of the concept of matrix stability consider a
nonlinear system of n first-order differential equations

ẋ = f(x),(1.2)

with x ∈ Rn and f : Rn → Rn. A vector x̂ is called an equilibrium point of (1.2)
if f(x̂) = 0, i.e., the constant function x(t) = x̂ is a solution. An equilibrium point
x̂ is called asymptotically stable if there is a neighborhood N of x̂, such that for
every solution of (1.2) for which x(t) ∈ N for some t, we have limt→∞ x(t) = x̂ [42,
pp. 298-299]. Physically this means that a system whose state is perturbed slightly
from an equilibrium point will return to that equilibrium point. The stability of each
equilibrium point can be analyzed by linearizing (1.2) about that point. Specifically,
for x near x̂ the solutions of (1.2) are approximated well by solutions of

ẋ =
∂f

∂x
(x̂)(x− x̂),(1.3)

which is a linear system of differential equations with coefficient matrix ∂f
∂x . It can be

shown that all solutions of (1.3) satisfy x− x̂→ 0 as t→∞ if the Jacobian ∂f
∂x at x̂

is stable (see [42, pp. 291-298] e.g.,). To put it another way: x̂ is an asymptotically
stable equilibrium point of (1.2) if all the eigenvalues of the Jacobian at x̂ have negative
real parts. We refer to [20, Ch. 2] for more details.

In this paper we consider the Lyapunov matrix equation (1.1) where C is Hermi-
tian. Our goal is to present a verified numerical algorithm, i.e. an algorithm whose
output will be exactly one of the two following statements, where the first one is
correct with mathematical certainty:

1. (1.1) has a Hermitian positive definite solution. The algorithm then also
provides correct (and tight) lower and upper bounds for each entry of the
solution X.

2. Failure, i.e. we do not obtain any information on whether X is positive definite
or not.

In the case that the algorithm outputs the first statement we have thus proved math-
ematically that A is stable. The major ingredient in our algorithm is its use of
(machine) interval arithmetic to fully control rounding of floating point operations
which—starting from a given approximate solution X̌ to the Lyapunov equation—
allows to compute enclosing intervals for all entries of the n × n solution matrix X,
i.e. a matrix X whose entries are compact intervals which have been proven to con-
tain the corresponding entries of the exact solution X by the algorithm. The aim
is to compute narrow intervals for all of these entries so that we have high chances
of success for a subsequent, final step which proves that all Hermitian matrices con-
tained in X are positive definite using an approach by Rump [38]. Our algorithm
will also be computationally efficient in theory and practice: In many cases its total
cost is of the same order as the cost for obtaining the approximate solution X̌, i.e.
O(n3). Moreover, the algorithm almost exclusively uses matrix-matrix operations, a
crucial feature for time efficient machine interval arithmetic since it avoids most of
the otherwise very costly switchings of rounding modes.

Verified stability analysis based on the Lyapunov matrix equation AX +XA∗ =
−I has already been considered in [8, Ch. 4] and [9, 31]. The details on how the
Lyapunov equation is solved are not available in [8, 9, 31], the reported numerical
examples only include 2× 2 matrices. Moreover, in these publications 2n−1 “corner”
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matrices had to be used to verify positive definiteness of interval matrices, employing
a method by Alefeld [1].

Another approach to verify stability of a matrix based on interval arithmetic
was pursued by Gross [15], see also the comments in [21]. Here, the problem of
verified stability analysis of A is firstly converted into the problem of verified Schur
stability (all eigenvalues have modulus less than 1) of an interval matrix enclosing
the Möbius transform S(A) = I + 2(A − I)−1. The so-called Cordes algorithm [7]
is then applied to the enclosure of S(A). The Cordes algorithm checks whether for
a certain exponent m ∈ N the spectral radius of an interval matrix containing the
set {Y |Y = Ãm, Ã ∈ S(A)} is less than 1, using Geršgorin’s theorem [41], e.g.
It is important to avoid the wrapping effect as much as possible which is why the
Cordes algorithm considers only exponents m which are powers of two in a recursive
manner and, in addition, uses Lohner’s idea [26] of representing parallelepipeds in a
factorized form. This approach has also been extended for an interval input matrix
A by applying a partitioning process on non-degenerate interval elements of A at the
risk of ending up with exponential complexity.

1.1. Interval arithmetic and Intlab. (Machine) interval arithmetic is the
basic mathematical tool in verified numerical computing [17]. Detailed investigations
of the mathematical properties of interval arithmetic can be found in [2, 27, 28],
e.g. Here, we only review those basic properties needed in our methods. A real
compact interval can be represented via its two endpoints or via its midpoint and
radius. Generalizing this to the set of complex numbers yields two different concepts of
complex intervals: rectangular intervals, characterized by a lower left and upper right
corner in the complex plane, and circular intervals, characterized again by midpoint
and radius.

