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Abstract

Given a periodic solution of a system of ordinary differential equations,
the stability of the solution with respect to perturbations in its ini-
tial values represents an important property. Appropriate strategies for
analysing the local stability of a periodic solution already exist. How-
ever, the investigation of a sort of global stability is a more involved
task. We introduce a stochastic modelling to analyse a global stability
condition, where initial values are substituted by random variables. Now
the expected values and the variances of corresponding random processes
characterise the stability. We prove sufficient and necessary criteria for
the specific global stability based on the stochastic model. Both forced
oscillators and autonomous oscillators are examined. Finally, we analyse
the global stability for two illustrative examples using this approach.
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1 Introduction

We consider systems of ordinary differential equations (ODEs), which exhibit pe-
riodic solutions. The local stability of a particular periodic solution with respect
to perturbations in its initial values is characterised by well-known concepts. Flo-
quet theory yields sufficient and necessary criteria to determine the asymptotic
stability both for autonomous and non-autonomous systems of ODEs, see [3, 11].
Nevertheless, the analysis of a global stability represents a more sophisticated
problem.

In this article, a specific concept of global stability is investigated for forced
oscillators and autonomous oscillators, respectively. We arrange a stochastic
model to analyse this global stability, i.e., to determine if the condition holds.
For this purpose, initial values of the solutions are replaced by random variables
corresponding to arbitrary random distributions. Thus the solution of the system
of ODEs becomes a random process. The global stability of the deterministic
solutions implies a specific behaviour of the expected values and the variances of
the random solutions in the limit and vice versa. We prove the corresponding
implications both for forced systems and autonomous systems.

Oscillators including random effects have already been examined in previous
works. The stochastic response of systems of ODEs with random time-invariant
parameters is considered in [1, 2, 8, 9, 10]. Systems of ODEs including a time-
dependent external forcing term given by a random process are investigated
in [6, 7, 12]. Alternatively, noise can be added to a periodic dynamical sys-
tem in form of a Wiener process, which results in an Itø differential equation,
see [5], for example. However, the case of random perturbations in initial values
has been considered rather seldom until now.

The article is organised as follows. We define the local and global stability con-
cepts in Sect. 2. We introduce the stochastic model in Sect. 3. The relations
between the original deterministic systems and the random-dependent systems
are shown. Finally, we discuss two examples in Sect. 4, namely the forced Duffing
oscillator and the autonomous Van-der-Pol oscillator.

2 Concepts for Stability

We consider a class of initial values problems of ODEs

y′(t; s) = f(t, y(t; s)), y(0; s) = s (1)
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with unknowns y : R → R
n and right-hand side f : R × Rn → R

n. Let f be
continuous with respect to t and continuously differentiable with respect to y.
The initial values s ∈ Rn may be restricted to some subset V ⊆ Rn. We assume
that the solutions of (1) with initial values s ∈ V exist for all t ≥ 0. We call t the
time variable, although the meaning of t may be different in some applications.
We assume the existence of a periodic solution ŷ, i.e., it holds

ŷ(t+ T ) = ŷ(t) for all t

with some period T > 0. In addition, let f(·, y) be also periodic for all y ∈ Rn.

In the following, we apply an arbitrary vector norm on Rn. We assume that f is
globally Lipschitz-continuous, which implies the bound

∥y(t; s1)− y(t; s2)∥ ≤ eLt · ∥s1 − s2∥ (2)

for all s1, s2 ∈ V with a Lipschitz constant L > 0. Hence existence and uniqueness
of solutions of the initial value problems for the ODEs (1) is given. However,
several periodic solutions with same period may still exist.

The definition of local stability concepts for periodic solutions of non-autonomous
systems of ODEs reads as follows.

Definition 1 A periodic solution ŷ of the system (1) is Lyapunov-stable, if and
only if

∀ε > 0 ∃δ > 0 ∀t ≥ 0 : ∥s− ŷ(0)∥ < δ ⇒ ∥y(t; s)− ŷ(t)∥ < ε. (3)

Definition 2 A periodic solution ŷ of the system (1) is asymptotically stable, if
and only if it is Lyapunov-stable and

∃θ > 0 : ∥s− ŷ(0)∥ < θ ⇒ lim
t→∞

∥y(t; s)− ŷ(t)∥ = 0. (4)

Lyapunov-stability and asymptotical stability represent local properties. Suffi-
cient for asymptotical stability (and thus also Lyapunov-stability) is that the
monodromy matrix corresponding to the periodic solution exhibits a spectral
radius smaller than one.

