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Abstract

We develop a general setting for the quantization of linear bosonic and fermionic
field theories subject to local gauge invariance and show how standard examples such as
linearised Yang-Mills theory and linearised general relativity fit into this framework. Our
construction always leads to a well-defined and gauge-invariant quantum field algebra,
the centre and representations of this algebra, however, have to be analysed on a case-by-
case basis. We discuss an example of a fermionic gauge field theory where the necessary
conditions for the existence of Hilbert space representations are not met on any spacetime.
On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge
field in linearised pure N = 1 supergravity on certain spacetimes, including asymptotically
flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present
an explicit example of a supergravity background on which the Rarita-Schwinger gauge
field can not be consistently quantized.

1 Introduction

Quantum field theory on curved spacetimes has gone through major developments in the last
decades. Explicit models have been constructed in this framework, including the scalar field
[Dim80], the Dirac field [Dim82, San08, DHP09] and the Proca field [Fur99]. These examples
have later been recast into a general approach to the quantization of bosonic and fermionic
matter field theories on curved spacetimes [BGP07, BG11]. On the other hand, examples
of theories exhibiting a local gauge invariance have been investigated in detail, including
the Maxwell field [Dim92, Pfe09, DS11, DL11] and linearised general relativity on Einstein
manifolds [FH12]. The quantization of gauge field theories bears new complications, which are
not present for matter field theories. In particular, the equation of motion in a gauge field
theory is not hyperbolic and thus one does not have a well-defined Cauchy problem or Green’s
operators, which are the basic structures entering the construction of matter quantum field
theories. This problem has been resolved in the examples mentioned above by considering
only the gauge invariant content of such a theory, i.e. gauge invariant observables, and making
use of a special gauge fixing condition. We emphasise that even though a gauge fixing is used
in this construction, the resulting algebra of observables is by definition gauge invariant. The
algebra of gauge invariant observables of a gauge field theory can have new features compared
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to matter field theories. As it has been shown in [BGP07, BG11] (see also Section 4 in the
present paper) the algebra of observables of a bosonic matter quantum field theory never
has a non-trivial centre. In gauge field theories this can in general only be guaranteed under
additional assumptions on the Cauchy surface in the spacetime, see [Dim92] for the Maxwell
field and [FH12] for linearised general relativity on Einstein manifolds. There are examples of
Cauchy surfaces such that the algebra of gauge invariant observables of the Maxwell field has a
non-trivial centre [DL11, DHS]. Due to the theory of degenerate Weyl algebras [BHR04] these
centres do not pose mathematical problems for the quantum field theory on an individual
spacetime, but they have impact on whether or not the theory is locally covariant in the sense
of [BFV03], see e.g. [DL11]. Furthermore, the centres are certainly of physical interest and
should be understood in detail. We also want to mention that in addition to these results on
linear quantum gauge field theories there has been a lot of effort in constructing perturbatively
interacting quantum gauge field theories on curved spacetimes, see e.g. [Hol07, FR11] and
references therein. In our work we restrict ourselves to linear quantum field theories, since as
it will become clear later, there are a lot of non-trivial aspects which have to be understood in
detail even at the linear level. This is in particular the case for fermionic gauge field theories.

The goal of the present paper is twofold: First, we aim at developing a general framework
for the quantization of linear gauge field theories. This can be seen as an extension of
[BGP07, BG11] to field theories subject to a local gauge invariance. We allow for bosonic
as well as fermionic theories and provide an axiomatic definition of a classical linear gauge
field theory in terms of fibre bundles and differential operators thereon. Our setting is general
enough to cover the matter field theories of [BGP07, BG11], which will be promoted to gauge
field theories with a trivial gauge structure, as well as the standard examples such as linearised
Yang-Mills theory and linearised general relativity on Einstein manifolds. Even more, our
general framework is sufficiently flexible to include examples of fermionic gauge field theories.
The prime example of such a theory is the gravitino field (also called Rarita-Schwinger field) in
linearised pure N = 1 supergravity, which we will discuss in detail. A further example which
we will study in detail is a fermionic version of linearised Yang-Mills theory, which emerges for
example as the fermionic sector of a Yang-Mills theory modelled on a Lie supergroup. Bosonic
gauge field theories can always be quantized in terms of (possibly degenerate) Weyl algebras,
while fermionic gauge field theories bear additional complications, similar to their matter field
theory counterparts [BGP07, BG11]. The issue there is that the inner product space associated
to a fermionic matter or gauge field theory is in general indefinite, and one therefore encounters
physical as well as mathematical problems. The mathematical issue is that such indefinite
inner product spaces can not be quantized with the usual CAR-representation. The physical
problem is that, even if there would exist a suitable CAR-algebra, there are negative norm
states in any representation of it. In contrast to other approaches to the quantization of gauge
field theories which are based on kinematical (i.e. still containing gauge degrees of freedom)
representation spaces, our negative norm states would be states in the physical (i.e. gauge
invariant) Hilbert space and would thus pose problems for the physical interpretation of the
fermionic gauge field theory under consideration. This brings us to the second goal of this
paper, which is the investigation under which conditions the two examples of fermionic gauge
field theories give rise to positive definite inner product spaces and thus can be consistently
quantized in terms of a CAR-representation. We prove that the fermionic generalisation
of linearised Yang-Mills theory always leads to an indefinite inner product space and thus
can not be quantized on any spacetime. This implies that the perturbative quantization of
Yang-Mills theories based on Lie supergroups is, in the above mentioned sense, inconsistent
and puts strong mathematical constraints on such theories. The situation is better for the
gravitino field of linearised pure supergravity. We provide a sufficient condition for this theory
to give rise to a positive inner product space, which demands the existence of a special type of
gauge transformation. For compact Cauchy surfaces this condition is fulfilled if the induced
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(Riemannian) Dirac operator on the Cauchy surface has a trivial kernel. We also consider
certain non-compact Cauchy surfaces and answer the question of positivity affirmatively. This
shows that, under assumptions on the Cauchy surface, treating the Rarita-Schwinger field
as a fermionic gauge field theory (as it is required by supergravity) improves on well-known
issues appearing in the quantization of the Rarita-Schwinger field when treated as a matter
field theory, see e.g. [BG11, HM11, SU11]. Introducing a mass term for the gravitino field in
a gauge-invariant way requires the coupling of matter fields to the supergravity or naturally
allows for non-globally hyperbolic backgrounds such as Anti de Sitter spacetime and the
quantization of this theory will be discussed in [HMS]. We also provide an example of a
supergravity background on which the Rarita-Schwinger gauge field can not be consistently
quantized via a CAR-representation. Considering the spacetime M = R× TD−1 – with TD−1

denoting the D−1-torus – equipped with the flat Lorentzian metric, we show that in case of
the trivial spin structure the inner product is indefinite, while for all other spin structures it is
positive definite. A complete classification of Cauchy surfaces and induced metrics thereon
which lead to a positive inner product for the Rarita-Schwinger gauge field seems to be very
complicated and is beyond the scope of this work.

The outline of this paper is as follows: In Section 2 we review some basic aspects of
Lorentzian geometry and differential operators on vector bundles following mainly the presen-
tation in [BGP07, BG11]. We then introduce our definition of classical gauge field theories in
Section 3 and show that the basic examples studied in the literature fit into this framework.
We conclude this section with a theorem on properties of classical gauge field theories, which
generalises the properties found in the explicit examples to the axiomatic level. In Section 4
we study the quantization of gauge field theories and in particular propose suitable algebras of
gauge invariant observables. The question of non-degeneracy (positivity) of bosonic (fermionic)
gauge field theories is investigated in Section 5. The Rarita-Schwinger gauge field is discussed
separately in Section 6. The Appendix A contains our spinor conventions.

2 Notation and preliminaries

We fix our notations and review briefly some aspects of Lorentzian manifolds and differential
operators on vector bundles. We mainly follow [BGP07, BG11] and refer to these works for
more details and references to other literature.

A Lorentzian manifold is a smooth and oriented D-dimensional manifold M equipped with
a smooth Lorentzian metric g of signature (−,+, . . . ,+). The associated volume form will
be denoted by volM . A time-oriented Lorentzian manifold will be called a spacetime. For
every subset A ⊆ M of a spacetime M we denote the causal future/past of A by J±(A). A
closed subset A ⊆M is called spacelike compact if there exists a compact C ⊆M such that
A ⊆ J(C) := J+(C)∪J−(C). A Cauchy surface in a spacetime M is a subset Σ ⊆M which is
met exactly once by every inextensible causal curve and a spacetime is called globally hyperbolic
if and only if it contains a Cauchy surface. We shall need the following theorem proven by
Bernal and Sánchez [BS04, BS05]:

Theorem 2.1. Let (M, g) be a globally hyperbolic spacetime.

(i) Then there exists a smooth manifold Σ, a smooth one-parameter family of Riemannian
metrics {gt}t∈R on Σ and a smooth positive function ϑ on R × Σ, such that (M, g) is
isometric to (R×Σ,−ϑ2dt2⊕gt). Each {t}×Σ corresponds to a smooth spacelike Cauchy
surface in (M, g).

(ii) Let also Σ̃ be a smooth spacelike Cauchy surface in (M, g). Then there exists a smooth
splitting (M, g) ' (R× Σ,−ϑ2dt2 ⊕ gt) as in (i) such that Σ̃ corresponds to {0} × Σ.
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Let V be a K-vector bundle over M with K = R or C. A differential operator of order k on
V is a linear map P : Γ∞(V )→ Γ∞(V ), with Γ∞(V ) denoting the C∞(M)-module of sections
of V , which in local coordinates (x0, . . . , xD−1) and a local trivialisation of V looks like

P =
∑
|α|≤k

Aα(x)
∂|α|

∂xα
. (2.1)

Here α = (α0, . . . , αD−1) ∈ ND
0 denotes a multi-index, |α| = α0 + · · ·+ αD−1 is its length and

∂|α|

∂xα = ∂|α|

∂(x0)α0 ···∂(xD−1)αD−1 . The Aα are smooth functions with values in the endomorphisms
of the typical fibre of V . The principal symbol σP of P associates to each covector ξ ∈ T ∗xM
an endomorphism σP (ξ) : Vx → Vx on the fibre Vx over x ∈M . Locally,

σP (ξ) =
∑
|α|=k

Aα(x) ξα , (2.2)

where ξα = ξα0
0 . . . ξ

αD−1

D−1 and ξ = ξµ dx
µ (sum over µ = 0, . . . , D − 1 understood). In addition

to Γ∞(V ) we introduce the notations Γ∞0 (V ) for the sections of compact support and Γ∞sc (V )
for the sections of spacelike compact support.

Let now K = R and let 〈 , 〉V be a non-degenerate bilinear form on V , that is a family
of non-degenerate bilinear maps 〈 , 〉Vx : Vx × Vx → R on the fibres Vx, for all x ∈ M , that
depend smoothly on x. We define the bilinear map 〈 , 〉Γ(V ), for all sections f, h ∈ Γ∞(V )
with compact overlapping support,

〈f, h〉Γ(V ) :=
∫
M

volM 〈f, h〉V . (2.3)

Every differential operator P of order k on V has a formal adjoint , i.e. a differential operator
P † of order k on V , such that

〈P †f, h〉Γ(V ) = 〈f, Ph〉Γ(V ) , (2.4)

for all f, h ∈ Γ∞(V ) with compact overlapping support. If P † = P we say that P is formally
self-adjoint (with respect to 〈 , 〉V ). More generally, let V and W be two real vector bundles
with non-degenerate bilinear forms 〈 , 〉V and 〈 , 〉W . Then any differential operator K :
Γ∞(W )→ Γ∞(V ) of order k has a formal adjoint differential operator K† : Γ∞(V )→ Γ∞(W )
of order k satisfying 〈K†f, h〉Γ(W ) = 〈f,Kh〉Γ(V ), for all f ∈ Γ∞(V ) and h ∈ Γ∞(W ) with
compact overlapping support.