An arithmetic operation ◦ ∈ {+,−, ∗, /} between two intervals can, in principle,
be defined in the set theoretic sense. For reasons of a practical implementation,
however, one wants these operations to be closed in the given interval format, and the
characterizing parameters should be easy to compute. So, for example, the standard
arithmetic for circular complex interval arguments a, b ∈ C, where a complex circular
interval a is given by its midpoint mid (a) and radius rad (a), a = 〈mid (a), rad (a)〉
is defined as follows:

〈mid (a), rad (a)〉 ± 〈mid (b), rad (b)〉 = 〈mid (a) + mid (b), rad (a) + rad (b)〉,
〈mid (a), rad (a)〉 ∗ 〈mid (b), rad (b)〉 =

〈mid (a)mid (b), |mid (a)|rad (b) + |mid (b)|rad (a) + rad (a)rad (b)〉,
1/〈mid (a), rad (a)〉 = 〈1/mid (a), 1/(|mid (a)| − rad (a))〉,

〈mid (a), rad (a)〉/〈mid (b), rad (b)〉 = (1/〈mid (a), rad (a)〉) ∗ 〈mid (b), rad (b)〉.

Herein, all operations, except the last, actually coincide with the set theoretic defini-
tion. For all operations ◦ we have the fundamental enclosure relation

a ◦ b ⊇ {a ◦ b : a ∈ a, b ∈ b}.(1.4)

The enclosure property (1.4) carries over to expressions: If r(x1, . . . , xn) is an arith-
metic expression in the variables x1, . . . , xn, then its interval arithmetic evaluation
r(x1, . . . ,xn), an interval, contains the range of r for x1 ∈ x1, . . . , xn ∈ xn.

When interval arithmetic is implemented on a computer, the parameters defin-
ing the result interval are computed in floating point arithmetic from the parameters
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defining the interval operands. For the enclosure property to hold for such a ma-
chine interval arithmetic it is mandatory to use directed roundings appropriately, see
[29], e.g. Intlab [37] is an open source Matlab toolbox that provides such a reli-
able machine interval arithmetic. It is freely available for non-commercial use from
http://www.ti3.tu-harburg.de/~rump/intlab/. A crucial ingredient to the effi-
ciency of Intlab is the fact that it allows to use implementations of (interval) matrix-
matrix and matrix-vector operations in the midpoint-radius format in a way that
the number of switches of the rounding mode is independent of the dimension of the
matrices/vectors. On today’s computer architectures this allows much (up to 1000
times) faster execution times than interval code in which rounding modes would be
switched anew for each operation with scalar operands [36]. A similar approach is
also available for the C++ package C-XSC, see [19, 22].

We used Intlab [37] to implement the algorithms for verifying stability of a matrix
developed in the present paper. In order to make these implementations efficient, we
will aim at formulate as much as possible of the computational work in terms of
matrix-matrix operations.

We end this introduction by explaining some of our notation. For a complex n×n
matrix N , the matrix M := NT represents the transpose of N . The notation N∗ for

the Hermitian transpose N∗ = N
T

was already used earlier, see (1.1).
For two matrices A ∈ Cm×m and B ∈ Cn×n, A ⊗ B (see [20], e.g.), denotes the

Kronecker product of A and B, so A ⊗ B is a matrix of size mn ×mn. By vec we
denote the operation of stacking the columns of a matrix in order to obtain one long
vector. So vec(A) is a vector of length m2. For d = (d1, . . . , dn)T ∈ Cn, the matrix
Diag (d) denotes the diagonal matrix in Cn×n whose i-th diagonal entry is di. We
extend this to matrices: For D ∈ Cn×m we put Diag (D) = Diag (vec(D)) ∈ Cnm×nm.
By ./ we mean the Hadamard (pointwise) division.

The following lemma will turn out to be useful. For part a) see [20], e.g.; part b)
is trivial.

Lemma 1.2. For any three (real or) complex matrices A,B, and C with compatible
sizes we have

a) vec(ABC) = (CT ⊗A)vec(B).
b) Diag (A)−1vec(B) = vec(B · /A).

The remaining part of this paper is organized as follows. In Section 2 we give the
details of our algorithms for verified stability analysis. Section 3 contains the results
of a series of numerical experiments, and some conclusions are given in Section 4.

2. Verified solution of the Laypunov equation via (block) diagonaliza-
tion. In this section we describe in detail our verification algorithm for computing
enclosures for the solution of a Lyapunov equation along with the test for positive
definiteness. The approach relies on a Krawzcyk-type method which we present first.

Krawczyk’s method is a classical method for computing an enclosure for the so-
lution of a general, unstructured, non-singular linear system

Px = c, P ∈ Cm×m, x, c,∈ Cm.(2.1)

Given an approximate solution x̌ of the linear system, computed by some floating
point linear system solver, and given an approximate inverse R of P, again computed
by some floating point algorithm, Krawczyk’s method [23] in its improved version by
Rump [35] uses machine interval arithmetic (including outward rounding) to check
whether

k := R(c− Px̌) + (Im −RP)z ⊆ int (z).(2.2)
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Here, Im denotes the identity in Cm and int (z) denotes the topological interior of
the (closed) interval vector z. If (2.2) holds we know that the solution of (2.1) is
contained in x̌+ z due to the following result from [35]; see also [12].

Theorem 2.1. [12, 35] Let z be an interval vector. If

K := {R(c− Px̌) + (In −RP)z : z ∈ z} ⊆ int (z),(2.3)

then P and R are non-singular, and the solution of (2.1) is contained in x̌+K ⊆ x̌+z.
Note that K ⊆ k due to the enclosure property of interval arithmetic. The enclosure
method we will present for the Lyapunov equations also relies on Theorem 2.1, but it
uses interval arithmetic in a different manner than in (2.2) to compute an enclosure
for K.