Now we define an own condition for global stability.

Definition 3 A periodic solution ŷ of the system (1) is said to be globally stable
with respect to a set V ⊆ Rn, if and only if

∀s ∈ V : lim
t→∞

∥y(t; s)− ŷ(t)∥ = 0. (5)
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In this definition, we do not assume ŷ(0) ∈ V , since this requirement is not
necessary for the conclusions in the next section. Nevertheless, it is reasonable
to choose a V containing ŷ(0) in practice.

The property (5) has a global meaning, since V may be much larger than a domain
of local stability given by (3) or (4). Thereby, the global concept corresponds to
an asymptotic stability, i.e., a relatively strong condition. However, the global
stability (5) is not sufficient for the Lyapunov-stability (3). Note that different
definitions of global stability exist in the literature. We consider the statement (5)
in the following.

Likewise, we investigate an autonomous system of ODEs

y′(t; s) = f(y(t; s)), y(0; s) = s (6)

including a right-hand side f : Rn → R
n with the analogue properties. Given a

periodic solution ŷ(t) of this system, the shifted functions ŷ(t+ c) for c ∈ R also
represent periodic solutions with the same period. Thus stability is investigated
in phase space, where the trajectory of a periodic solution corresponds to a closed
curve

Γ(ŷ) := {ŷ(t) : t ∈ R} ⊂ Rn. (7)

We write Γ instead of Γ(ŷ) for convenience now. For a non-empty set A ⊂ Rn

and a point z ∈ Rn, we define the distance function

D(z, A) := inf{∥z − a∥ : a ∈ A} (8)

using an arbitrary vector norm ∥ · ∥. Now the local stability concepts are defined
as follows.

Definition 4 A periodic solution ŷ of the system (6) is orbit-stable, if and only
if the corresponding curve (7) satisfies

∀ε > 0 ∃δ > 0 ∀t ≥ 0 : D(s,Γ) < δ ⇒ D(y(t; s),Γ) < ε. (9)

Definition 5 A periodic solution ŷ of the system (6) is asymptotically orbit-
stable, if and only if it is orbit-stable and the corresponding curve (7) exhibits

∃θ > 0 : D(s,Γ) < θ ⇒ lim
t→∞

D(y(t; s),Γ) = 0. (10)

Sufficient (but not necessary) for asymptotic orbit-stability is that n − 1 eigen-
values of the monodromy matrix corresponding to the periodic solution have a
modulus smaller than one.
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To analyse a sort of global stability in the autonomous case, one might think of
using the approach of a Poincaré map, see [11]. The construction of a manifold
of dimension n − 1 in phase space, which is orthogonal to the trajectory of a
periodic solution, allows for choosing initial values inside this manifold. How-
ever, the Poincaré map represents a tool for analysing the local stability of a
periodic solution. Thus our global stability property applies initial sets V ⊆ Rn

of (possibly) dimension n again.

Definition 6 A periodic solution ŷ of the system (6) with curve (7) in phase
space is called globally orbit-stable with respect to a set V ⊆ Rn, if and only if

∀s ∈ V : lim
t→∞

D(y(t; s),Γ) = 0. (11)

The additional requirement Γ ⊂ V is reasonable to discuss neighbourhoods of
the trajectory in phase space. However, this requirement is not necessary for the
conclusions in the following.

3 Stochastic Model and Implications

In this section, we introduce the stochastic approach and analyse its relation to
the original deterministic systems with respect to global stability properties.

3.1 Stochastic Modelling

We assume initial values s ∈ V ⊆ R
n. Now let S : Ω → V be a multidimen-

sional random variable corresponding to a probability space (Ω,A, P ) with event
space Ω, sigma-algebra A and probability measure P . Therefore V is considered
as measurable with respect to the Borel algebra ofRn. We assume P (S−1(O)) > 0
for all open sets O ⊂ V , i.e., all open subsets contribute with respect to proba-
bility. Using this modelling, the solution of the initial value problem (1) or (6)
becomes a random variable in each time point

Y (t) : Ω → R
n, ω 7→ y(t;S(ω)). (12)

Since y depends continuously on the initial values due to the assumptions on f ,
the measurability of the random variables is given. Thus the functions (12)
represent a stochastic process in time. Now we want to connect the deterministic
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stability concepts to statements about expected value and variance of this process,
i.e., component-wise

E(Y (t)) = E(y(t;S)),
Var(Y (t)) = Var(y(t;S)).