Definition 2.2. Let P be a differential operator on a vector bundle V over a Lorentzian
manifold M . A retarded/advanced Green’s operator for P is a continuous linear map G± :
Γ∞0 (V )→ Γ∞(V ) satisfying

(i) P ◦G± = id,

(ii) G± ◦ P
∣∣
Γ∞0 (V )

= id,

(iii) supp(G±f) ⊆ J±(supp(f)) for any f ∈ Γ∞0 (V ).

Definition 2.3. Let P : Γ∞(V ) → Γ∞(V ) be a differential operator on a vector bundle V
over a globally hyperbolic spacetime M with a non-degenerate bilinear form 〈 , 〉V .

(i) We say that P is Green-hyperbolic if P and P † have Green’s operators.
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(ii) We say that P is Cauchy-hyperbolic if the Cauchy problems for P and P † are well-defined.

Remark 2.4. The Green’s operators of a Green-hyperbolic operator on a globally hyperbolic
spacetime are necessarily unique, see Remark 3.7 in [BG11]. Cauchy-hyperbolic operators
are also Green-hyperbolic, but there are Green-hyperbolic operators that are not Cauchy-
hyperbolic, see Section 2.7 in [BG11].

Example 2.5. Let M be a globally hyperbolic spacetime and V a vector bundle over M .

1.) A second-order differential operator P on V is called a normally hyperbolic operator
(also wave operator) if its principal symbol is given by the inverse metric g−1 times
the identity on the fibre, σP (ξ) = g−1(ξ, ξ) id. In other words, a differential operator is
normally hyperbolic if and only if in local coordinates xµ and a local trivialisation of V

P = gµν(x) ∂µ∂ν +Aµ(x) ∂µ +B(x) , (2.5)

where Aµ and B smooth functions valued in the endomorphisms of the typical fibre of V .

2.) A first-order differential operator P on V is called of Dirac-type if P 2 = P ◦ P is a
normally hyperbolic operator.

The formal adjoints of normally hyperbolic operators and operators of Dirac-type are again
normally hyperbolic and of Dirac-type respectively, and these two classes of differential
operators are Green-hyperbolic and even Cauchy-hyperbolic, see [BGP07, BG11, Mue10].

As a last prerequisite we require the following lemma and theorem on properties of Green’s
operators. See Lemma 3.3 and Theorem 3.5 in [BG11] for the proofs.

Lemma 2.6. Let M be a globally hyperbolic spacetime and V a vector bundle over M equipped
with a non-degenerate bilinear form 〈 , 〉V . Denote by G± the retarded/advanced Green’s
operators for a Green-hyperbolic operator P on V . Then the retarded/advanced Green’s
operators G†± for P † satisfy, for all f, h ∈ Γ∞0 (V ),

〈G†∓f, h〉Γ(V ) = 〈f,G±h〉Γ(V ) . (2.6)

In particular, if P † = P is formally self-adjoint then 〈G∓f, h〉Γ(V ) = 〈f,G±h〉Γ(V ), for all
f, h ∈ Γ∞0 (V ).

Theorem 2.7. Let M be a globally hyperbolic spacetime, V a vector bundle over M and P a
Green-hyperbolic operator on V . For G± being the retarded/advanced Green’s operators for P
we define the linear map G := G+ −G− : Γ∞0 (V )→ Γ∞sc (V ). Then the following sequence of
linear maps is a complex, which is exact everywhere:

{0} −→ Γ∞0 (V ) P−→ Γ∞0 (V ) G−→ Γ∞sc (V ) P−→ Γ∞sc (V ) . (2.7)
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3 Classical gauge field theories

In this section we provide a general setting to describe classical gauge field theories. This
requires, of course, more structures compared to classical field theories which are not subject
to gauge invariance, i.e. classical matter field theories. Throughout this article all field theories
are assumed to be real and non-interacting, i.e. the dynamics is governed by a linear equation
of motion operator. The non-trivial coupling is thus only to fixed classical background fields,
such as the gravitational field or background gauge fields.

Before investigating classical gauge field theories we first provide a definition of a classical
matter field theory following the spirit of [BGP07, BG11] and give some examples.

Definition 3.1. A (real) classical matter field theory is given by a triple
(
M,V, P

)
, where

• M is a globally hyperbolic spacetime

• V is a real vector bundle over M equipped with a non-degenerate bilinear form 〈 , 〉V

• P : Γ∞(V )→ Γ∞(V ) is a formally self-adjoint Green-hyperbolic operator

We say that a classical matter field theory is bosonic if 〈 , 〉V is symmetric and fermionic if
〈 , 〉V is antisymmetric.

Example 3.2 (Klein-Gordon field). Let M be a globally hyperbolic spacetime and V := M×R
be the trivial real line bundle. We equip V with the canonical non-degenerate symmetric
bilinear form 〈 , 〉V , which is induced from the inner product on the typical fibre R given by,
for all v1, v2 ∈ R,

〈v1, v2〉R = v1 v2 . (3.1)

The C∞(M)-module of sections Γ∞(V ) is isomorphic to C∞(M).
Using the differential d : Ωn(M)→ Ωn+1(M) and its formal adjoint δ : Ωn(M)→ Ωn−1(M),

given by δ = (−1)nD+D ∗ d∗ with D = dim(M) and ∗ denoting the Hodge operator, we define
the Klein-Gordon operator of mass m ∈ [0,∞)

P : C∞(M)→ C∞(M) , f 7→ Pf = δdf +m2f . (3.2)

This operator is formally self-adjoint with respect to 〈 , 〉V and normally hyperbolic, thus in
particular also Green-hyperbolic.

This shows that the Klein-Gordon field is a bosonic classical matter field theory according
to Definition 3.1.

Example 3.3 (Majorana field). For our spinor conventions see Appendix A and for a general
discussion of spinor fields we refer to [San08]. Let M be a globally hyperbolic spacetime
of dimension D mod 8 = 2, 3, 4 equipped with a spin structure and let DM be the Dirac
bundle. The typical fibre of DM is given by C2bD/2c . We can use the charge conjugation map
c : DM → DM to define the real subbundle V := DMR :=

{
e ∈ DM : ec = e

}
, which we call

the Majorana bundle. We equip the typical fibre R2bD/2c of DMR with the non-degenerate
antisymmetric bilinear map, for all v1, v2 ∈ R2bD/2c ,

〈v1, v2〉R2bD/2c = i vT
1 C v2 , (3.3)

where C denotes the charge conjugation matrix, i the imaginary unit and T the transposition
operation. This induces a non-degenerate antisymmetric bilinear form 〈 , 〉V on V = DMR.
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Let us denote by TM the tangent and by T ∗M the cotangent bundle on M . Using the
connection ∇ : Γ∞(V )→ Γ∞(V ⊗ T ∗M), which is induced by the Levi-Civita connection, and
the γ-matrix section γ ∈ Γ∞

(
TM ⊗ End(V )

)
, which is covariantly constant, we define the

Dirac operator /∇ : Γ∞(V )→ Γ∞(V ) by the contraction of γ and ∇. In local coordinates we
have /∇ = γµ∇µ. We further define the Dirac operator of mass m ∈ [0,∞) by

P : Γ∞(V )→ Γ∞(V ) , f 7→ Pf = /∇f +mf . (3.4)

The operator P is formally self-adjoint with respect to 〈 , 〉V and of Dirac-type, thus in
particular Green-hyperbolic.

This shows that the Majorana field is a fermionic classical field theory according to
Definition 3.1.

For a classical gauge field theory Definition 3.1 is not suitable, since firstly it does not
encode the notion of gauge invariance and secondly, as well-known, gauge invariance implies
that the dynamics of gauge fields can not be governed by hyperbolic operators. To include the
missing structures we propose the following axioms:

Definition 3.4. A classical gauge field theory is given by a six-tuple
(
M,V,W,P,K, T

)
, where

• M is a globally hyperbolic spacetime

• V and W are real vector bundles over M equipped with non-degenerate bilinear forms
〈 , 〉V and 〈 , 〉W
• P : Γ∞(V )→ Γ∞(V ) is a formally self-adjoint differential operator

• K : Γ∞(W )→ Γ∞(V ) is a differential operator satisfying P ◦K = 0 and R := K† ◦K
Cauchy-hyperbolic for non-trivial K 6= 0

• T : Γ∞(W ) → Γ∞(V ) is a differential operator, such that P̃ := P + T ◦K† is Green-
hyperbolic and Q := K† ◦ T is Green-hyperbolic for non-trivial K 6= 0

We say that a classical gauge field theory is bosonic if 〈 , 〉V is symmetric and fermionic if
〈 , 〉V is antisymmetric.

Remark 3.5. As the following examples will show, the objects appearing in the six-tuple(
M,V,W,P,K, T

)
describing a classical gauge field theory have the following physical inter-

pretation:
Sections of the vector bundle V describe configurations of the gauge field. The operator P

governs its dynamics. The operator K generates gauge transformations by, for all f ∈ Γ∞(V )
and h ∈ Γ∞(W ), f 7→ f ′ = f + Kh. Thus, sections of W describe configurations of the
gauge transformation parameters. The condition P ◦K = 0 encodes the gauge invariance
of the dynamics, in particular it implies that pure gauge configurations Kh ∈ Γ∞(V ) solve
the equation of motion. The condition R := K† ◦K Cauchy-hyperbolic is used to prove that
K†f = 0 is a consistent gauge fixing condition, i.e. that any solution of Pf = 0 with spacelike
compact support is gauge equivalent to a solution in the kernel of K†, see Theorem 3.12 (iv).
The Green-hyperbolic operator P̃ := P + T ◦K† is the equation of motion operator after the
canonical gauge fixing K†f = 0. The Green-hyperbolic operator Q := K† ◦ T ensures that the
canonical gauge fixing is compatible with time evolution.

Even though K† has also the interpretation of a gauge fixing operator, we want to stress
that we do not perform any explicit gauge fixing and work completely in terms of gauge
invariant quantities when discussing algebras of observables. The objects in the six-tuple(
M,V,W,P,K, T

)
are then required to guarantee the consistency of the algebra of observables

and to analyse its properties, see Sections 4, 5 and 6.
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Before providing non-trivial examples of classical gauge field theories we show that any
classical matter field theory is also a classical gauge field theory with trivial gauge structure K.

Proposition 3.6. Let
(
M,V, P

)
be a classical matter field theory. Then

(
M,V, V, P,K =

0, T = 0
)

is a classical gauge field theory with trivial gauge structure K = 0.

Proof. Since K = 0 we also have K† = 0. All conditions of Definition 3.4 are easily verified.

The standard examples of linearised bosonic and fermionic gauge field theories also fit into
Definition 3.4.

Example 3.7 (Linearised Yang-Mills field). The Yang-Mills field should only serve as an
illustrative example. This is why we restrict ourselves to the case of trivial gauge bundles in
order to simplify the discussion.

Let M be a globally hyperbolic spacetime and g be a real semisimple Lie algebra. Let W be
the trivial vector bundle W := M × g and V := W ⊗ T ∗M , with T ∗M denoting the cotangent
bundle. We equip W with the non-degenerate symmetric bilinear form 〈 , 〉W induced from
the Killing form on the typical fibre g, for all w1, w2 ∈ g,

〈w1, w2〉g = Tr
(
adw1 adw2

)
(3.5)

and V with the non-degenerate symmetric bilinear form 〈 , 〉V given by the product of 〈 , 〉W
and the inverse metric g−1 on M . The C∞(M)-module of sections Γ∞(W ) is isomorphic to
the C∞(M)-module of g-valued functions C∞(M, g) and Γ∞(V ) is isomorphic to the g-valued
one-forms Ω1(M, g).