The Lyapunov equation (1.1) can be written using the vec and ⊗ notations in the
form of the following system of linear equations

Px = c, where P = In ⊗A+A⊗ In, x = vec(X) and c = vec(C).(2.4)

Note that by Lemma 1.2 we have vec(XA∗) = (A⊗ In)vec(X).
In order to apply Krawczyk’s method to (2.4) we need to compute an approximate

inverse R

R ≈ P−1 = (In ⊗A+A⊗ In)−1 ∈ Cn2×n2

,

which is an O(n6) process if we use Gaussian elimination and do not try to take
advantage of the sparsity structure of P. But even ifR were computed more efficiently,
we still need to compute I − RP. If A is a full (non-sparse) matrix we must expect
R to be a full matrix, too. Since each column of P then contains 2n nonzero entries
and R is an n2 × n2 matrix, computing RP has a complexity O(n5). Therefore, the
cost for computing k in (2.3) is at least O(n5) which is prohibitively high for larger
values of n.

The Lyapunov equation is a special case of the Sylvester matrix equation AX +
XB = C with B = A∗. We have shown in [12] how the complexity of an enclosure
method for the solution of the Sylvester equation can be reduced to O(n3) if A and B
are diagonalizable. We now recall the approach of [12] specialized to the case of the
Lyapunov equation. To expose the central idea on how to reduce the complexity to
O(n3), we first discuss the idealized situation where all arithmetic operations are done
exactly. The modification to be applied in practice using machine interval arithmetic
to completely control all roundings will be discussed thereafter.

If A is diagonizable we have the (exact) spectral decomposition

V A = DV with V,D ∈ Cn×n, D = diag(λ1, . . . , λn).(2.5)

Here, V is a matrix of left eigenvectors of A. So X is an exact solution of the Lyapunov
equation (1.1) if and only if

(V AV −1)(V XV ∗) + (V XV ∗)(V AV −1)∗ = V CV ∗.

Therefore, Y = V XV ∗ is the solution of the linearly transformed Lyapunov equation

DY + Y D∗ = G,(2.6)

where G = V CV ∗. The Lyapunov equation (2.6) is equivalent to the linear system of
equations

Q y = g,(2.7)
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where

Q = In ⊗ (V AV −1) + (V AV −1)⊗ In,(2.8)

y = (V ⊗ V )x,

g = (V ⊗ V )c.

Since we temporarily assume that V is a matrix of exact eigenvectors, we have,
of course, that V AV −1 = D, which shows that Q is diagonal. This means that an
approximate inverse R for Q can be computed very cheaply at cost O(n2), and the
same holds for the productRQ. This shows that diagonalization bears the potential of
substantially reducing the computational cost in a Krawczyk-type enclosure method.

Let us now turn to the realistic setting, where instead of exact arithmetic we
use floating point and machine interval arithmetic. We assume that V and D in the
diagonalization of A are computed via a floating point algorithm. Then (2.5) will hold
only approximately, but we still have that the solution Y of the transformed Lyapunov
equation (2.6) is related to the solution X of the original Lyapunov equation (1.1)
via Y = V XV ∗ if in (2.6) we replace D with the matrix V AV −1, which is now
only approximately diagonal. But since V AV −1 is close to D, we also have that the
diagonal matrix

∆ = I ⊗D + D̄ ⊗ I,(2.9)

is close to the matrix Q from (2.8) (which as V AV −1 is not exactly diagonal any
more). This shows that the inverse of the diagonal matrix ∆ can be taken as the
approximate inverse R in a Krawczyk-type enclosure method. This is crucial to the
efficiency of a Krawczyk-type method, since because ∆ is diagonal the computation
of ∆−1Q has complexity O(n3) only, given that Q has 2n non-zero entries in each of
its n2 rows.

While the matrices V and D are available as the result of a floating algorithm, the
matrix V −1 is not. Working just with an approximation for V −1, obtained by some
floating point algorithm, is not sufficient for our purposes, because then the relation
Y = V XV ∗ between the original solution X and the solution Y of the transformed
system (2.7) would hold only approximately. We therefore work with an enclosure
IV for V −1, i.e. with an interval matrix IV known to contain the exact inverse V −1.
Such an interval matrix IV can be obtained using Krawczyk’s method for the function
V X − I. An implementation is available through the Intlab function verifylss.

Let now X̌ be an approximate solution for the Lyapunov equation (1.1), obtained
by some floating point algorithm and let F := AX̌ + X̌A∗ − C be its residual. Then
the error E with respect to the exact solution solves

AE + EA∗ = −F.

The idea is now to use the transformations described so far to obtain an efficient
Krawczyk-type method to compute an enclosure for E.

Let F be an interval matrix that contains the exact value F = V (AX̌ + X̌A∗ −
C)V ∗. If we can compute an interval matrix E that contains all solutions of all
equations

BE + EB∗ = −F,(2.10)

for every B ∈ B and every F ∈ F , then X̌ + IV EI∗V will contain the exact solution
X of the original Lyapunov equation (1.1). To obtain such E, we wish to apply a
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Krawczyk-type method based on Theorem 2.1. Converting matrices into vectors using
the vec operator, this means that we have to compute an enclosure for the set

K(e) := {∆−1(−f + (∆− (In ⊗B +B ⊗ In))e, f ∈ f , B ∈ B, e ∈ e},(2.11)

where f = vec(F ), e = vec(E). Using machine interval arithmetic to evaluate the
expression defining F , an enclosure for {−f + (∆− (In ⊗B +B ⊗ In))e, f ∈ f , B ∈
B, e ∈ e} can be computed in matrix terms as vec(G) where

G := −F + (D −B)E + E(D −B)∗.

