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Abstract This chapter is concerned with the derivation and analykidistrete
transparent boundary conditions (TBCs) for transientesystofSchibdinger-type
equationsn one space dimension. These systems occur i.e. in thegsigi$ayered
semiconductor devicess the so calleld- p-Schibdinger equations, which are a well
established tool foband structure calculations

The new TBCs are constructed directly for the chosen dis@ehieme, in order to
ensure the stability of the underlying scheme and to coralyleivoid any numeri-
cal reflections. The discrete TBCs are constructed usingahgion of the exterior
problem with Laplace and-transformation, respectively.

These discrete TBCs can easily be obtained by an in&rdensformation based
on FFT, but these exact discrete TBCs are non-local in tintetlans very costly.
Hence, as a remedy, we present approximate discrete TBZslkbw a fast calcu-
lation of the boundary terms using a sum-of-exponentigigs@ach.
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1 Introduction

Many modern gquantum-electronic semiconductor deviceb asesonant tunnel-
ing diodes(RTD) [40, Chapter 14] or opto-electronic devices such aangum-
cascade lasers [41] and multi-quantum-well electro-giignT modulators [20] are
based on the tunneling process of carriers through batrigstares. Typically these
kind of barrier structures aayered semiconductor heterostructufd®, 41, 20]
with a barrier thickness of a few nanometer. The transientiition of wave pack-
ets tunneling through such nano-scale semiconductordstactures plays a key
role in the understanding of such transport processes Bj&9.

In this respect, transient simulations can be used to etiofearging and escape
times [48, 43], tunneling times [39], or carrier life time&0] 46]. For the time-
dependent simulation of a tunneling process usually a s&alabdinger equation
defined by BenDaniel-Duke-type Hamiltonians [6, Chaptes3]sed [48, 39, 46].
Here the electronic band structure is approximated by despayabolic band. These
parabolic single-band approximations are in good agreeméh the real band
structure in the vicinity of the minima of the conduction Hanwhich is the part
of the band structure that is usually occupied by the elastrBor the treatment of
the holes, occupying the maxima of the valence bands, ther@mc of parabolic
single-band models is often not sufficient since the valdrarals possess a much
more complex band structure [16, 6, 17, 19, 10, 39, 20].

However, the electronic states of the holes can be approsdrappropriately
by multi-band states which satisfy a so-calleg-Schibdinger equation. The time-
dependenk- p-Schibdinger equation describes the time evolution of the nhadtid
electronic state and can be regarded as a linear couplemhsg$scalar Sclidinger
equations. The evolution is governed by the-Schibdinger operator which is an
extension to the single-band models and describes a sy$tbands of the band
structure, e.g. the four topmost valence bands [6, 17, 19, 10

There exists a couple of such multi-bakdp-models [36] including also com-
bined models for conduction and valence bands. The lateralew for a non-
parabolic approximation of the conduction bands. Skiep-models can be used
for devices where the parabolic conduction band approximas not sufficient.
For unipolar devices where by crossing a barrier a condudiand to valence-band
transition is possible such assonant interband tunneling diodéRITD) or for
bipolar devices where additionally the hole tunneling psses are important such
as for multi-quantum well electro-absorption modulatorgltirband modeling is
necessary. In this cases the numerical solution of theignank- p-Schivdinger
equation can be used to understand and to determine thdihghpeperties of the
corresponding semiconductor heterostructures by stgdiimtime evolution of the
multi-band electronic state.

In this chapter we discuss the appropriate numerical tre@tiof a transient sys-
tem ofk- p-Schibdinger-type. We notice that such type of Sifinger systems also
arise as "parabolic systems” in electromagnetic wave grafian. Artificial bound-
ary conditions (BCs) have to be imposed to restrict the untbed domain, on which
the partial differential equation (PDE) is originally dedih to a finite computational
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domain. Such BCs are callédnsparent boundary conditio3BCs), if the solu-

tion on the whole space (restricted to the computationalalo)ris equal to the
solution with the artificial BCs. The artificial boundary ispthe problem into three
parts: the interesting interior problem and a left and rigkiterior problem. For
constant coefficients the exterior problems can be solvpticitky by the Laplace

method in the continuous ar# -transformation in the discrete case.

Claiming (spatial)lC-continuity of the solution at the artificial boundarieslyi
the TBC as a Dirichlet-to—Neumann (DtN) map [2, 22]. An ad-tiscretisation of
these continuous TBC can destroy the stability of the engdayumerical scheme
for the PDE and induce numerical reflections [1]. To avoid,thie derivediscrete
TBCsfor the fully discretised PDE. The procedure is analogough¢ocontinuous
case and uses th#&-transformation. The inverse Laplacgéftransformation yields
a convolution in time. Hence, the perfectdyactBC is non-local in time and there-
fore very costly for long—time simulations. To reduce theneuical effort, we in-
troduce approximate discrete TBCs. Since the inve¥s&ransformation must be
accomplished numerically for Sdamtinger—type systems, an additional small nu-
merical error is induced.

This chapter is organised as follows: In Section 2 we intoedthe system of
k- p-Schiddinger equations and present as an example a quantum vusituse
with a double barrier that will be considered throughous thork. Next we derive in
Section 3 the analytic TBC and afterwards its discrete wémeaSection 4. Here, we
also scrutinise the coefficients of the discrete convotuéind explain our strategy
to compute the coefficients by a numerical invefSetransformation. In Section 5
we approximate the coefficients by a sum-of-exponentiadatarand present a fast
evaluation of the approximate discrete TBC. Finally, int®ec6 we give the results
of numerical simulations for a quantum heterostructure.