A Yang-Mills field in this setting is a section A ∈ Ω1(M, g). The curvature of A is given by
F = dA+ 1

2 [A,A] ∈ Ω2(M, g). We define the covariant differential dA : Ωn(M, g)→ Ωn+1(M, g)
by dAη := dη+[A, η] and denote its formal adjoint by δA : Ωn(M, g)→ Ωn−1(M, g). Explicitly,
δAη = (−1)nD+D ∗ dA ∗ η, where ∗ denotes the Hodge operator and D = dim(M). The
Yang-Mills equation reads δAF = 0.

Let us now linearise the Yang-Mills field A around a solution A0 ∈ Ω1(M, g) of the Yang-
Mills equation, i.e. we write A = A0 + α with α ∈ Ω1(M, g) and consider only terms linear in
α. The linearised curvature reads Flin = F0 + dA0α, where F0 is the curvature of A0 and dA0

the covariant differential given by A0. The linearisation of the Yang-Mills equation yields

0 = δA0F0 + δA0dA0α+ (−1)D ∗ [α, ∗F0] = δA0dA0α− ∗[∗F0, α] , (3.6)

since A0 is on-shell. We define the differential operator P on Ω1(M, g) ' Γ∞(V ),

P : Ω1(M, g)→ Ω1(M, g) , α 7→ Pα = δA0dA0α− ∗[∗F0, α] . (3.7)

It is formally self-adjoint with respect to 〈 , 〉V .
The gauge invariance of the full (not linearised) theory is given by transformations A 7→

A+ dAε labelled by ε ∈ C∞(M, g). Notice that C∞(M, g) ' Γ∞(W ). If we linearise the gauge
transformations we obtain for all ε ∈ C∞(M, g) the transformation law α 7→ α+ dA0ε. Let us
define the operator K by

K : C∞(M, g)→ Ω1(M, g) , ε 7→ Kε = dA0ε . (3.8)

It is a standard calculation to check that P ◦K = 0, provided the background Yang-Mills field
A0 is on-shell, i.e. δA0F0 = 0.

We define further the operator

T : C∞(M, g)→ Ω1(M, g) , η 7→ Tη = dA0η . (3.9)
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Notice that T = K and that P̃ := P + T ◦K† = δA0 ◦ dA0 + dA0 ◦ δA0 − ∗[∗F0, · ] is normally
hyperbolic and thus in particular Green-hyperbolic. We further obtain Q := K† ◦T = δA0 ◦dA0 ,
which is a normally hyperbolic operator on C∞(M, g) and thus in particular Green-hyperbolic.
The operator R := K† ◦K = δA0 ◦ dA0 agrees with Q and is Cauchy-hyperbolic.

This shows that the linearised Yang-Mills field on a trivial g-bundle is a bosonic classical
gauge field theory according to Definition 3.4.

Example 3.8 (Linearised general relativity). The case of linearised D=4 general relativity in
presence of a cosmological constant Λ has been recently studied in detail by Fewster and Hunt
[FH12]. We briefly show that this theory is a bosonic classical gauge field theory according to
Definition 3.4 and refer to [FH12] for more details. As in this paper we restrict ourselves to
D=4 and employ a tensor index notation to simplify readability.

Let M be a globally hyperbolic spacetime of dimension D=4. Let further W := T ∗M be
the cotangent bundle and V :=

∨2 T ∗M be the bundle of symmetric contravariant tensors of
rank 2. The metric gµν ∈ Γ∞(V ) of the globally hyperbolic spacetime M is assumed to be a
solution of the vacuum Einstein equations Rµν = Λ gµν , with Rµν denoting the Ricci tensor of
gµν . We equip W with the canonical non-degenerate symmetric bilinear form 〈 , 〉W induced
by the inverse metric gµν on M and V with the non-degenerate symmetric bilinear form

〈f, h〉V = f
µν
hµν = gµρgνσ

(
fµν −

1
2
gµν f

)
hρσ = fµνhµν −

1
2
f h , (3.10)

where f = fµµ = gµνfµν is the trace and · is called the trace-reversal operation.
Let us consider fluctuations gµν + εµν , with εµν ∈ Γ∞(V ), of the background metric. The

equation of motion operator obtained by linearising the vacuum Einstein equations reads for
the trace-reversed metric fluctuations hµν := εµν = εµν − 1

2gµν ε

P : Γ∞(V )→ Γ∞(V ) , hµν 7→ (Ph)µν = gµν∇ρ∇σhρσ + �hµν + 2Λhµν − 2∇ρ∇(µhν)ρ ,

(3.11)

where ∇ denotes the Levi-Civita connection corresponding to gµν and � = ∇µ∇µ = gµν∇µ∇ν
the d’Alembert operator. The parenthesis ( ) denotes symmetrisation of weight one. It can be
checked that P is formally self-adjoint with respect to 〈 , 〉V .

The gauge invariance of linearised general relativity is governed by the operator

K : Γ∞(W )→ Γ∞(V ) , wµ 7→ (Kw)µν = ∇(µwν) = ∇(µwν) −
1
2
gµν∇ρwρ . (3.12)

The property P ◦ K = 0, which holds for backgrounds satisfying the on-shell condition
Rµν = Λ gµν , has already been verified in [FH12], see also [SW74]. More precisely, the
operators PFH and KFH of Fewster and Hunt are related to ours by P = −2PFH ◦ · and
K = 1

2 · ◦KFH and from PFH◦KFH = 0 it follows P ◦K = −PFH◦ · ◦ · ◦KFH = −PFH◦KFH = 0,
since the trace-reversal squares to the identity. The formal adjoint of K is given by, for all
hµν ∈ Γ∞(V ), (K†h)µ = −∇νhµν .

Let us further define the operator

T : Γ∞(W )→ Γ∞(V ) , wµ 7→ (Tw)µν = −2(Kw)µν = −2
(
∇(µwν) −

1
2
gµν∇ρwρ

)
. (3.13)

For P̃ := P + T ◦K† we obtain

P̃ : Γ∞(V )→ Γ∞(V ) , hµν 7→ (P̃ h)µν = �hµν − 2Rρ σ
µν hρσ , (3.14)

where Rρ σ
µν is the Riemann tensor. This is a normally hyperbolic operator and thus in

particular Green-hyperbolic. For Q := K† ◦ T we obtain

Q : Γ∞(W )→ Γ∞(W ) , wµ 7→ (Qw)µ = �wµ + Λwµ , (3.15)
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which is also a normally hyperbolic operator and thus in particular Green-hyperbolic. The
operator R := K† ◦K = −1

2Q is a multiple of a normally hyperbolic operator and in particular
Cauchy-hyperbolic.

This shows that linearised general relativity in presence of a cosmological constant is a
bosonic classical gauge field theory according to Definition 3.4.

Example 3.9 (Toy model: Fermionic gauge field). Before introducing the Rarita-Schwinger
gauge field as an example of a fermionic gauge field theory in Example 3.10 we first discuss a
simple toy model.

Let M be a globally hyperbolic spacetime and let
(
R2m,Ω

)
, with m ∈ N, be the symplectic

vector space of dimension 2m, i.e. Ω is a non-degenerate antisymmetric 2m× 2m-matrix. We
define W := M × R2m to be the trivial vector bundle and equip it with the non-degenerate
antisymmetric bilinear form 〈 , 〉W induced from the symplectic structure on the typical fibre,
for all w1, w2 ∈ R2m,

〈w1, w2〉Ω := wT
1 Ωw2 . (3.16)

We further define V := W ⊗ T ∗M , where T ∗M is the cotangent bundle, and equip it with
the non-degenerate antisymmetric bilinear form 〈 , 〉V given by the product of 〈 , 〉W and
the inverse metric g−1 on M . The C∞(M)-module of sections Γ∞(W ) is isomorphic to
the C∞(M)-module C∞(M,R2m) and Γ∞(V ) is isomorphic to the R2m-valued one-forms
Ω1(M,R2m).

We define the operator

P : Ω1(M,R2m)→ Ω1(M,R2m) , α 7→ Pα = δdα , (3.17)

which is formally self-adjoint with respect to 〈 , 〉V . We further define

K : C∞(M,R2m)→ Ω1(M,R2m) , ε 7→ Kε = dε . (3.18)

It obviously holds P ◦K = 0 and the formal adjoint of K is K† = δ. Defining the operator

T : C∞(M,R2m)→ Ω1(M,R2m) , ε 7→ Tε = dε , (3.19)

we obtain that the operators P̃ := P+T ◦K† = δ◦d+d◦δ (on Ω1(M,R2m)) and Q := K†◦T =
δ ◦d (on C∞(M,R2m)) are normally hyperbolic and thus in particular Green-hyperbolic. Since
T = K we also have that R := K†◦K = δ◦d is a normally hyperbolic operator on C∞(M,R2m)
and in particular Cauchy-hyperbolic.

The six-tuple
(
M,V,W,P,K, T

)
is thus a fermionic classical gauge field theory according

to Definition 3.4.

Example 3.10 (Rarita-Schwinger gauge field). Our model for the Rarita-Schwinger gauge field
is inspired by D=4 simple supergravity, which we will briefly sketch. For details on supergravity
we refer to [VN81, Nil83, WB92]. The field content of this theory is the gravitational field,
described by a vierbein E, and the gravitino field Ψ. The action functional is given by a
locally supersymmetric extension of the Einstein-Hilbert action of general relativity. Solutions
of the corresponding equations of motion in a trivial gravitino background Ψ = 0 are given by
Ricci-flat Lorentzian manifolds (M, g). We are interested in modelling linearised fluctuations
of the gravitino field around these backgrounds.