Also, in matrix instead of vector terms, the multiplication with the diagonal matrix
∆−1 is a pointwise division by the matrix d · l∗ + l · d∗, where d = Diag (D) and
l∗ = (1, · · · , 1) ∈ R1×n. Note that the (i, j)-entry di + d̄j of this matrix cannot be
computed exactly in floating point arithmetic, but machine interval arithmetic yields
a matrix L ⊇ d · l∗+ l ·d∗. Using Theorem 2.1 and writing everything in matrix terms
we have that if

K(E) = (−F + (D −B)E + E(D −B)∗)./L ⊆ int (E),

then K := K(E) contains all solutions of (2.10), and the exact solution X of the
original Lyapunov equation (1.1) is contained in X̌ + IV KI∗V .

In Algorithm 1, we explicitly “symmetrize” a computed interval matrix A when
we know that the exact, non-interval matrices of interest contained in A are Hermi-
tian. In principle, symmetrization would mean that we replace an entry aij of A by
aij ∩ āji, showing that this operation works towards making the entries of A more
narrow. In midpoint-radius format, the intersection of two intervals is not a circle
any more. Intlab therefore has to use a relatively sophisticated algorithm to obtain a
circle containing this intersection. Interestingly, the Intlab intersect operator does

not fulfill a commutativity relation of the kind intersect(a, b) = intersect(ā, b̄).
As a result, an interval matrix computed as the entrywise intersection of A and A∗

is not necessarily “Hermitian”. Instead of intersect(A,A∗) we therefore use a sym-
metrization operator H implemented via the following Matlab-Intlab commands:
H=intersect(A,A∗);
H(A) := tril(H,-1)+diag(real(diag(H)))+tril(H,-1)∗;.
Note that H(A) contains indeed all Hermitian (point) matrices A ∈ A.

2.1. Checking positive definiteness of interval matrices. Determining the
positive definiteness of symmetric interval matrices plays an important role in several
applications ranging from stability analysis of matrices, global optimization problems
and solution of linear interval equations over semi-definite programming problems, to
the representation theory of Lie groups [10, 39]. Rohn [33] showed that the problem of
determining the positive definiteness of a real symmetric interval matrix is NP-hard.
Shao and Hou [39] proved that an n× n Hermitian interval matrix A is positive defi-
nite if and only if 4n−1(n−1)! specially chosen Hermitian vertex matrices are positive
definite; see also [18, 34]. Rump [38] presented a computationally simple and fast
sufficient criterion implying positive definiteness of a symmetric or Hermitian interval
matrix. His method is based on a single floating-point Cholesky decomposition of the
midpoint matrix, its backward stability analysis and a perturbation result. More re-
cently, Domes and Neumaier [10] proposed a so-called directed Cholesky factorization
that can also be used for verifying positive definiteness.
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Algorithm 1 If successful this algorithm obtains an interval matrix W such that
X̃+ W contains the unique Hermitian solution X of the Lyapunov equation (1.1)
and checks the positive definiteness of X.

1: Use a floating point algorithm to get an approximate solution X̌ of the Lyapunov
equation (1.1). Then, replace X̌ by its Hermitian part H(X̌).

2: Compute V and D in the spectral decomposition (2.5) using a floating point
algorithm.

3: Compute L ∈ ICn×n s.t. L ⊇ d · l∗ + l · d∗. {L is an interval matrix due to
outward rounding}

4: Let L = H(L). {vec(L) ⊇ diag(∆) from (2.9)}
5: Compute an interval matrix IV containing V −1.
6: Compute F = V · (AX̌ + (AX̌)∗ − C) · V ∗ using interval arithmetic and let

F = H(F ).
7: Compute B = (V A)IV using interval arithmetic everywhere.
8: Compute E = −F ./L, put j = 1. {Prepare loop}
9: repeat

10: Put E = 2(0,E · [1− ε, 1 + ε]), increment j. {ε-inflation}
11: Compute N = (D −B)E.
12: Compute M = −F + (N + N∗). {M is Hermitian}
13: Compute K = M ./L. {K is Hermitian}
14: until (K ⊂ intE or j = 8)
15: if K ⊂ intE then {successful termination}
16: Compute W = (IV K)I∗V . {solution X of (1.1) is in H(X̌ + W )}
17: Check for positive definiteness of H(X̌ + W ). {2 options available}
18: else
19: Output “verification not successful”.
20: end if

In Step 17 of Algorithm 1 we need to check the positive definiteness of the exact
solution X of the Lyapunov equation (1.1). We did so using the Intlab function isspd

which is based on [38]. We also tested the alternative approach to prove positive
definiteness from [10], where the code was kindly made available to us by the authors
and observed very similar results. We thus stayed with isspd from Intlab in the
present paper.

Since the exact solution X is contained in X = X̌ + IV KI∗V , our first option to
be implemented in Step 17 is as follows
Option 1: Apply isspd to H(X), i.e., the Hermitian part of X.

On the other hand, we know that

X = X̌ + V −1EV −∗ = V −1(Y̌ + E)V −∗, with Y̌ = V X̌V ∗.