(13)

Vice versa, the behaviour of the moments (13) allows for conclusions on the
stability of the deterministic solutions.

3.2 Forced Oscillators

The global stability (5) of a periodic solution of the system (1) yields the property

∀s ∈ V ∀ε > 0 ∃tε,s > 0 ∀t ≥ tε,s : ∥y(t; s)− ŷ(t)∥ < ε.

However, we need a stronger condition for proving an implication, namely

∀ε > 0 ∃tε > 0 ∀t ≥ tε ∀s ∈ V : ∥y(t; s)− ŷ(t)∥ < ε (14)

or, equivalently,
lim
t→∞

sup{∥y(t; s)− ŷ(t)∥ : s ∈ V } = 0. (15)

This property does not follow from (5). As an explanation, consider the inequality

∥y(t; s+∆s)− ŷ(t)∥ ≤ ∥y(t; s+∆s)− y(t; s)∥+ ∥y(t; s) + ŷ(t)∥.

The second term on the right-hand side becomes small in the limit due to (5).
However, we cannot control the first term on the right-hand side, since it may
increase exponentially in time owing to (2).

To achieve the property (14), we also have to assume that a local stability holds.
This requirement is not a drawback, since an investigation of global stability
makes sense only if local stability is given. Furthermore, we restrict to compact
sets of initial values.

Lemma 1 Suppose that V ⊂ Rn is compact and ŷ is globally stable with respect
to V . If ŷ is Lyapunov-stable, then it follows (14).

Proof:

Let ε > 0 be given. Choose a constant δ > 0 corresponding to ε from the
Lyapunov-stability (3). Given an arbitrary s ∈ V , we obtain from the global
stability (5) that

∃tδ,s > 0 ∀t ≥ tδ,s : ∥y(t; s)− ŷ(t)∥ < δ
2
.
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Now choose t̃δ,s = kT ≥ tδ,s with some k ∈ N. From the dependence (2), a
constant σ > 0 exists such that

∥∆s∥ < σ : ∥y(t̃δ,s; s+∆s)− y(t̃δ,s; s)∥ < δ
2
.

Thus we obtain

∥∆s∥ < σ : ∥y(t̃δ,s; s+∆s)− ŷ(t̃δ,s)∥ < δ.

The Lyapunov-stability implies due to ŷ(t̃δ,s) = ŷ(0)

∀∥∆s∥ < σ ∀t ≥ t̃δ,s : ∥y(t; s+∆s)− ŷ(t)∥ < ε.

Hence for each s ∈ V , there exists a neighbourhood Us such that the this property
holds for all t ≥ t̃δ,s. Since V is compact, a covering U1, . . . , Um of V exists
corresponding to s1, . . . , sm ∈ V . We may select

tε := max
{
t̃δ,sj : j = 1, . . . ,m

}
and thus (14) is satisfied. □

If an arbitrary subset V is given, a reasonable idea seems to approximate V by
compact subsets Vµ ⊂ V , where P (S−1(V \Vµ)) < µ holds. However, the solutions
belonging to initial values in V \Vµ may exhibit exponentially growing differences
due to (2). Thus we cannot control the remainder of the set V appropriately.

By Lemma 1, we obtain the following conclusion.

Theorem 1 Suppose that V ⊂ Rn is compact and ŷ is globally stable with respect
to V as well as Lyapunov-stable. Then the expected value and variance of the
random process exists for all times and it holds

lim
t→∞

E(∥Y (t)− ŷ(t)∥) = 0,

lim
t→∞

Var(∥Y (t)− ŷ(t)∥) = 0.
(16)

Proof:

In case of a compact set V ⊂ Rn, it follows

sup{∥y(t; s)∥ : s ∈ V } < ∞ for each t ≥ 0. (17)

Hence the expected values and the variances in (13) exist for each t. Likewise, it
can be shown that the moments in (16) exist for each t.