As we have already seen in the Examples 3.7 and 3.8, the on-shell conditions for the
background fields are necessary to maintain gauge invariance of the linearised gauge field
theory. Thus, we are forced to assume that M is a globally hyperbolic spacetime which is
Ricci-flat and equipped with a spin structure. We take D mod 8 = 2, 3, 4 in order to have
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a suitable Majorana condition available, see Appendix A for our spinor conventions. The
Rarita-Schwinger gauge field on more general spacetimes requires the coupling of supergravity
to matter fields and will be discussed in a forthcoming publication [HMS]. We also assume
that D ≥ 3 to have a non-trivial equation of motion for the gravitino (otherwise the γµνρ

defined below is trivial; note that this is well in accord with the fact that gravity in D=2
is not dynamical). We define W := DMR to be the Majorana bundle (see Example 3.3)
and V := DMR ⊗ T ∗M , where T ∗M denotes the cotangent bundle. We equip W with the
canonical non-degenerate antisymmetric bilinear form 〈 , 〉W , see (3.3) for an expression on
the typical fibre. It is convenient not to use the supergravity gravitino Ψ ∈ Γ∞(V ) (linearised
around the trivial configuration) as the dynamical degrees of freedom, but to do a field
redefinition instead. This is similar to the trace-reversal we have used in Example 3.8. Using
the γ-section γ ∈ Γ∞

(
TM ⊗ End(DMR)

)
we define the linear map ·̃ : Γ∞(V ) → Γ∞(V ),

which is given in local coordinates by, for all ψ ∈ Γ∞(V ), ψ̃µ := ψµ − 1
D−2γµ γ

νψν , where
γµ = gµρ γ

ρ. Notice that γµψ̃µ = − 2
D−2γ

µψµ and that ·̃ is invertible via ·̃−1 given locally by
ψ̃−1
µ = ψµ− 1

2γµγ
νψν . We define the Rarita-Schwinger gauge field ψ ∈ Γ∞(V ) by the equation

Ψ = ψ̃, where Ψ ∈ Γ∞(V ) is the linearised supergravity gravitino field. We equip V with the
non-degenerate bilinear form 〈 , 〉V , which reads in local coordinates

〈ψ1, ψ2〉V := 〈ψ̃1µ, ψ
µ
2 〉W = 〈ψ1µ, ψ

µ
2 〉W +

1
D − 2

〈γµψ1µ, γ
νψ2ν〉W . (3.20)

Notice that 〈 , 〉V is antisymmetric.
The equation of motion for the linearised supergravity gravitino field Ψ ∈ Γ∞(V ) is obtained

by the supergravity action and it is given by the massless Rarita-Schwinger equation, which
reads in local coordinates γµνρ∇νΨρ = 0, where γµνρ = γ[µγνγρ], the parenthesis [ ] denotes
antisymmetrisation of weight one and ∇ is the connection on V = DMR ⊗ T ∗M induced by
the Levi-Civita connection. For the redefined degrees of freedom ψ ∈ Γ∞(V ) with Ψ = ψ̃ the
dynamics is governed by the equation of motion operator P , given in local coordinates by

P : Γ∞(V )→ Γ∞(V ) , ψµ 7→ (Pψ)µ = /∇ψµ − γµ∇νψν . (3.21)

This operator is formally self-adjoint with respect to 〈 , 〉V .
The linearised local supersymmetry transformations act on the supergravity gravitino field

Ψ ∈ Γ∞(V ) by Ψµ 7→ Ψµ + ∇µε, where ε ∈ Γ∞(W ). For the redefined degrees of freedom
ψ ∈ Γ∞(V ) with Ψ = ψ̃ we obtain the operator K, given in local coordinates by

K : Γ∞(W )→ Γ∞(V ) , ε 7→ (Kε)µ = ∇̃µε
−1

= ∇µε−
1
2
γµ /∇ε . (3.22)

By a standard calculation one checks that P ◦K = 0 if and only if the metric g is Ricci-flat,
which was exactly the on-shell condition imposed by supergravity. The formal adjoint of K is
given by, for all f ∈ Γ∞(V ), K†f = −∇µfµ.

Let us further define the operator

T : Γ∞(W )→ Γ∞(V ) , f 7→ (Tf)µ = −γµf . (3.23)

Then P̃ := P + T ◦K† is simply the (twisted) Dirac operator on V , given in local coordinates
by (P̃ψ)µ = /∇ψµ. We further find that the operator Q := K† ◦ T is the Dirac operator on W
(remember that the section γ is covariantly constant). These operators are of Dirac-type and
thus in particular Green-hyperbolic. For the operator R := K† ◦K we find, for all ε ∈ Γ∞(W ),
Rε = −1

2∇
µ∇µε, where we have used that the metric g is Ricci-flat. This is up to a constant

prefactor a normally hyperbolic operator and thus in particular Cauchy-hyperbolic.
This shows that the Rarita-Schwinger gauge field is a fermionic classical gauge field theory

according to Definition 3.4.
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We collect important properties of classical gauge field theories which follow from the
Definition 3.4 and will be required later for the construction and analysis of the algebra of
observables. Before, we have to introduce some notations:

Definition 3.11. Let
(
M,V,W,P,K, T

)
be a classical gauge field theory. We define the

following spaces:

• Ker0(K†) :=
{
h ∈ Γ∞0 (V ) : K†h = 0

}
• Sol :=

{
f ∈ Γ∞sc (V ) : Pf = 0

}
• G := K[Γ∞sc (W )] :=

{
Kh : h ∈ Γ∞sc (W )

}
• Ĝ := K[Γ∞(W )] ∩ Γ∞sc (V ) =

{
Kh ∈ Γ∞sc (V ) : h ∈ Γ∞(W )

}
Notice that G ⊆ Ĝ ⊆ Sol, where the last inclusion is due to P ◦ K = 0. We say that
f, f ′ ∈ Γ∞sc (V ) are G-gauge equivalent , if there exists a Kh ∈ G such that f ′ = f + Kh.
Analogously, we say that f, f ′ ∈ Γ∞sc (V ) are Ĝ-gauge equivalent , if there exists a Kh ∈ Ĝ such
that f ′ = f +Kh. Since the inclusion G ⊆ Ĝ holds true, G-gauge equivalence implies Ĝ-gauge
equivalence.

Theorem 3.12. Let
(
M,V,W,P,K, T

)
be a classical gauge field theory with P̃ := P +T ◦K†,

Q := K† ◦ T and R := K† ◦K. Let us denote by G eP
± : Γ∞0 (V )→ Γ∞(V ) the retarded/advanced

Green’s operators for P̃ . In case of K 6= 0 we denote by GQ±, G
R
± : Γ∞0 (W ) → Γ∞(W ) the

retarded/advanced Green’s operators for Q and R, respectively. Then the following hold true:

(i) K† ◦ P̃ = Q ◦K† and P̃ ◦K = T ◦R.

(ii) If K 6= 0, then K† ◦G eP
± = GQ± ◦K† on Γ∞0 (V ) and K ◦GR± = G

eP
± ◦ T on Γ∞0 (W ).

(iii) G
eP := G

eP
+ −G

eP
− satisfies, for all f, h ∈ Ker0(K†),

〈f,G ePh〉Γ(V ) = −〈G eP f, h〉Γ(V ) . (3.24)

That is, G eP is formally skew-adjoint with respect to 〈 , 〉V on the kernel Ker0(K†) ⊆
Γ∞0 (V ).

(iv) Any ψ ∈ Γ∞sc (V ) is G-gauge equivalent to a ψ′ ∈ Γ∞sc (V ) satisfying K†ψ′ = 0.

In particular, any ψ ∈ Sol is G-gauge equivalent to a ψ′ ∈ Sol satisfying K†ψ′ = 0 and
thus also P̃ψ′ = 0.

(v) Any ψ ∈ Sol satisfying K†ψ = 0 is G-gauge equivalent to G ePh for some h ∈ Ker0(K†).

(vi) Let h ∈ Ker0(K†), then G
ePh ∈ G if and only if h ∈ P [Γ∞0 (V )].

Proof. Proof of (i): Since P is formally self-adjoint and P ◦K = 0 we obtain K† ◦ P = 0. It
follows K† ◦ P̃ = K† ◦ T ◦K† = Q ◦K† and P̃ ◦K = T ◦K† ◦K = T ◦R.

Proof of (ii): Using (i) we obtain, for all h ∈ Γ∞0 (W ) and f ∈ Γ∞0 (V ),

〈h,K†G eP
±f〉Γ(W ) = 〈Q†GQ

†

∓ h,K†G
eP
±f〉Γ(W ) = 〈GQ

†

∓ h,QK†G
eP
±f〉Γ(W )

= 〈GQ
†

∓ h,K†P̃G
eP
±f〉Γ(W ) = 〈GQ

†

∓ h,K†f〉Γ(W ) = 〈h,GQ±K†f〉Γ(W ) , (3.25)
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where we also have used Lemma 2.6 in the last equality. The hypothesis now follows from the
non-degeneracy of 〈 , 〉W . The other identity is proven analogously.

Proof of (iii): For K = 0 we have P̃ = P and the hypothesis follows from the fact that
P was assumed to be formally self-adjoint and Lemma 2.6. Let us now assume that K 6= 0
and consider f, h ∈ Ker0(K†). From (ii) we obtain K†G

eP
±f = GQ±K

†f = 0 and similarly
K†G

eP
±h = 0. Thus,

〈f,G eP
±h〉Γ(V ) = 〈P̃G eP

∓f,G
eP
±h〉Γ(V ) = 〈PG eP

∓f,G
eP
±h〉Γ(V ) = 〈G eP

∓f, PG
eP
±h〉Γ(V )

= 〈G eP
∓f, P̃G

eP
±h〉Γ(V ) = 〈G eP

∓f, h〉Γ(V ) , (3.26)

where we have used in the second and fourth equality that on Ker(K†) the operator P̃ equals
P and in the third equality that P is formally self-adjoint. This in particular shows (3.24).

Proof of (iv): Let ψ ∈ Γ∞sc (V ) be arbitrary and let ε ∈ Γ∞sc (W ). We define ψ′ := ψ+Kε and
obtain from the condition K†ψ′ = 0 the equation K†Kε = −K†ψ. Since K†ψ ∈ Γ∞sc (W ) and
R = K† ◦K was assumed to be Cauchy-hyperbolic this equation has a solution ε ∈ Γ∞sc (W ), see
[BF09, Chapter 3, Corollary 5] for a discussion of how to treat inhomogeneities of non-compact
support. It then holds that ψ′ = ψ +Kε ∈ Γ∞sc (V ) with K†ψ′ = 0 and Kε ∈ G.

Proof of (v): We first note that as a consequence of (ii) and Theorem 2.7 we obtain that
G

ePh with h ∈ Γ∞0 (V ) satisfies K†G ePh = GQK†h = 0 if and only if K†h ∈ Q[Γ∞0 (W )].
Let now ψ ∈ Sol be such that K†ψ = 0. As a consequence, P̃ψ = 0 and since P̃ is

Green-hyperbolic there is a h ∈ Γ∞0 (V ) such that ψ = G
ePh, see Theorem 2.7. Due to the

argument above, we have K†h = Qk for some k ∈ Γ∞0 (W ). Let us consider the following
G-gauge transformation

ψ −KGRk (ii)
= ψ −G ePTk = G

eP (h− Tk) . (3.27)

Defining h′ := h − Tk we have shown that ψ is G-gauge equivalent to G
ePh′ with K†h′ =

K†h−K†Tk = Qk −Qk = 0, i.e. h′ ∈ Ker0(K†).

Proof of (vi): If h = Pf ∈ P [Γ∞0 (V )] then G
ePh = G

ePPf = −G ePTK†f = −KGRK†f
is an element in G. To show the other direction, let h ∈ Ker0(K†) be such that there is
a k ∈ Γ∞sc (W ) satisfying G

ePh = Kk. It follows that K†Kk = 0 and since R = K† ◦ K is
assumed to by Cauchy-hyperbolic there is by Theorem 2.7 a f ∈ Γ∞0 (W ) such that k = GRf .
Using (ii) we obtain Kk = KGRf = G

ePTf = G
ePh, which implies h − Tf = P̃ q for some

q ∈ Γ∞0 (V ). The condition K†h = 0 further leads us to −K†Tf = QK†q, i.e. Q
(
K†q+ f

)
= 0,

and since f and q are of compact support we have by Theorem 2.7 f = −K†q. Thus,
h = Tf + P̃ q = −TK†q + P̃ q = Pq.

4 Gauge invariant on-shell algebra of observables

The goal of this section is to construct from the data of a classical gauge field theory(
M,V,W,P,K, T

)
a suitable quantum algebra of gauge invariant observables describing the

quantized gauge field theory. We will first review the quantization of bosonic and fermionic
matter field theories and then extend these constructions to gauge field theories. We again
follow the spirit of [BG11], where also more details on bosonic and fermionic quantization can
be found.