So, the matrix X is positive definite if and only if Y = Y̌ +E is positive definite. We
know that Y is contained in Y̌ + K where Y̌ = (V X̌)V ∗. Therefore, an alternative
approach is to show that every Hermitian matrix contained in an interval matrix
Y ⊇ Y̌ + K is positive definite. Our second option is therefore as follows
Option 2: Apply isspd to H(Y ), where Y is given as (V X̌)V ∗ + K with (V X̌)V ∗

computed using machine interval arithmetic to account for floating point roundings
in the evaluation of the products.

Option 2 is likely to be superior to option 1 since the interval entries of Y can be
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expected to be narrower than those of X and Y is often (slightly) better conditioned
than X.

2.2. Block diagonalization. The approach presented may fail at two places:
The variant of Krawczyk’s method may fail to verify the crucial condition K ⊆ intE
in Step 14 of Algorithm 1, or the test for positive definiteness may fail in Step 17. The
chances for failures increase if the condition of the left eigenvector matrix V increases.
Due to the wrapping effect, the radii of the entries of the various interval matrices to
be computed in Algorithm 1 will then tend to become very large so that the condition
K ⊆ intE in Step 14 will not hold any more.

We therefore also present a variant of our algorithm where we use the block di-
agonalization of Bavely and Stewart [3] to control the condition number of V at the
expense of having D with (hopefully small) blocks along the diagonal. The block
diagonal factorization can be written as

A = V −1DV,(2.12)

where D is block diagonal with each diagonal block being triangular.

We now formally define Q exactly as in (2.8) and its approximation ∆ as in (2.9),
i.e. ∆ = In⊗D+D⊗ In. Of course, ∆ is not diagonal any more. It is block diagonal
with upper triangular diagonal blocks. We refer to [12] for further details.

The modifications needed to be applied to Algorithm 1. In Step 2, the matrices
V and D will be obtained from the block diagonal factorization (2.12). Since the
matrix D is not diagonal any more we have to modify Steps 8 and 13 where we
used pointwise division by the interval matrix L. For the block modification, Steps 3
and 4 will not be needed and instead of Step 8 we use forward substitution to solve
∆vec(E) = −vec(F ) for E and let E = H(E). Similarly, instead of Step 13, we solve
∆vec(K) = vec(M) for K using forward substitution and let K = H(K). It must
be noted that these two modifications destroy the matrix-matrix operation paradigm,
so that the modified algorithm will be substantially more time consuming in Steps 8
and 13 as before. Note that this modified algorithm will have complexity O(n3) only
if the sizes of the blocks in D are bounded by a constant.

We refer to [12] for a discussion of why a standard Schur decomposition of A,
i.e. an orthogonal reduction to (full) triangular form, is not a viable approach for
an enclosure method based on machine interval arithmetic due to the exponentially
growing accumulation of outward roundings.

3. Numerical results. All our numerical examples focus on proving the stabil-
ity of a given matrix A. So, in view of Theorem 1.1, we apply Algorithm 1 to compute
an enclosing interval matrix for the solution of the Lyapunov matrix equation

AX +XA∗ = −I,(3.1)

and then run isspd on the thus computed enclosure for X (option 1) or Y = V XV ∗

(option 2).

In our tables, we wish to report indicators on the quality of the computed enclo-
sure matrices. These indicators will be based on the relative precision of an interval
a given as

rp(a) := min(relerr(a), 1),
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where relerr is defined as

relerr(a) =

{
rad (a)
|mid (a)| , 0 /∈ a,

rad (a), 0 ∈ a,

available as an Intlab function. Loosely speaking, − log10(rp(a)) can be regarded as
the number of known correct digits of an “exact” value contained in a. For an interval
matrix X we will report two indicators mrp and arp based on the relative precision
rp(Xij) of its entries Xij , defined as

mrp(X) := max{rp(Xij) | i, j = 1, . . . , n},(3.2)

arp(X) :=

 ∏
i,j=1,n

(rp(Xij))

1/n2

.(3.3)

So − log10(mrp(X)) and − log10(arp(X)) represent the minimum and average number
of known correct digits, respectively.

The following notation is used in all our tables: Under the headline “problem info”
we summarize basic information about the Lyapunov equation considered. The first
column refers to the name under which the test matrix is known from the literature or
to our choice of parameters if A is from a parametrized family of test matrices. The
second column gives important basic information about A, namely the `2-condition
number of its (approximate) eigenvector matrix V from (2.5). For smaller problem
sizes we also report κ(P), the `2-condition number of the matrix P from (2.4) and the
separation “sep” of A and −A∗, i.e. the smallest singular value of P. The third column
contains information about the computation of the floating point approximation X̌.
This matrix is obtained using the command lyap from the Matlab Control System
Toolbox. We report the time tfl required by lyap in seconds as well as the quality
of the approximate solution X̌ as given by the Frobenius norm of the residual matrix
AX̌ + X̌A∗ + I.

We report numerical results for both options available for Algorithm 1. Here,
X and Y stand for the (symmetrized) interval matrices computed by Algorithm 1
with option 1 and 2, respectively. The columns named spd(X) and spd(Y ) show the
result of Intlab’s isspd function for checking positive definiteness. Here, 1 means that
every Hermitian matrix X ∈ X has been verified by isspd to be positive definite,
while 0 means that no verified result could be obtained by isspd, and similarly for
Y . In a second column we give information on the quality of the computed enclosing
matrix by reporting the values of the indicators mrp and arp defined in (3.2) and
(3.3). The value k is the number of sweeps through the repeat loop of Algorithm 1.
If the algorithm is successful in computing an enclosure, it very often is so in the first
sweep, k = 1. In the fourth column, “time” stands for the total time required by
Algorithm 1 followed by one call to isspd, and κ(mid (X)) and κ(mid (Y )) stand for
the condition number of the midpoint of the computed enclosures as a hint on the
condition of the respective exact solution.