7



Furthermore, it holds due to S(ω) ∈ V

E(∥Y (t)− ŷ(t)∥p) =
∫
Ω

∥y(t, S(ω))− ŷ(t)∥p dP (ω) ≤ sup
s∈V

∥y(t, s)− ŷ(t)∥p

for each p ≥ 1. Since the requirements for Lemma 1 are assumed, the condi-
tion (15) yields

lim
t→∞

E(∥Y (t)− ŷ(t)∥p) = 0

for each p ≥ 1. Now we obtain the limits (16) using this equation for p = 1 and
p = 2. □

The conditions (16) provide corresponding limits of the moments (13) of the
random process itself by the following lemma.

Lemma 2 Let Y : [0,∞)×Ω → R
n be a stochastic process and ŷ : [0,∞) → R

n

be a deterministic function. If E(∥Y (t)∥2) < ∞ holds for all t ≥ 0, then the
conditions (16) are equivalent to the properties

lim
t→∞

E(Yj(t))− ŷj(t) = 0,

lim
t→∞

Var(Yj(t)) = 0
(18)

for all components j = 1, . . . , n of the random process.

We omit the proof of Lemma 2, since it applies simple calculations only.

Thus Theorem 1 also yields the conditions (18), which tell us that the expected
value of the stochastic process converges to the globally stable periodic solution
and the variance converges to zero.

Now we proceed vice versa by assuming (16). Hence we have to presume the
existence of the expected values and variances in case of non-compact sets V .
Note that the property (16) is independent of the choice of the vector norm,
since all norms are equivalent.

Theorem 2 Suppose that ŷ is a Lyapunov-stable periodic solution of (1). For
given V ⊆ R

n, the properties (16) imply the global stability (5) for almost all
s ∈ V with respect to the used probability distribution.

Proof:

Without loss of generality, we consider a single component j ∈ {1, . . . , n} of y
and Y , respectively, where we omit the index j in the following.
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To show the statement, we apply the Chebyshev-inequality in the form

P [|Y (t)− E(Y (t))| < c] ≥ 1− Var(Y (t))

c2
(19)

for each c > 0 and t ≥ 0. Let δ > 0 and η > 0 be given. The triangle inequality
yields for each ω ∈ Ω

|y(t;S(ω))− ŷ(t)| ≤ |y(t;S(ω))− E(y(t;S))|+ |E(y(t;S))− ŷ(t)|.

Thus we conclude

P [|Y (t)− ŷ(t)| < δ] ≥ P [|Y (t)− E(Y (t))|+ |E(Y (t))− ŷ(t)| < δ] .

The property (16) for the expected value yields

∃tδ ≥ 0 ∀t ≥ tδ : |E(Y (t))− ŷ(t)| ≤ E(|Y (t)− ŷ(t)|) < δ
2
.

Consequently, we obtain

∀t ≥ tδ : P [|Y (t)− ŷ(t)| < δ] ≥ P
[
|Y (t)− E(Y (t))| < δ

2

]
.

Now the Chebyshev-inequality (19) implies using c = δ
2

∀t ≥ tδ : P [|Y (t)− ŷ(t)| < δ] ≥ 1− 4
Var(Y (t))

δ2
.

We use the property (16) or, more precisely, (18) with respect to the variances
to obtain a tδ,η ≥ tδ such that

∀t ≥ tδ,η : Var(Y (t)) < δ2η
4
.

It follows
∀t ≥ tδ,η : P [|Y (t)− ŷ(t)| < δ] ≥ 1− η. (20)

Now we choose δ > 0 corresponding to an ε > 0 from the Lyapunov-stability (3),
where the maximum norm is considered without loss of generality. Using some
t̃δ,η = kT ≥ tδ,η with an integer k ∈ N, we achieve

P
[
∀t ≥ t̃δ,η : |Y (t)− ŷ(t)| < ε

]
≥ 1− η. (21)

This strategy can be done for each component with identical δ and η, i.e., we
obtain n possibly different t̃δ,η, where we select the maximum value. Since η can
be chosen arbitrarily small, it follows

P ({ω ∈ Ω : ∀ε > 0 ∃tε > 0 ∀t > tε : ∥y(t;S(ω))− ŷ(t)∥ < ε}) = 1.