The strategy to quantize a bosonic (fermionic) matter field theory
(
M,V, P

)
is to first

associate to it a suitable symplectic (inner product) space, which is then quantized in terms of
a CCR (CAR) representation.
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Proposition 4.1. Let
(
M,V, P

)
be a classical matter field theory, denote the Green’s operators

for P by G± and G := G+ −G−. We define the vector space E := Γ∞0 (V )/P [Γ∞0 (V )] and the
bilinear map

τ : E × E → R , ([f ], [h]) 7→ τ
(
[f ], [h]

)
= 〈f,Gh〉Γ(V ) =

∫
M

volM 〈f,Gh〉V . (4.1)

Then the map τ is well-defined and weakly non-degenerate. If further
(
M,V, P

)
is bosonic,

then τ is antisymmetric, i.e. (E , τ) is a symplectic vector space. If
(
M,V, P

)
is fermionic,

then τ is symmetric, i.e. (E , τ) is an (i.g. indefinite) inner product space.

Proof. The map τ is well-defined, since G is formally skew-adjoint with respect to 〈 , 〉V (see
Lemma 2.6) and we have G ◦ P = 0 on Γ∞0 (V ).

We now show that τ is weakly non-degenerate. Notice that because of the non-degeneracy
of 〈 , 〉V the condition 〈f,Gh〉Γ(V ) = 0, for all f ∈ Γ∞0 (V ), implies Gh = 0. By Theorem
2.7 there is then a k ∈ Γ∞0 (V ), such that h = Pk, meaning that [h] = [0]. Thus, τ is weakly
non-degenerate.

Using again the skew-adjointness of G and the symmetry (antisymmetry) of 〈 , 〉V for a
bosonic (fermionic) matter field theory we obtain, for all [f ], [h] ∈ E ,

τ
(
[f ], [h]

)
= 〈f,Gh〉Γ(V ) = −〈Gf, h〉Γ(V ) = ∓〈h,Gf〉Γ(V ) = ∓ τ

(
[h], [f ]

)
, (4.2)

where − is for bosonic and + for fermionic theories.

For a physically and also mathematically consistent quantization of fermionic field theories
we have to demand further a positivity condition on τ . See the Remarks 4.6 and 4.8 below for
a detailed comment.

Definition 4.2. A fermionic classical matter field theory
(
M,V, P

)
is of positive type if (E , τ)

is a (real) pre-Hilbert space, i.e. the map τ is positive definite.

We provide examples of fermionic classical matter field theories of positive type in the
next section. Any bosonic classical matter field theory can be quantized in terms of a
CCR-representation.

Definition 4.3. A CCR-representation of a symplectic vector space (E , τ) is a pair (w, A),
where A is a unital C∗-algebra and w : E → A is a map satisfying:

(i) A = C∗(w(E)),

(ii) w(0) = 1,

(iii) w(f)∗ = w(−f),

(iv) w(f + h) = ei τ(f,h)/2 w(f) w(h),

for all f, h ∈ E .

Furthermore, any fermionic classical matter field theory of positive type can be quantized
in terms of a CAR-representation.

Definition 4.4. A (self-dual) CAR-representation of a pre-Hilbert space (E , τ) over R is a
pair (b, A), where A is a unital C∗-algebra and b : E → A is a linear map satisfying:

(i) A = C∗(b(E)),
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(ii) b(f)∗ = b(f),

(iii)
{
b(f), b(h)

}
= τ(f, h)1,

for all f, h ∈ E .

The following theorem is proven in [BG11, BGP07].

Theorem 4.5. There exists up to C∗-isomorphism a unique CCR-representation (CAR-
representation) for every symplectic vector space (pre-Hilbert space).

Remark 4.6. For defining the CCR-representation we have assumed that the map τ is weakly
non-degenerate. While for a bosonic classical matter field theory this is automatically given
by Proposition 4.1, this condition turns out to be too restrictive for gauge field theories, see
Section 5 for a discussion. The quantization of a pre-symplectic vector space (E , τ) can always
be performed in terms of a field polynomial algebra. However, one looses the C∗-algebra
property when making this choice. Fortunately, in [BHR04] the existence and uniqueness
of the Weyl algebra for a generic pre-symplectic vector space has been proven. This means
that Definition 4.3 can be extended to any pre-symplectic vector space and the result of
Theorem 4.5 is unaltered in this case. We refer to [BHR04] for details on Weyl algebras of
degenerate pre-symplectic vector spaces. We finish this remark by noting that a similar result
for degenerate pre-Hilbert spaces and their CAR-quantization are not known to us.

Remark 4.7. This remark is quite standard, however, it is essential for understanding our
construction of the algebra of observables for a gauge field theory.

Let (E , τ) be the symplectic vector space associated to a bosonic classical matter field
theory

(
M,V, P

)
, i.e. E = Γ∞0 (V )/P [Γ∞0 (V )] and τ as given in (4.1). The Weyl symbols w([f ]),

[f ] ∈ E , are physically interpreted as quantizations of the following functionals wf , f ∈ Γ∞0 (V ),
on the configuration space Γ∞(V ) of the classical matter field theory

wf : Γ∞(V )→ C , ψ 7→ wf [ψ] = e
i 〈ψ,f〉

Γ(V ) . (4.3)

The on-shell condition Pψ = 0 is then encoded on the level of the functionals by identifying
wPf by the constant functional 1 (use (4.3) and that P is formally self-adjoint). The functionals
on the on-shell configuration space are thus labelled by equivalence classes, i.e. elements in
E = Γ∞0 (V )/P [Γ∞0 (V )].

An analogous interpretation holds for a fermionic matter field theory, where the symbols
b([f ]), [f ] ∈ E , are interpreted as quantizations of the functionals

bf : Γ∞(V )→ R , ψ 7→ bf [ψ] = 〈ψ, f〉Γ(V ) , (4.4)

with f ∈ Γ∞0 (V ). The on-shell condition Pψ = 0 is encoded here by identifying the functionals
bPf , f ∈ Γ∞0 (V ), with 0, giving rise to the vector space E = Γ∞0 (V )/P [Γ∞0 (V )] which labels
the functionals on the on-shell configuration space.

Remark 4.8. We give a physical motivation for the positivity requirement for fermionic
matter field theories given in Definition 4.2. Take any [f ] ∈ E and consider the corresponding
symbol b([f ]). From Definition 4.4 (ii) and (iii) it follows that{

b([f ]), b([f ])
}

= 2 b([f ])∗ b([f ]) = τ([f ], [f ])1 . (4.5)

Assume that we have a representation of this algebra on a Hilbert space and let |Ψ〉 be any
normalised vector 〈Ψ|Ψ〉 = 1. Taking the expectation value of both sides of (4.5) gives us the
equality τ([f ], [f ]) = 2 〈b([f ])Ψ|b([f ])Ψ〉. If now τ([f ], [f ]) < 0 would be negative, then the
vector |b([f ])Ψ〉 would have a negative norm square, which is inconsistent with the Hilbert
space assumption. In case τ([f ], [f ]) = 0 would be zero, then the Hilbert space vector |b([f ])Ψ〉
would have zero norm and since |Ψ〉 has been an arbitrary normalised vector the operator
associated to b([f ]) would be the zero operator in any Hilbert space representation.
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Let us now consider a classical gauge field theory
(
M,V,W,P,K, T

)
. The goal is to

construct a pre-symplectic vector space for bosonic and a possibly indefinite inner product
space for fermionic classical gauge field theories. Following the interpretation of Remark 4.7
we are thus looking for a suitable vector space of smearing functions. It turns out to be
convenient to directly encode gauge invariance on the level of this vector space, leading later
to a quantization of only the gauge invariant degrees of freedom. Let us for example consider
a bosonic classical gauge field theory: We can again consider functionals on the off-shell
configuration space as in (4.3). Such a functional wf is gauge invariant, i.e. independent on
whether we evaluate it on ψ or ψ +Kε with ε ∈ Γ∞(W ), if and only if K†f = 0. Indeed,

wf [ψ +Kε] = e
i 〈ψ+Kε,f〉

Γ(V ) = e
i 〈ψ,f〉

Γ(V )
+i 〈ε,K†f〉

Γ(W ) = wf [ψ] , (4.6)

for all ε ∈ Γ∞(W ) if and only if K†f = 0. Thus, in order to capture the gauge invariant
degrees of freedom we should consider instead of Γ∞0 (V ) only the kernel Ker0(K†) ⊆ Γ∞0 (V )
of K† when formulating the space E for gauge theories. The implementation of the on-shell
condition is then a suitable quotient by the equation of motion operator. This construction
can be performed and a well-defined pre-symplectic structure (respectively, indefinite inner
product structure) can be defined on E for bosonic (respectively fermionic) gauge field theories.

Proposition 4.9. Let
(
M,V,W,P,K, T

)
be a classical gauge field theory with P̃ := P+T ◦K†,

Q := K† ◦ T and R := K† ◦K. Let us denote by G eP
± the retarded/advanced Green’s operators

for P̃ and G
eP := G

eP
+ − G

eP
−. We define the vector space E := Ker0(K†)/P [Γ∞0 (V )] and the

bilinear map

τ : E × E → R , ([f ], [h]) 7→ τ
(
[f ], [h]

)
= 〈f,G ePh〉Γ(V ) =

∫
M

volM 〈f,G
ePh〉V . (4.7)

Then the map τ is well-defined. Furthermore, τ is antisymmetric for bosonic gauge field
theories and symmetric for fermionic ones.

Proof. For the trivial case K = 0 the proof is as in Proposition 4.1. In particular, the vector
space E and the map τ are then exactly those of a classical matter field theory. So let us assume
that K 6= 0. According to Theorem 3.12 (iii) G eP is formally skew-adjoint with respect to
〈 , 〉V on Ker0(K†). That τ is well-defined follows from this fact and the following calculation,
for all f ∈ Ker0(K†) and h ∈ Γ∞0 (V ),

〈f,G ePPh〉Γ(V ) = 〈f,G eP (P̃ − TK†)h〉Γ(V ) = −〈f,KGRK†h〉Γ(V )

= −〈K†f,GRK†h〉Γ(W ) = 0 , (4.8)

where in the second equality we have used Theorem 3.12 (ii) and G
eP P̃ h = 0.

The antisymmetry (symmetry) of τ for bosonic (fermionic) gauge field theories is proven
as in the proof of Proposition 4.1.

In contrast to classical matter field theories we can not guarantee that the map τ is
weakly non-degenerate for a classical gauge field theory. For bosonic gauge field theories
this is mathematically not problematic, since the CCR-representation of Definition 4.3 is
also available and well-behaved for degenerate pre-symplectic vector spaces, see Remark 4.6.
Physically, these degeneracies might be interpreted as charge observables and are worth being
studied in detail for the important examples of gauge field theories, see [DHS] for details. In
order to quantize fermionic gauge field theories we have to require analogously to Definition
4.2 positivity of the inner product.
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Definition 4.10. A fermionic classical gauge field theory
(
M,V,W,P,K, T

)
is called of positive

type if τ is positive definite, i.e. (E , τ) is a (real) pre-Hilbert space.

Bosonic classical gauge field theories can be quantized via the CCR-representation (see
Definition 4.3 with a possible extension to pre-symplectic vector spaces as in Remark 4.6)
and fermionic classical gauge field theories of positive type via the CAR-representation (see
Definition 4.4). Although a quantization of fermionic classical gauge field theories in terms of
a field polynomial algebra is also mathematically possible if they are not of positive type, the
physical interpretation of such a quantum theory would remain unclear, cf. Remark 4.8. It
thus remains to study if a given fermionic classical gauge field theory

(
M,V,W,P,K, T

)
is of

positive type or not. From the physical perspective it is also interesting to understand if a
given bosonic classical gauge field theory has a weakly non-degenerate τ or not.

Irrespective of the non-degeneracy or positivity of τ we can already prove an important
structural property of the (classical and quantized) gauge field theory corresponding to(
M,V,W,P,K, T

)
.