It remains to explain the meaning of the parameter “res. prec. ”. The success of a
Krawczyk type method crucially depends on the precision we obtain when evaluating
the residual, i.e. the radii of the components of the computed interval matrix F ⊇
V · (AX̌ + X̌A∗ − C) · V ∗. Note that F is an interval matrix since we have to
account for all floating point roundings when evaluating the residual. In our tables,
“res. prec.” refers to the effort we invested into getting “tighter” enclosures for the

10



residual. More precisely, “res. prec. = double” in the fourth column corresponding to
option 1 means that no special effort is made, i.e., F is obtained by performing all
matrix operations using the standard interval arithmetic operations (based on rounded
IEEE double precision operations), starting with the point matrices V,A, X̌ and C.
Similarly, for option 2 “res. prec. = double” means that we compute an enclosure
for Ỹ = (V X̌)V ∗ in Y using standard interval arithmetic with the point matrices
V and X̌. If the algorithm is not successful with these standard choices, we use an
improved method from [30] for computing an interval enclosure B for the product
AX̌. We then use standard double precision to evaluate the sum B + B∗ − C and
the subsequent multiplications with V and V ∗. This option is indicated as “res. prec.
= impr.” in the fourth column corresponding to option 1, and similarly in option 2
where it means that we use this improved multiplication just for the factor (V X̌ when
computing Ỹ = V X̌V ∗.

If the algorithm is still not successful, we turn to “res. prec. = quad.”, where
now the matrix product AX̌ is evaluated using simulated quadruple precision based
on error-free transformations. This option is available as a choice in Intlab, but it
should be noted that its computation speed is orders of magnitudes slower, since now
rounding modes are switched for each scalar operation. For this option, as a side
effect, we actually also obtain a “tighter” enclosure IV for the inverse of the matrix V
(see line 5 of Algorithm 1). We always obtain V via the Intlab function verifylss.
This function computes an interval enclosure for a linear system and allows for block
right hand sides (rhs), so that an enclosure for the inverse is obtained when chosing
rhs as the identity matrix. When Intlab is required to work with simulated quadruple
precision, verifylss for a block rhs actually does not use (simulated) quadruple
precision everywhere, but rather uses just an improved precision implementation of
the function lssresidual which is called from verifylss.

Our first set of tests is from Example 4.1 of the CTLEX benchmark [24]. This is
an academic example which has the advantage that we can chose several parameters
to control the conditioning of P as well as the dimension n, thus enabling, in partic-
ular, a scaling study. We report our numerical results in Tables 3.1 and 3.2. n, r, s
are parameters in Example 4.1 from the CTLEX benchmark [24]. For the smaller
examples in Table 3.1 we also report results obtained with the function VERMATREQN

of the software package Versoft [32] for comparison. Versoft is a collection of Intlab
programs, computing enclosures for the solutions of various numerical problems. For
the Lyapunov equation, VERMATREQN basically uses Krawczyk’s method for the large
system (2.4). It has the advantage of not having to diagonalize or block diagonalize
A at the disadvantage of a computational complexity beyond O(n3).

The following observations can be made from Tables 3.1 and 3.2: Option 2 in
Algorithm 1 allows to prove stability more often than option 1. This can be attributed
to the fact that the condition of the matrix mid (Y ) is often significantly smaller than
that of mid (X) and that, at least on the average, the relative width of the interval
entries of Y from option 2 is smaller than for X from option 1. The right part of
Figure 3.1 depicts this fact graphically.

When the condition number of P is very high (beyond inverse machine precision),
standard double precision arithmetic is not sufficient. However, switching to improved
or quadruple precision often helps. For n = 50, the Versoft function VERMATREQN

already needs almost a factor of 1000 more time than Algorithm 1, and isspd is
never successful on the results computed with Versoft. It should be noted, however,
that we could not adapt the precision in Versoft as we did in Algorithm 1 to be
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problem info. Versoft [32] Alg. 1 with option 1 Alg. 1 with option 2
n κ(V ) tfl spd mrp(X) time spd mrp(X) k time spd mrp(Y ) time

r κ(P) (X) arp(X) (X) arp(X) res. prec. (Y ) arp(Y ) prec. (Ỹ )
s sep ||res|| κ(midX) κ(midY )

10 3.1E3 1.9E-3 0 9.2E-5 3.1E-2 0 3.4E-4 1 1.5E-2 1 7.6E-4 2.4E-2
3.1 3.4E12 9.1E-5 2.4E-4 double 1.1E-4 double
2.5 6.5E-6 1.4E-3 3.9E10 1.2E5

10 1.5E-3 3.3E-2 1 8.7E-11 1 4.5E-2 1 4.7E-7 3.7E-2
3.1 6.1E-11 impr. 8.8E-9 double
2.5

50 1.2E2 1.1E-2 0 8.6E-1 3.2E2 0 1.2E-2 8 2.7E-1 1 4.1E-2 2.9E-1
1.8 3.2E15 1.5E-2 2.5E-5 quad. 2.6E-6 double
1.1 1.6E-2 9.5E-2 2.4E15 1.1E13