Since ε > 0 is arbitrary, the global stability is shown for almost all s ∈ V . □
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It is interesting to see why the local stability is required again to conclude the
result. Without the Lyapunov-stability, we just have the relation (20). Thereby,
we only know that a ratio 1−η of the solutions is inside a δ-neighbourhood beyond
some time point. Thus a ratio η may leave the neighbourhood and reenter it at
a later time. This allows other solutions to leave the neighbourhood at a later
time and reenter. Subsequently, the convergence property (5) may be violated
for all s ∈ U ⊂ V with some U satisfying P (S−1(U)) > 0.

Furthermore, the condition (21) does not imply the strong property (14), since t̃δ,η
may become arbitrarily large for decreasing values η. However, for each µ > 0,
a compact set Vµ ⊂ V with P (S−1(V \Vµ)) < µ exists, where the condition (14)
holds for all s ∈ Vµ.

In contrast to Theorem 1, we have not required a compact set V in Theorem 2.
Thus the properties (16) can be seen as strong requirements in case of non-
compact sets V . Note again that the existence of expected values and variances
has to be presumed in the non-compact case.

3.3 Autonomous Oscillators

Likewise, we perform a corresponding analysis in case of periodic solutions of the
autonomous system (6). Thereby, we show a lemma on a stronger property of
stability again.

Lemma 3 Let V ⊂ Rn be compact and ŷ be a periodic solution of the system (6),
which is globally orbit-stable as well as orbit-stable. It follows

∀ε > 0 ∃tε > 0 ∀t ≥ tε ∀s ∈ V : D(y(t; s),Γ) < ε (22)

for the corresponding trajectory Γ of ŷ in phase space.

Proof:

Let ε > 0 be given. We choose a corresponding constant δ > 0 from the criterion
of orbit-stability (9). Given an arbitrary s ∈ V , the global orbit-stability (11)
yields

∃tδ,s > 0 ∀t ≥ tδ,s : D(y(t; s),Γ) < δ
2
.

In particular, we obtain D(y(tδ,s; s),Γ) <
δ
2
. It follows the existence of a t̂δ,s ≥ 0

satisfying
∥y(tδ,s; s)− ŷ(t̂δ,s)∥ < δ

2
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due to (8). The estimate (2) implies the existence of a constant σ > 0 depending
on δ and s such that

∀∥∆s∥ < σ : ∥y(tδ,s; s+∆s)− y(tδ,s; s)∥ < δ
2
.

We obtain
∀∥∆s∥ < σ : ∥y(tδ,s; s+∆s)− ŷ(t̂δ,s)∥ < δ

and thus
∀∥∆s∥ < σ : D(y(tδ,s; s+∆s),Γ) < δ.

The orbit-stability (9) yields

∀∥∆s∥ < σ ∀t ≥ tδ,s : D(y(t; s+∆s),Γ) < ε.

Since V is compact, we obtain again some tε independent of s such that

∀s ∈ V ∀t ≥ tε : D(y(t; s),Γ) < ε.

Thus the formula (22) is shown. □

Lemma 3 implies the following statement for the stochastic model.

Theorem 3 Let ŷ be a periodic solution of (6). If ŷ is globally orbit-stable with
respect to a compact set V as well as orbit-stable, then it follows

lim
t→∞

E(D(Y (t),Γ)) = 0,

lim
t→∞

Var(D(Y (t),Γ)) = 0.
(23)

Proof:

The compactness of V implies (17) and thus expected value and variance of the
distance function D exist for all t ≥ 0. The statements (23) follow by the same
steps as in the proof of Theorem 1 using D(Y (t),Γ) instead of ∥Y (t)− ŷ(t)∥. □

Now we show the conclusion from the stochastic model to the deterministic case.
We assume that the expected value and the variance of the distance function
exist.