Proposition 4.11. Every gauge field theory
(
M,V,W,P,K, T

)
satisfies the time-slice axiom:

Let Σ be an arbitrary Cauchy surface in (M, g), and let Σ± be any two other Cauchy surfaces
such that Σ (

(
J−(Σ+) ∩ J+(Σ−)

)
. Then for every [f ] ∈ E there is a representative f ∈

Ker0(K†) with supp(f) ⊂
(
J−(Σ+) ∩ J+(Σ−)

)
.

Proof. We can obtain such f by a standard construction. Let h ∈ [f ] be arbitrary. Without
loss of generality we can assume that supp(h) ⊂ J+(Σ−). We pick a smooth function χ such
that χ = 0 on J−(Σ−) and χ = 1 on J+(Σ+) and define

f := h− PχG eP
−h . (4.9)

One can now verify that χG eP
−h has compact support, whence [f ] = [h], and that f has the

required support property.

5 Non-degeneracy and positivity of gauge field theories

Let
(
M,V,W,P,K, T

)
be a classical gauge field theory and denote by (E , τ) the vector space

of Proposition 4.9 equipped with the bilinear map τ , which is antisymmetric for bosonic and
symmetric for fermionic theories. In order to investigate if τ is weakly non-degenerate for
bosonic or respectively positive definite for fermionic theories it is in some cases convenient to
induce an equivalent bilinear map on the space of solutions of P .

Let us denote by Sol :=
{
ψ ∈ Γ∞sc (V ) : Pψ = 0

}
the space of all solutions of P with spacelike

compact support. For every ψ there exists a compact set C ⊆M , such that supp(ψ) ⊆ J(C).
We can split ψ = ψ+ + ψ− such that supp(ψ±) ⊆ J±(C). This splitting is not unique and
the difference between two such splittings ψ = ψ+ + ψ− = ψe+ + ψe− is given by a compactly
supported section ψe+ − ψ+ = ψ− − ψe− =: χ ∈ Γ∞0 (V ). We define on Sol the bilinear map

〈 , 〉Sol : Sol× Sol→ R , (ψ1, ψ2) 7→ 〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉Γ(V ) . (5.1)

This map is well-defined, since firstly from Pψ1 = 0 it follows that Pψ+
1 = −Pψ−1 and in

particular that Pψ±1 has compact support, such that the integral exists. Secondly, it is
independent of the splitting,

〈Pψe+
1 , ψ2〉Γ(V ) = 〈Pψ+

1 , ψ2〉Γ(V ) + 〈Pχ, ψ2〉Γ(V )

= 〈ψ1, ψ2〉Sol + 〈χ, Pψ2〉Γ(V ) = 〈ψ1, ψ2〉Sol , (5.2)
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where we have used that P is formally self-adjoint and that Pψ2 = 0. Notice that the map
(5.1) is not trivial, since ψ+

1 and ψ2 i.g. do not have compact overlapping support and thus we
can not integrate by parts P to the right side.

Proposition 5.1. The following statements hold true:

(i) The map 〈 , 〉Sol is antisymmetric for bosonic and symmetric for fermionic gauge field
theories.

(ii) The map 〈 , 〉Sol is Ĝ-gauge invariant, i.e. for all ψ ∈ Sol and ε ∈ Γ∞(W ) such that
Kε ∈ Γ∞sc (V ) we have 〈ψ,Kε〉Sol = 〈Kε, ψ〉Sol = 0.

In particular, the map 〈 , 〉Sol induces well-defined bilinear maps on the quotients Sol/Ĝ
and Sol/G (remember that G ⊆ Ĝ).

(iii) Let f, h ∈ Ker0(K†), then

〈G eP f,G ePh〉Sol = τ
(
[f ], [h]

)
. (5.3)

Proof. Proof of (i): Let ψ1, ψ2 ∈ Sol be arbitrary and consider the splittings ψi = ψ+
i + ψ−i ,

i = 1, 2. Notice that from Pψi = 0 is follows that Pψ+
i = −Pψ−i . Then

〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉Γ(V ) = 〈Pψ+

1 , ψ
+
2 〉Γ(V ) + 〈Pψ+

1 , ψ
−
2 〉Γ(V )

= −〈Pψ−1 , ψ
+
2 〉Γ(V ) + 〈ψ+

1 , Pψ
−
2 〉Γ(V ) = −〈ψ−1 , Pψ

+
2 〉Γ(V ) − 〈ψ

+
1 , Pψ

+
2 〉Γ(V )

= −〈ψ1, Pψ
+
2 〉Γ(V ) = ∓〈Pψ+

2 , ψ1〉Γ(V ) = ∓〈ψ2, ψ1〉Sol , (5.4)

where − is for bosonic and + for fermionic theories. All integrations by parts of P in the
calculation above are well-defined, since the integrals are always over functions with compact
support.

Proof of (ii): Let ψ ∈ Sol and Kε ∈ Ĝ. We obtain

〈ψ,Kε〉Sol = 〈Pψ+,Kε〉Γ(V ) = 〈K†Pψ+, ε〉Γ(W ) = 0 . (5.5)

In the second equality we have used that Pψ+ is of compact support and in the third equality
that K† ◦ P = 0. By (5.4) we have 〈Kε, ψ〉Sol = −〈Kε, Pψ+〉Γ(V ) = −〈ε,K†Pψ+〉Γ(W ) = 0.

Proof of (iii): Let f, h ∈ Ker0(K†). Then G
eP f,G ePh ∈ Sol, since

PG
eP f = (P̃ − TK†)G eP f = −TK†G eP f = 0 , (5.6)

where in the last equality we have used Theorem 3.12 (ii). The same applies for G ePh. A
convenient decomposition is given by G eP f = G

eP
+f −G

eP
−f and we find

〈G eP f,G ePh〉Sol = 〈PG eP
+f,G

ePh〉Γ(V ) = 〈P̃G eP
+f,G

ePh〉Γ(V ) = 〈f,G ePh〉Γ(V ) = τ
(
[f ], [h]

)
, (5.7)

where in the second equality we have used Theorem 3.12 (ii).

We combine the statements proven in Theorem 3.12 and Proposition 5.1 in order to construct
an isomorphism between the space (E , τ) of Proposition 4.9 and the space (Sol/G, 〈 , 〉Sol).

Theorem 5.2. The sequence of maps

Ker0(K†) G
eP
−→ Sol id−→ Sol (5.8)
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induces a well-defined sequence of maps on the quotients (which we denote with a slight abuse
of notation by the same symbols)

E = Ker0(K†)/P [Γ∞0 (V )] G
eP
−→ Sol/G id−→ Sol/Ĝ . (5.9)

The first map is an isomorphism and the second map is a surjection which becomes an
isomorphism if and only if G = Ĝ. Furthermore, the sequence of maps (5.9) preserves the
bilinear mappings in (E , τ), (Sol/G, 〈 , 〉Sol) and (Sol/Ĝ, 〈 , 〉Sol).

Proof. From Theorem 3.12 (vi) it follows that the first map is well-defined and injective.
Surjectivity of the first map follows from Theorem 3.12 (iv) and (v). The second map is
well-defined and surjective since G ⊆ Ĝ. It is an isomorphism if and only if G = Ĝ. The bilinear
mappings are preserved due to Proposition 5.1 (iii) and (ii).

Corollary 5.3. If G ⊂ Ĝ is a proper subspace then the map τ in (E , τ) is degenerate.

Proof. Assume that G ⊂ Ĝ is a proper subspace. Then there is a ε ∈ Γ∞(W ) such that Kε 6∈ G,
but Kε ∈ Ĝ ⊆ Sol. From Proposition 5.1 (ii) we know that 〈ψ,Kε〉Sol = 0 for all ψ ∈ Sol.
Since in Sol/G this Kε is not equivalent to zero the bilinear map 〈 , 〉Sol is degenerate on
Sol/G. Because (Sol/G, 〈 , 〉Sol) is isomorphic to (E , τ) the statement follows.

Remark 5.4. This corollary might suggest that it is more convenient (regarding non-
degeneracy) to choose (Sol/Ĝ, 〈 , 〉Sol) instead of (E , τ) as the underlying vector space for a
CCR or CAR-representation. There are, however, two arguments against this choice. Firstly,
the additional elements in Ĝ, which are not in G, can not be interpreted as on-shell conditions
in accord with Remark 4.7. Secondly, as it will be clarified in [DHS], the observables in Ĝ \ G
can be of physical significance.

We next show that the map 〈 , 〉Sol can be evaluated on any Cauchy surface Σ ⊆M . We
split the globally hyperbolic spacetime M = Σ+ ∪ Σ− into the future/past Σ± := J±(Σ) ⊆M
of the Cauchy surface Σ. We also split 〈 , 〉Γ(V ), for all f, h ∈ Γ∞(V ) with compact overlapping
support,

〈f, h〉Γ(V ) =
∫

Σ+

volM 〈f, h〉V +
∫

Σ−
volM 〈f, h〉V =: 〈f, h〉+Γ(V ) + 〈f, h〉−Γ(V ) . (5.10)

This allows us to rewrite 〈 , 〉Sol as follows, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉Γ(V ) = 〈Pψ+

1 , ψ2〉+Γ(V ) + 〈Pψ+
1 , ψ2〉−Γ(V )

= −〈Pψ−1 , ψ2〉+Γ(V ) + 〈Pψ+
1 , ψ2〉−Γ(V ) . (5.11)

In both terms we can now perform integration by parts, since the integral over the future Σ+

(respectively the past Σ−) is over a function of support in J−(C) (respectively in J+(C)). The
remaining boundary terms are then located on the Cauchy surface Σ.

Proposition 5.5. Let P : Γ∞(V ) → Γ∞(V ) be a first-order differential operator, which is
formally self-adjoint with respect to 〈 , 〉V . Then for all ψ1, ψ2 ∈ Sol we have for any Cauchy
surface Σ ⊆M

〈ψ1, ψ2〉Sol =
∫

Σ
volΣ 〈σP (n[)ψ1|Σ, ψ2|Σ〉V , (5.12)

where σP is the principal symbol of P , n is the future pointing normal vector field of Σ, volΣ
is the induced volume form on Σ and |Σ denotes the restriction of sections to Σ.
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Proof. This is a result of Green’s formula [Tay96, p. 160, Prop. 9.1] and of Pψ2 = 0. We have,
for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = −〈Pψ−1 , ψ2〉+Γ(V ) + 〈Pψ+
1 , ψ2〉−Γ(V )

=
∫

Σ
volΣ

(
〈σP (n[)ψ−1 |Σ, ψ2|Σ〉V + 〈σP (n[)ψ+

1 |Σ, ψ2|Σ〉V
)

=
∫

Σ
volΣ 〈σP (n[)ψ1|Σ, ψ2|Σ〉V . (5.13)

Before we discuss our examples of gauge field theories it is instructive to consider first the
case of fermionic matter field theories. We will show that there are fermionic matter field
theories which are not of positive type (see Definition 4.2), see also [BG11]. This means that
positivity is not a property which follows from the basic axioms of a fermionic classical matter
or gauge field theory, see Definitions 3.1 and 3.4.