Table 3.1
Numerical results for different tests from Example 4.1 of the CTLEX benchmark [24].

problem info. Alg. 1 with option 1 Alg. 1 with option 2
n κ(V ) tfl spd mrp(X) k time spd mrp(Y ) time

r κ(P) (X) arp(X) res. prec. (Y ) arp(Y ) prec. (Ỹ )
s sep ||res|| κ(midX) κ(midY )

70 7.7E2 1.7E-2 0 2.0E-1 9 3.9E-1 0 2.5E-1 4.1E-1
1.5 1.5E18 2.0E-4 quad. 1.4E-5 double
1.1 5.4E-4 2.1E1 2.9E16 7.2E12

70 1.6E-2 0 2.2E-1 3 1.5E-1 1 1.9E-3 2.0E-1
1.5 2.2E-4 impr. 3.3E-6 impr.
1.1

250 1.9E1 5.0E-1 0 4.6E-1 1 1.9 1 5.2E-1 1.9
1.1 - 8.8E-5 double 2.4E-5 double
1.01 - 3.9E-5 4.5E11 1.3E11

500 3.5E2 4.6 0 1.0 1 1.6E1 1 8.4E-1 1.6E1
1.05 - 2.5E-3 double 1.3E-4 double
1.01 - 1.9E-3 2.9E13 1.4E12

700 2.7E3 1.4E1 1 4.5E-4 1 4.5E1 1 1.4E-6 4.4E1
1.005 - 5.8E-10 double 2.8E-12 double
1.01 - 1.2E-9 4.2E5 1.8E5

1000 5.1E4 4.3E1 0 1.2E-2 1 1.4E2 1 3.9E-3 1.4E2
1.005 - 1.6E-7 double 3.6E-10 double
1.01 - 1.2E-6 6.6E8 5.9E7

Table 3.2
Numerical results for larger tests from Example 4.1 of the CTLEX benchmark [24].

successful for the problems considered in Table 3.1.

The results from Table 3.2 also illustrate the scaling behavior of Algorithm 1.
Remarkably, the computation of the interval enclosure and the test for positive defi-
niteness, i.e. the total run time of Algorithm 1 is consistently only about 3 to 4 times
as large as the time spent in lyap, i.e. the time needed to obtain the approximate
solution. Graphically, this fact is reported in the left part of Figure 3.1, thus illustrat-
ing its O(n3) complexity as well as the efficiency of Intlab and of the matrix-matrix
operation approach of Algorithm 1.
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Fig. 3.1. Time versus dimension (left) and the average relative precision(arp) versus dimension
(right) for different tests from Example 4.1 of CTLEX with r = 1.005, s = 1.01

Table 3.3 reports results for some “real world examples” taken from [6]. The
CDplayer example refers to the problem of finding a low-cost controller that can make
the servo-system of a CD player faster and less sensitive to external shocks [6]. The
corresponding model contains 60 vibration modes and both options of Algorithm 1
were successful to verify stability of the matrix A. The heat-cont example comes
from a dynamical system corresponding to the heat diffusion equation [6] and we were
again successful in proving stability of the matrix A. The iss example is a structural
model of component 1r (Russian service module) of the International Space Station
(ISS). Here, both our approaches were successful to verify stability of the matrix A.
The beam example is the clamped beam model obtained by spatial discretization of a
partial differential equation [6]. The eady example comes from a model of atmospheric
storm track. We refer to [5] for details. Note that the condition number of the
eigenvector matrix V for the eady example has a condition number of approximately
10+9.

In the examples CDplayer and heatcont the matrix A is actually normal (with
non-real eigenvalues), so that the condition of the eigenvector matrix V is 1. In the
other examples, the matrix A is non-normal and we see that the “difficulty” to prove
stability increases with the condition of V . Example eady is particularly interesting
because it is the only example in which option 2 failed while option 1 was successful
(using simulated quadruple precision). We attribute this to the high condition number
of V which affects the width of the computed interval enclosure for V X̌V ∗. Indeed,
this is the only example where the average precision in Y is less than that in X.

It can also be noted that in these examples the execution time for the whole veri-
fied computation can be up to 100 times more than for the floating point computation
of the approximate solution X̌. There are two main reasons for this deterioration as
compared to the examples of Table 3.3. On the one hand our Algorithm 1 sometimes
needs more than one sweep through the repeat loop. On the other hand, the floating
point computation of X̌ via Matlab’s function lyap can take advantage of sparsity of
the matrix A, whereas our Algorithm 1 always works with full matrices. This applies
particularly to the examples CDplayer and iss in which the matrix A is sparse, so
that the computation of X̌ is orders of magnitude faster than it would be with a full
matrix A of the same size.