Theorem 4 Let ŷ be an orbit-stable periodic solution of the system (6). If the
conditions (23) hold for an arbitrary V ⊆ Rn, then ŷ is globally orbit-stable for
almost all s ∈ V with respect to the applied probability distribution.
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Proof:

The Chebyshev-inequality yields the bound

P [|D(Y (t),Γ)− E(D(Y (t),Γ))| < c] ≥ 1− Var(D(Y (t),Γ))

c2
(24)

for each c > 0 and t ≥ 0. The triangle inequality implies

D(y(t, S(ω)),Γ) ≤ |D(y(t, S(ω)),Γ)−E(D(y(t, S(ω)),Γ))|+E(D(y(t, S(ω)),Γ)).

for each ω ∈ Ω. Let δ > 0 and η > 0 be given. It follows

P [D(Y (t),Γ) < δ] ≥ P [|D(Y (t),Γ)− E(D(Y (t),Γ))|+ E(D(Y (t),Γ)) < δ].

The condition (23) corresponding to the expected value yields

∃tδ ≥ 0 ∀t ≥ tδ : E(D(Y (t),Γ)) < δ
2
.

Thus it holds

∀t ≥ tδ : P [D(Y (t),Γ) < δ] ≥ P [|D(Y (t),Γ)− E(D(Y (t),Γ))| < δ
2
].

Using the Chebyshev-inequality (24) with c = δ
2
yields

∀t ≥ tδ : P [D(Y (t),Γ) < δ] ≥ 1− 4
Var(D(Y (t),Γ))

δ2
.

Now the condition (23) corresponding to the variance gives us a tδ,η ≥ tδ with

∀t ≥ tδ,η : Var(D(Y (t),Γ)) < δ2η
4
.

We obtain
∀t ≥ tδ,η : P [D(Y (t),Γ) < δ] ≥ 1− η.

For arbitrary ε > 0, we can choose a corresponding δ > 0 satisfying the prop-
erty (9) of orbit-stability. It follows

P [∀t ≥ tδ,η : D(Y (t),Γ) < ε] ≥ 1− η.

Since η can be chosen arbitrarily small, it follows the global orbit-stability for
almost all s ∈ V . □

Thus we retrieve the properties of the non-autonomous case discussed in Sect. 3.2.

4 Illustrative Examples

We investigate two examples: a non-autonomous system and an autonomous
system. In the following, the Euclidean vector norm is applied.
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Figure 1: Periodic solution of Duffing oscillator.

4.1 Forced Duffing Oscillator

The Duffing oscillator is often considered as an example in stability analysis and
bifurcation theory, see [11]. The mathematical model consists of a scalar ODE of
second order. We apply the equivalent system of first order including a forcing
term, i.e.,

y′1(t) = y2(t),

y′2(t) = −1
2
y2(t)− y1(t)− κy1(t)

3 + 10 sin(2πt)
(25)

with a constant κ > 0.

Firstly, we choose κ = 1. A locally stable periodic solution ŷ with period T = 1
exists, which is depicted in Fig. 1. We use the initial values ŷ(0) of this solu-
tion to define the random initial values Yj(0) = ŷj(0) + Sj with two independent
identically uniformly distributed random variables S1, S2 ∈ [−2, 2]. Approxima-
tions for the moments are computed by a Gauss-Legendre quadrature using a
10 × 10 grid in the random space. An explicit Runge-Kutta method of second
order resolves corresponding initial value problems of (25).

Fig. 2 shows the resulting expected values and variances of the first component Y1.
We recognise that the expected value converges to ŷ1, whereas the variance con-
verges to zero. The same behaviour appears for ŷ2. Hence the results confirm
the property (18). The equivalent condition (16) is verified by the moments of
∥Y − ŷ∥ in Fig. 3, where we observe an exponential decay. Thus the results
indicate the global stability of the periodic solution with respect to the set

V = [ŷ1(0)− 2, ŷ1(0) + 2]× [ŷ2(0)− 2, ŷ2(0) + 2]. (26)

This behaviour can also be seen from the 100 computed solutions, which are
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Figure 2: Expected values (left) and variances (right) of Y1 in Duffing oscillator
with random initial values for κ = 1.
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Figure 3: Expected values (left) and variances (right) of ∥Y − ŷ∥ in Duffing
oscillator with random initial values for κ = 1.
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Figure 4: Expected values (left) and variances (right) of Y1 in Duffing oscillator
with random initial values for κ = 10.
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Figure 5: Samples of the solution y1 for different initial values of the Duffing
oscillator in case of κ = 1 (left) and κ = 10 (right).

depicted in Fig. 5 (left) for the first component. It follows that all solutions tend
to the stable periodic solution.