Example 5.6 (Positive and non-positive fermionic matter field theories). We start with the
Majorana field of Example 3.3 as an example for a fermionic matter field theory of positive
type. The principal symbol of the massive Dirac operator is given by σP (ξ) = γµ ξµ = /ξ, where
in local coordinates ξ = ξµdx

µ. The bilinear map (5.12) then reads, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = i

∫
Σ

volΣ
(
/nψ1|Σ

)T
Cψ2|Σ . (5.14)

Using Theorem 2.1 we obtain that the future-pointing normal vector field of the Cauchy surface
Σ is given by n = ϑ−1 ∂t, where ϑ is the positive function on R× Σ appearing in the metric
g = −ϑ2 dt2⊕ gt of Theorem 2.1. Then /n = γ0ϑ = −iβ, where β is the matrix used in defining
the Dirac adjoint, see Appendix A. Since on Majorana spinors the Dirac adjoint equals the
Majorana adjoint and since β† = β = β−1 we have

〈ψ1, ψ2〉Sol =
∫

Σ
volΣ ψ

†
1|Σψ2|Σ . (5.15)

It holds that 〈ψ,ψ〉Sol ≥ 0 for all ψ ∈ Sol. Even more, 〈ψ,ψ〉Sol = 0 implies that the initial
data ψ|Σ ≡ 0 vanishes and thus due to the Cauchy-hyperbolicity of the massive Dirac operator
ψ ≡ 0.

An example of a fermionic matter field theory which is not of positive type is the projected
Rarita-Schwinger field presented in [BG11, Section 2.6]. As above we use Theorem 2.1 to
get a particularly simple expression for the normal vector field. We take V := DMR ⊗ T ∗M ,
but restrict ourselves to the image of the projection operator defined by, for all ψ ∈ Γ∞(V ),
(πψ)µ := ψµ − 1

Dγµγ
νψν . These sections satisfy γµψµ = 0. We equip the bundle V with

the non-degenerate antisymmetric bilinear form 〈f, h〉V = i fT
µ Ch

µ. The projected Rarita-
Schwinger operator is defined by, for all ψ ∈ Γ∞(V ) with γµψµ = 0, (Pψ)µ := /∇ψµ− 2

Dγµ∇
νψν .

It satisfies γµ(Pψ)µ = 0 for all ψ ∈ Γ∞(V ) with γµψµ = 0 and thus is a differential operator
on the projected Rarita-Schwinger bundle. It is formally self-adjoint with respect to 〈 , 〉V
on sections of the projected Rarita-Schwinger bundle. The bilinear map (5.12) reads, for all
ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol =
∫

Σ
volΣ ψ

†
1µ|Σ ψ

µ
2 |Σ . (5.16)

We can solve the constraint γµψµ = 0 for ψ0 and find ψ0 = −γ0γ
iψi, where i = 1, . . . , D− 1 is

a spatial index. Putting this into (5.16) and setting ψ1 = ψ2 = ψ ∈ Sol leads to

〈ψ,ψ〉Sol =
∫

Σ
volΣ

(
ψ†i |Σ ψ

i|Σ − (γiψi)†|Σ (γjψj)|Σ
)
. (5.17)
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This is an indefinite inner product, since if we evaluate it on initial data ψi|Σ with γiψi|Σ = 0
we obtain a positive number, while evaluating it on ψi|Σ = (γiχ)|Σ with χ|Σ ∈ Γ∞sc (DMR)|Σ
we obtain a negative one.

We next will briefly comment on the question of weak non-degeneracy for our examples of
bosonic gauge field theories.

Example 5.7 (Linearised Yang-Mills field). The case of a Yang-Mills field linearised around
a vanishing background A0 has been analysed in detail in [DHS] and we only sketch the main
non-degeneracy result. In this case, K = dA0 = d is the exterior differential and the associated
(compactly supported) de Rham cohomology groups of M are defined as

Hn(M, g) :=
Ker

(
d : Ωn(M, g)→ Ωn+1(M, g)

)
Im (d : Ωn−1(M, g)→ Ωn(M, g))

= Hn(M,R)⊗ g , (5.18a)

Hn
0 (M, g) :=

Ker
(
d : Ωn

0 (M, g)→ Ωn+1
0 (M, g)

)
Im
(
d : Ωn−1

0 (M, g)→ Ωn
0 (M, g)

) = Hn
0 (M,R)⊗ g . (5.18b)

Due to the factorisation of Hn
(0)(M, g), the analysis of [DHS], which is restricted to the Maxwell

field, directly generalises to the linearised Yang-Mills case with A0 = 0. We first observe that

τ([f ], [h]) = 〈f,G ePh〉Γ(V ) =
∫
M
〈f, ∗G ePh〉g = 0 , (5.19)

for all f ∈ Ker0(K†) = Ker0(δ), implies in particular that∫
M
〈k, ∗dG ePh〉g = 0 , (5.20)

for all k ∈ Ω2
0(M, g). From the non-degeneracy of

∫
M 〈 · , ∗ · 〉g we then obtain dG ePh = 0, such

that G ePh defines an element in H1(M, g). The Hodge-dual ∗f for f ∈ Ker0(δ) defines an
element in HD−1

0 (M, g) and thus τ([f ], [h]) = 0 for all f implies that G ePh corresponds to
the trivial element in H1(M, g) by Poincaré duality (see e.g. [BT95]), i.e. G ePh = dε for some
ε ∈ C∞(M, g). This in turn implies that the necessary condition for weak non-degeneracy
found in Corollary 5.3 is sufficient in the case at hand.

In particular, for any spacetime with compact Cauchy surfaces we have G = Ĝ and thus for
the linearised Yang-Mills field with A0 = 0 the space (E , τ) is symplectic. We next provide a
simple example of a spacetime for which G ⊂ Ĝ is a proper subset, thus τ is degenerate by
Corollary 5.3. Let us take the Minkowski space RD with flat metric g and remove the light
cone of the origin 0 ∈ RD, i.e. we consider the globally hyperbolic spacetime M := RD \J({0})
with the induced metric. We further take two closed balls (with strictly positive radius)
B1 ⊂ B2 ⊂ RD centred at 0 in RD and denote BM

1 := B1 ∩M and BM
2 := B2 ∩M . Notice

that BM
1 and BM

2 are not compact in M , however BM
2 \BM

1 is. Let us now take a function
ε ∈ C∞(M, g) such that 0 6= ε = w ∈ g is a constant on J(BM

1 ) and ε = 0 on M \ J(BM
2 ).

The differential dε is then an element in Ω1
sc(M, g) and thus dε ∈ Ĝ. It remains to show

that there is no ε̃ ∈ C∞sc (M, g) such that dε = dε̃. In order to show this, let us consider the
smooth embedding ι : (0,∞) → M ⊂ RD given in Cartesian coordinates on M ⊂ RD by
x 7→ ι(x) = (0, x, 0, . . . , 0). Pulling back the one-form dε and integrating over (0,∞) we find
by Stokes theorem ∫

(0,∞)
ι∗(dε) =

∫
(0,∞)

dι∗(ε) = −w 6= 0 , (5.21)
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while doing the same for dε̃ with ε̃ ∈ C∞sc (M, g) results in 0. Thus, G ⊂ Ĝ is a proper subset
for the model under consideration and τ in (E , τ) is degenerate. For a deeper discussion and
physical interpretation of this degeneracy we refer to [DHS].

Example 5.8 (Linearised general relativity). If the globally hyperbolic spacetime M has
compact Cauchy surfaces the weak non-degeneracy of the pre-symplectic structure for linearised
general relativity on Einstein manifolds has been shown by Fewster and Hunt [FH12, Theorem
4.3]. The analysis of the non-compact case is to our best knowledge not yet completely
understood.

As it has been argued above, the positivity of a fermionic gauge field theory according
to Definition 4.2 is a physically and mathematically motivated condition. We will study this
aspect for our two examples of fermionic gauge field theories in detail.

Example 5.9 (Toy model: Fermionic gauge field). We give a simple proof that the fermionic
toy model introduced in Example 3.9 is not of positive type. For this proof we do not need
the expression of τ on a Cauchy surface (5.11), but we will work with τ as given in (4.7). Our
strategy is as follows: We assume the existence of a f ∈ Ker0(K†) such that τ

(
[f ], [f ]

)
> 0

and then explicitly construct a f ′ ∈ Ker0(K†) such that τ
(
[f ′], [f ′]

)
< 0. For this we choose a

basis of the symplectic vector space
(
R2m,Ω

)
, such that Ω takes the standard form

Ω =


0 1 0 0 . . .
−1 0 0 0
0 0 0 1
0 0 −1 0
...

. . .

 . (5.22)

We further consider the 2m× 2m-matrix

B =


0 1 0 0 . . .
1 0 0 0
0 0 0 1
0 0 1 0
...

. . .

 . (5.23)

Let now f ∈ Ker0(K†) be such that τ
(
[f ], [f ]

)
> 0. Then defining f ′ := Bf we have

f ′ ∈ Ker0(K†), since K† = δ and B commutes. Using that BTΩB = −Ω and also that B
commutes with G

eP and the Hodge operator, we obtain

τ
(
[f ′], [f ′]

)
=
∫
M
f ′

T ∧ Ω ∗G eP f ′ = ∫
M
fT ∧BTΩB ∗G eP f = −τ

(
[f ], [f ]

)
< 0 . (5.24)

6 Positivity of the Rarita-Schwinger gauge field

We derive a sufficient condition for the positivity of the Rarita-Schwinger gauge field and prove
that this condition is satisfied on a large class of spacetimes.

Theorem 6.1. Consider the Rarita-Schwinger gauge field (M,V,W,P,K, T ) defined in Ex-
ample 3.10. Then the following statements hold:

(i) For all f1, f2 ∈ Ker0(K†) and on a Cauchy surface Σ as in Theorem 2.1

τ([f1], [f2]) =
∫

Σ
volΣ

(
ψ†1µ|Σ ψ

µ
2 |Σ −

1
D − 2

/ψ1
†|Σ /ψ2|Σ

)
, (6.1)

where ψi := G
eP fi ∈ Sol, i = 1, 2, and /ψ := γµψµ.
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(ii) Let us assume that for all ψ ∈ Sol satisfying γµψµ = 0 there exists an ε ∈ Γ∞(W ) such
that

/∇ε = 0 on M , (6.2a)

γi∇iε = −γiψi on Σ , (6.2b)

and ε|Σ is vanishing on the (possibly empty) boundary of Σ, whereas ∇ε|Σ is bounded.
Then (E , τ) is a pre-Hilbert space, i.e. τ is positive definite.

(iii) Let M be asymptotically flat in the following sense [PT81]: There is a t ∈ R, such that
in a canonical foliation given by Theorem 2.1 the Cauchy surface (Σ, gt) is complete.
Further, there is a compact set C ⊂ Σ, such that Σ \ C is the disjoint union of a
finite number of subsets Σ1, . . . ,ΣN of Σ, each diffeomorphic to the complement of a
contractible compact set in RD−1. Under this diffeomorphism, the Riemannian metric gt
on Σb, b = 1, . . . , N , should be of the form

(gt)ij = δij + aij (6.3)

in Cartesian coordinates xi of RD−1, where aij = O(1/r), ∂kaij = O(1/r2), and ∂l∂kaij =
O(1/r3). Furthermore, the second fundamental form (extrinsic curvature) hij of {t} ×Σ
should satisfy hij = O(1/r2), ∂khij = O(1/r3).

In this case (E , τ) is a pre-Hilbert space.

(iv) Let M contain compact Cauchy surfaces. In a canonical foliation given by Theorem 2.1
let there be a t ∈ R, such that the induced Dirac operator on {t} ×Σ has a trivial kernel.

In this case (E , τ) is a pre-Hilbert space.