Our final numerical results deal with situations where instead of a full diago-
nalization a block diagonalization should be performed. Our first test comes from
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problem info. Alg. 1 with option 1 Alg. 1 with option 2
n κ(V ) tfl spd mrp(X) k time spd mrp(Y ) time

name κ(P) (X) arp(X) res. prec. (Y ) arp(Y ) prec. (Ỹ )
sep ||res|| κ(midX) κ(midY )

120 1 4.0E-2 1 1.5E-13 3 3.6 1 2.9E-12 2.9
CDplayer 1.8E6 5.5E-15 double 1.4E-14 double

4.9E-2 2.4E-14 3.3E4 3.3E4

200 1 1.6E-1 1 2.0E-8 1 6.8E-1 1 1.0 6.4E-1
heat-cont 2.4E4 2.5E-11 double 2.5E-12 double

1.9E-1 6.3E-11 2.0E+4 1.6E4

270 6.1E1 1.8E-1 1 5.6-9 3 2.6E1 1 3.1E-13 1.9E1
iss 2.3E7 3.5E-12 double 3.7E-14 double

3.3E-4 8.4E-12 3.8E3 9.9E1

348 3.6E2 9.4E-1 0 8.0E-1 1 1.1E1 1 8.3E-1 1.1E1
beam - 1.3E-5 double 5.6E-5 double

- 2.0E-5 1.4E10 5.1E5

598 1.1E9 4.8 0 1.0 1 5.3E1 0 2.9E-5 5.4E1
eady - 6.7E-4 double 1.2E-10 double

- 1.8E-9 4.6E5 1.1E18

598 4.7 1 1.5E-3 3 2.9E2 0 3.6E-6 2.9E2
eady 1.7E-12 quad. 7.6E-12 double

1.8E-9 4.6E5 7.4E17

Table 3.3
Numerical results for tests from [6].

Example 4.2 in the CTLEX benchmark [24]. This is a 45× 45 matrix having just one
Jordan block. So the matrix is not exactly diagonizable, and the computed eigenvec-
tor matrix V has a condition number of 1017, approximately. Here, Algorithm 1 fails
because it was impossible to obtain the matrix IV , an interval enclosure for V −1.
Using bdschur to obtain a block diagonalization with a requested bound of 108 for
the condition of V results in just one block of size 45, i.e. we have the classical reduc-
tion to Schur form. Our algorithm with block diagonalization, termed Algorithm 2 in
Table 3.4, is now successful. This is actually an exceptionally lucky situation to be
attributed to the fact that all elements in the triangular matrix have the same sign
so that the accumulation of outward roundings does not cause too much harm when
we perform forward substitution in interval arithmetic. The execution time increases
substantially due to the fact that the backward substitution for the triangular matrix
∆ cannot be cast into matrix-matrix operations.

We note that for this example the function VERMATREQN from Versoft is successful
in computing an enclosure, which, in addition, is verified to be positive definite by
isspd. The computed enclosure X by Versoft was obtained after 160s with mrp and
arp equal to 5 · 10−11 and 1.4 · 10−13, respectively.

The matrix A in our second test comes from Example 5.27 in [14, p. 110]. We
multiply the matrix A given there by −1 to make it stable. The matrix is 10 × 10
and is both, defective and derogatory. Algorithm 1 again fails because it attempts to
diagonalize A, obtaining a matrix V with condition number κ(V ) = 2.5 · 1018 so that
it is impossible to compute an interval enclosure for its inverse. On the other hand,
a block diagonal factorization of the matrix A computed with bdschur results in one
block of size 5, one block of size 4 and one block of size 1 with a condition number
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for V of approximately 102. The second row of Table 3.4 contain results for this
example with this block-diagonalization, where now our algorithm is again successful.
As before, Versoft is also successful for this example. It takes 0.5s and obtains an
enclosure for X with mrp and arp equal to 1.2 · 10−11 and 3.3 · 10−12, respectively.

problem info. Alg. 2 with option 1 Alg. 2 with option 2
n κ(V ) tfl spd mrp(X) k time spd mrp(Y ) time

λ κ(P) (X) arp(X) res. prec. (Y ) arp(Y ) prec. (Ỹ )
s sep ||res|| κ(midX) κ(midY )

45 1.0 6.9E-3 1 6.1E-3 1 5.8E1 1 1.4E-6 5.8E1
-1.1 3.4E5 9.1E-6 double 3.7E-11 double
1.1 4.1E-17 8.0E-12 2.1E4 1.9E4

10 1.8E2 2.1E-1 1 3.9E-10 1 6.7E-1 1 7.1E-12 6.7E-1
- 5.3E4 3.3E-11 double 3.3E-12 double
- 5.6E-16 2.8E-11 7.2E3 9.4E4

Table 3.4
Numerical results using ”Alg. 2.“, i.e. the variant of Algorithm 1 which uses block diagonaliza-

tion. The first test is from Example 4.2 from the CTLEX benchmark [24], while the second is from
Example 5.27 in [14].

4. Conclusions. We presented a verified numerical method to prove stability
of matrices by computing interval enclosures for the solution of a Lyapunov equation
and subsequently showing that this solution is positive definite. If our algorithm is
successful, it is proved in a mathematically rigorous manner that the matrix is stable.
If the algorithm is not successful, we do not have a mathematically rigorous result, i.e.
we do not know whether the matrix is stable or not. We presented two options for the
task of proving the positive definiteness, where the one which works with the interval
enclosure for the transformed solution Y = V XV ∗ usually yields better enclosures and
is successful in more cases. Due to an implementation oriented towards matrix-matrix
operations, the algorithm is time efficient when implemented in Intlab. In its basic
version our method requires the matrix to be diagonalized numerically, but it can be
generalized to use a block diagonalization in cases where the eigenvector matrix is too
ill conditioned. Larger blocks, however, will usually prevent our algorithm from being
successful since we then suffer from the accumulation effect in outward roundings
during the forward substitution process.
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