Secondly, we investigate the case κ = 10. A locally stable periodic solution ŷ
exists again, which is nearly the same solution as in the case κ = 1. Thus we
reapply the previous random distribution with slightly different center ŷ(0). Fig. 4
illustrates the expected values and variances of the first component Y1. Now the
expected value exhibits a periodic behaviour with a period different from the
rate T = 1 of the forcing term. Moreover the variance does not converge to zero
but becomes periodic. Hence the properties (16) and (18) are not satisfied. We
conclude that the investigated periodic solution is not globally stable with respect
to the set (26). This behaviour can be understood by observing the computed
solutions in Fig. 5 (right) for the first component. Other locally stable periodic
solutions exist in the considered domain and thus some of the samples tend to
these solutions.

4.2 Van-der-Pol Oscillator

The Van-der-Pol oscillator is also a benchmark in stability theory of ODEs, see [4].
Furthermore, this example has been investigated in case of random parameters
in [1, 2]. We consider the particular autonomous system of first order

y′1(t) = y2(t),

y′2(t) = −µ(y1(t)
2 − 1)y2(t)− 4π2y1(t)

(27)

with a constant µ > 0, which determines the stiffness of the problem. A stable
periodic solution exists for each µ, which is unique except for a phase shift. The
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Figure 6: Solution of Van-der-Pol oscillator for µ = 1 in time domain (left) and
for different choices of µ in phase space (right).

corresponding period depends on µ. Fig. 6 illustrates the periodic solution for
the three different choices µ = 1

4
, 1
2
, 1, where the period is approximately T = 1.

Motivated by the location of the solutions in phase space, we select the set

V := [−4, 4]× [−20, 20] (28)

for a discussion of the global orbit-stability of the periodic solutions. Again we
consider a uniform distribution of the initial values within the rectangle (28) using
two independent random variables S1 ∈ [−4, 4] and S2 ∈ [−20, 20]. Likewise, the
stochastic model is resolved by a Gauss-Legendre quadrature on a grid of size
10 × 10. A Rosenbrock-Wanner method of second order yields the solutions of
initial value problems of (27). Fig. 7 depicts the expected values and the variances
for the distance of the random process to each periodic solution in the separate
cases µ = 1

4
, 1
2
, 1. Since we observe the convergence (23), it follows the global

orbit-stability of each solution for almost all initial values in (28). Moreover, the
convergence (23) is exponentially fast and becomes faster for increasing µ.

The behaviour of expected values and variances of the distance becomes obvious
by observing the trajectories of the solutions for different initial values in phase
space. The 100 computed solutions are depicted in Fig. 8 for two different time
intervals in case of µ = 1. We recognise that all trajectories tend rapidly to the
closed curve, which represents the stable periodic solution. Note that the solu-
tion for y(0) = (0, 0)⊤ would not converge to this periodic solution but remains
constant. However, this particular initial value represents a set of measure zero.
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Figure 7: Expected values (left) and variances (right) of D(Y,Γ) for Van-der-Pol
oscillator with random initial values for different choices of µ.
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Figure 8: Samples of the solution of the Van-der-Pol oscillator with µ = 1 for
different initial values in time interval t ∈ [0, 2] (left) and t ∈ [6, 8] (right).
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5 Conclusions and Outlook

Conditions for global stability of periodic solutions have been defined for non-
autonomous and autonomous systems of ordinary differential equations. We in-
troduced a stochastic model by using random initial values. It follows that the
global stability of periodic solutions is related to the limit behaviour of expected
values and variances of the corresponding random processes. We showed suffi-
cient and necessary conditions for the global stability. Thereby, a local stability
of the periodic solutions is still required. The derived criteria allow for the usage
of established methods for the computation of the expected values and variances
of random processes to investigate the global stability. However, the global sta-
bility cannot be verified without a doubt in the presence of numerical errors of the
methods. A generalisation of this modelling to partial differential equations with
periodic solutions in time is obvious. Yet a generalisation to periodic solutions of
differential algebraic equations is not straightforward, since initial values cannot
be chosen arbitrarily but have to satisfy consistency conditions.
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