Proof. Proof of (i): The principal symbol of the Rarita-Schwinger operator (3.21) reads

σP (ξ) ν
µ = /ξδνµ − γµξν . Hence, ˜(σP (n[)ψ)µ = /nψµ + 1

D−2γµ/n/ψ and by (5.12) we have

τ([f1], [f2]) = 〈ψ1, ψ2〉Sol =
∫

Σ
volΣ 〈σP (n[)ψ1|Σ, ψ2|Σ〉V

=
∫

Σ
volΣ

(
〈/nψµ1 |Σ, ψ2µ|Σ〉W −

1
D − 2

〈/n /ψ1|Σ, /ψ2|Σ〉W
)

=
∫

Σ
volΣ

(
ψ†1µ|Σ ψ

µ
2 |Σ −

1
D − 2

/ψ1
†|Σ /ψ2|Σ

)
, (6.4)

where the last identity follows by arguments used in Example 5.6.

Proof of (ii): We see from (6.1) that positivity in particular holds if for all ψ ∈ Sol we
can set γµψµ = 0 and ψ0 = 0 on Σ by a suitable choice of gauge fixing (recall that in our
conventions the metric is positive definite on spacelike vectors). It is convenient to perform such
a gauge fixing in two steps. First, let ψ′ ∈ Sol be arbitrary. Using a G-gauge transformation
Kε with ε ∈ Γ∞sc (W ), we define ψµ := ψ′µ + (Kε)µ = ψ′µ +∇µε− 1

2γµ /∇ε. Demanding γµψµ = 0
leads to the equation

/∇ε =
2

D − 2
γµψ′µ , (6.5)

which can be solved for ε ∈ Γ∞sc (W ), e.g. by imposing a trivial initial condition. Thus, any
ψ′ ∈ Sol is G-gauge equivalent to a ψ ∈ Sol satisfying γµψµ = 0. Using Proposition 5.1 (ii) and
(6.1) we obtain after this gauge transformation

τ([f1], [f2]) = 〈ψ1, ψ2〉Sol =
∫

Σ
volΣ ψ

†
1µ|Σ ψ

µ
2 |Σ . (6.6)
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Given such a ψ ∈ Sol with γµψµ = 0 we perform a second gauge transformation to set the
zero-component ψ0 = 0 on Σ, while preserving the γ-trace condition γµψµ = 0 on M . The
γ-trace condition is preserved by the gauge transformation Kε, ε ∈ Γ∞(W ), if and only if
/∇ε = 0 on M . Using this and demanding that the zero component of the gauge transformed
section vanishes leads us to the equation (6.2b). We assume that a solution ε ∈ Γ∞(W ) of
(6.2) exists, for all ψ ∈ Sol with γµψµ = 0, and that ε|Σ is vanishing on ∂Σ whereas ∇ε|Σ is
bounded.

Notice that we do not demand that ε is an element in Γ∞sc (W ), nor that Kε ∈ Γ∞sc (V ).
It thus remains to show that the inner product 〈 , 〉Sol is also gauge invariant under such

extended gauge transformations, more precisely that (note that ∇̃µε = ∇̃µε
−1

= ∇µε due to
(6.2a)) ∫

Σ
volΣ 〈σP (n[)µνψν |Σ, (∇µε)|Σ〉W (6.7)

vanishes for all ε ∈ Γ∞(W ) which vanish at ∂Σ and all ψ ∈ Γ∞(V ) which are bounded on Σ
and satisfy Pψ = 0. To this avail, we note that the covariant derivative ∇Σ compatible with
the Riemannian metric gt on Σ and ∇ compatible with g are related by [Wa84, Lemma 10.2.1]

∇Σ
ρ T

α1···αk
β1···βl = Πα1

µ1
· · ·Παk

µk
Πν1
β1
· · ·Πνl

βl
Πλ
ρ∇λTµ1···µk

ν1···νl , (6.8)

where Πµ
ν := δµν + nµnν is the projector to the tangent bundle on Σ. Since nµσP (n[)µν = 0 we

have Πµ
ρσP (n[)ρν = σP (n[)µν and we can replace ∇ in (6.7) by ∇Σ. Integration by parts is

well-defined under the assumptions on ψ and ε. Using again (6.8) in order to replace ∇Σ by ∇
and projectors Πν

µ, the statement follows by applying the Leibniz rule and using the equation
of motion Pψ = 0.

Proof of (iii): The first equation (6.2a) for ε can be solved for arbitrary initial conditions ε|Σ
as /∇ is Cauchy-hyperbolic, while the second equation (6.2b) is an elliptic constraint equation
for such initial conditions, whose solvability in general depends on the topology of Σ and
the properties of gt. We shall now use a generalisation of [PT81, Theorem 4.2] to prove this
solvability under our hypotheses. Let R ≥ 1 be large enough such that each Σb ⊂ RD−1 (we
omit the diffeomorphisms Σb → RD−1 \ C̃, with suitable contractible compact C̃ ⊂ RD−1, here
and in the following) contains the exterior of the ball BR of radius R. For each b and each
r ≥ R, we set Σb,r := Σb \Br and fix a smooth function ρ on Σ such that ρ ≥ 1, ρ = r in Σb,2R

and ρ = 1 in Σ \
(⋃N

b=1 Σb,R

)
. Let now s ∈ {0, 1} and let ‖ε‖s,δ,p, ε ∈ Γ∞sc (W )|Σ, denote the

weighted Sobolev norm

‖ε‖s,δ,p := s‖ρδ+1∇Σε‖p + ‖ρδε‖p , (6.9a)

where ∇Σ is the spin connection on Σ and

‖ε‖p :=
(∫

Σ
volΣ

(
ε†ε
)p/2)1/p

. (6.9b)

By Hs,δ,p we denote the completion of Γ∞sc (W )|Σ with respect to ‖ · ‖s,δ,p. Let us first consider
the case D = 4. By [PT81, Theorem 4.2], the map

γi∇i =: D : H1,δ,p → H0,δ+1,p (6.10)

is an isomorphism with a bounded inverse D−1, if p = 2, δ = −1 or p ≥ 2, 0 < δ < 2− 3/p.
Furthermore, D−1 maps sections in H0,δ+1,p ∩ Γ∞(W ) to sections in H1,δ,p ∩ Γ∞(W ). This
proves that (6.2b) has a unique solution and that ε ∈ Γ∞(W ). The required decay/boundedness
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properties of ε|Σ and ∇ε|Σ follow by the arguments used in the proof of [PT81, Proposition
5.3]. This implies that the condition in (ii) is fulfilled and thus (E , τ) is a pre-Hilbert space for
the asymptotically flat case in D = 4.

One can straightforwardly generalise [PT81, Theorem 4.2] to the case D ≥ 3. For D > 4,
we note that in the proof of the said theorem the dimension was not essential for proving
invertability of D for p = 2, δ = −1. At the same time, these parameters are sufficient to
guarantee the required decay/boundedness properties of ε|Σ and ∇ε|Σ for D > 4. For D = 3
one can check that invertability of D holds for p > 2 and 0 < δ < 1−2/p, on account of [Can79,
Theorem 1.3] which enters the proof of [PT81, Theorem 4.2] and is valid for all D > 1. Again,
these parameters are sufficient to guarantee the sought-for decay/boundedness properties of
ε|Σ and ∇ε|Σ. Hence, the condition in (ii) is fulfilled and (E , τ) is a pre-Hilbert space for the
asymptotically flat case in general D ≥ 3.

Proof of (iv): The elliptic differential operator γi∇i on Σ is formally skew-adjoint with
respect to the inner product 〈ψ, χ〉 =

∫
Σ volΣ ψ

† χ, see [PT81, Section 3] and note the different
Clifford algebra conventions used by the authors. Thus, the trivial kernel of γi∇i implies a
trivial kernel of its formal adjoint, and the solvability of (6.2b) for all source terms is guaranteed
by the general theory of elliptic operators on vector bundles over compact Riemannian manifolds,
see e.g. [LM89, Chapter III] or Donaldson’s lecture notes [Don08, Section 3]. Elliptic regularity
implies that ε|Σ ∈ Γ∞(W )|Σ. This ε|Σ can be used as initial condition for solving (6.2a) and
the resulting section ε ∈ Γ∞(W ) satisfies the required properties, since Σ is compact. Hence,
the condition in (ii) is fulfilled and (E , τ) is a pre-Hilbert space.

To close, we present an example of a Ricci-flat globally hyperbolic spacetime M with
spin structure on which the Rarita-Schwinger gauge field is not of positive type. Let us
take M = R × TD−1, with TD−1 denoting the D−1-torus, equipped with the flat metric
g = −dt2 +

∑D−1
i=1 dϕ2

i . Here t ∈ R denotes time and ϕi ∈ [0, 2π) are the angles on the
torus. We choose the trivial spin structure on M , in particular there exists a global basis of
Γ∞(V ). The equation of motion for the Rarita-Schwinger gauge field (3.21) reads (Pψ)µ =
γν∂νψµ − γµ∂νψν = 0. Notice that, in particular, all constant sections ψµ ≡ const solve this
equation and thus belong to the space Sol. We obtain for such sections

〈ψ,ψ〉Sol = (2π)D−1

(
ψ†µψ

µ − 1
D − 2

/ψ† /ψ

)
, (6.11)

where (2π)D−1 is the volume of the torus. Choosing ψµ 6= 0 such that ψ0 = 0 and γiψi = 0 we
obtain that 〈ψ,ψ〉Sol = (2π)D−1 ψ†iψ

i > 0. On the other hand, choosing ψi = 0 and ψ0 6= 0 we
obtain

〈ψ,ψ〉Sol = −(2π)D−1 D − 1
D − 2

ψ†0ψ0 < 0 . (6.12)

We note that if we equip M = R× TD−1 with one of the 2D−1 − 1 non-trivial spin structures
[Bar00], the induced Dirac operator on the torus TD−1 has a trivial kernel. Thus, the Rarita-
Schwinger gauge field is of positive type by Theorem 6.1 (iv). This shows an interesting
correlation between the choice of spin structure and the positivity of the Rarita-Schwinger
gauge field.
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A Spinor and gamma-matrix conventions

We review some aspects of spinors in higher dimensions following [VP99], being mainly
interested in properties of Majorana spinors. Let D mod 8 = 2, 3, 4 and we denote by
ηab = diag (−,+,+, . . . ,+)ab the D-dimensional Minkowski metric. The γ-matrices γa, a =
0, . . . , D − 1, are complex 2bD/2c × 2bD/2c-matrices satisfying the Clifford algebra relations
{γa, γb} = 2 ηab. We take the timelike γ-matrix to be antihermitian γ0† = −γ0 and the spatial
γ-matrices hermitian γi

† = γi, for all i = 1, . . . , D − 1. We further fix β := iγ0 which satisfies
β† = β. There exists a charge conjugation matrix C, which is antisymmetric, i.e. CT = −C,
in the dimensions we are considering, see Table 1 in [VP99]. Further properties are C† = C−1

and, for all a = 0, . . . , D − 1,

γaT = −CγaC−1 . (A.1)

We define the charge conjugation operation on spinors χ ∈ C2bD/2c by

χc := −β C∗ χ∗ , (A.2)

where ∗ denotes component-wise complex conjugation. This operation squares to the identity,
χcc = χ, for all χ. A Majorana spinor is defined by the reality condition χc = χ and the space
of Majorana spinors is a real vector space of dimension 2bD/2c. For every Majorana spinor
χ the Dirac adjoint equals the Majorana adjoint, χ := χ†β = χTC, and thus the hermitian
structure χλ on Dirac spinors equivalently reads for Majorana spinors

χλ = χTCλ = −λTCχ , (A.3)

where in the last equality we have used that CT = −C. We thus have a non-degenerate
R-bilinear antisymmetric map χTCλ on the space of Majorana spinors. However, this map
takes values in the purely imaginary numbers iR and therefore should be rescaled by the
imaginary unit in order to take values in the reals R.
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