2 Transientk- p-Schrodinger Systems

In this chapter we considér p-Schibdinger systems that are well established mod-
els forband structure calculationglL8] for one-dimensional semiconductor nano-
structures. They are layerd@terostructuresonsisting of layers of different semi-
conductor materials with abrupt, planar heterojunctideriiaces between the layers
[40]. Typical examples are semiconductor quantum wellsdmle-barrier struc-
tures omresonant interband tunneling diodéRITDs) [6, 19, 40, 44].

Fig. 1 depicts the typical valence and conduction band jrofi quantum well
structure. Usually one is interested in the computatioheftound eigenstates (with
eigenvalue smaller (large) th&g (E,) in the barrier material) in the quantum well.
Here Eg denotes the bandgap aggl is the middle of the bandgap that can be as-
sumed to be constant on each material and thus as piecewistnbfunctions.

The typical valence and conduction band profile for a RITDhisven in Fig. 2.
For the RITD one is usually interested in the computatiorheftransmission and
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Thek- p-method [26] in combination with the envelope function apgmation
[6, 40, 19, 16, 6, 14, 15] is a frequently used approach fontbdeling of the near-
band-edge electronic states in semiconductor nanostasctwithin this approach
the electronic stat®(r) is approximated in terms af bands

d
Y, (r) =explik; 1) S gulxkuvk=o(r) — with 1= (rj,x) e R3.
v=1

The index|| indicates in-plane vectors anddenotes the growth direction of the
semiconductor layerg, = (ki, k) € R? is the reduced wave vector, which will be
fixed for each simulation model, x—o(r) are lattice periodic, zone-center Bloch
functions varying on the atomic scale apgl(x; k) are the corresponding envelope
functions describing the variation of the wave function ba larger) nanoscale.
The vector of the envelope functiogs= (¢1,--- , ¢q) with ¢ (x,t) € CY fulfill the
one-dimensionat- p-Schiodinger equation
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i%(ﬁ:H(kH,—i;—x)d).

There is a hierarchy ok - p-models [36] including 4-band, 6-band and 8-band
Hamiltonians. Depending on the model Hamiltonian, effscish as quantum con-
finement, band-mixing, spin-orbit interaction and mecbahstrain can be treated
consistently. The basic stage in this model hierarchy isAthet Luttinger-Kohn-
Hamiltonian [35] which describes the band-mixing betwdenheavy holes and the
light holes [6, 17, 18, 19].

In our notation we will follow Bandelow et al. [8] who perfoed a rigorous
analysis of spectral properties for the spatially one disimmal k - p-Schivdinger
operators. The considered system reads as follows

.0 J J J 17}

|E¢ = —&(N(X)a—xqb) JFMO(X)(TX‘P - &(ME(X)‘W
(M1 58— 5 (M 08)) e (M200 20 2 M5 (09))

+kU1(X)9 +koU2(X)§ + KfU11(x) ¢ +kaka(U12(X) +Uz1(x)) ¢
+KoU22(X)9 +V(X)§ +e(x)@, XeR,t>0, ki,koeR,
1)

whereg (x,t) € CY, the mass matril andeare real diagonal x d-matricesl;, Ujj
andv are Hermitiand x d-matrices. Thel x d-matricesM(x), M 1(x) andM 2(x)
are skew-Hermitian. In the sequel we abbreviate

Ms(X) := Mo(X) + kiM 1(X) + kaM2(X), (2a)

V(x) := kgU1(X) 4 koU2(X) +k2U11(X) + k3U22(x)
+kika(U12(X) +U21(X)) + V(X) +€(x).  (2b)

ThenMg(X) is skew-Hermitiany/ (x) is Hermitian and (1) reads

.0 7] 7] 7 17}

|E¢:—&(N(X)&d’)‘*‘MS(X)ﬁfxd’—a*X(Mg(X)‘P)‘*‘V(X)‘P’ )
x € R, t > 0. The real diagonal matrig(x) describes the variation of the band-
edges. The band-mixing due to tke p-interaction of the first and second order
are described by the terms containing the matrMgs Uy, a = 0,1,2, andUg,
o, = 1,2, respectively. The potential can cover couplings induced by the spin-
orbit interaction or by mechanical strain. When neglectifighan-diagonal cou-
pling terms, the system would reduce to an uncoupled systagatar Schidinger
equations corresponding to the case of uncoupled pardisnhids. In this sense the
couplings can be interpreted as correction terms to thebplicsband structure ap-
proximation.
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An important property of the system (3) is the conservatibmass, i.e.|\¢\|f2
is constant in time. This property can be easily verified: watiply (3) with ¢
from the left and integrate by parts:

P o ¢ .
E||¢||Ez:E/waqbdszIm/R|¢H¢t
o 0
:2|m<—/R¢H0X(mm(¢)dx+/R¢Hv¢dx

+ [ otms g pax— [ ¢ mox)

—2Im /ﬂ%¢fm¢xdx+/R¢Hv¢dx+'/R¢HM¢x+¢fMH¢dx
R
=0.

The last equality follows from the fact th& and N are Hermitian and thus the
imaginary part of the quadratic forms vanishes. The ottren te of the formy 4 y™
and thus obviously real.

We now briefly review an illustrative example from [50] thas will use through-
out this chapter for the numerical results.

Example 1 (double-barrier stepped quantum-well strucf&6d). We consider the
GaAs/AlGaAs double-barrier stepped quantum-well structu@@BSQW) intro-
duced in [48]. The variation of the band-edgés) is depicted in Fig. 3. For this kind
of structure an analysis of the time evolution of wave pagkatneling through the
structure has been performed using a scalar&@tihger equation [48]. We consider
the more accurate four-band Luttinger-Kohn-Hamiltoni@nl[7, 18, 19] modeling
the band-mixing of heavy and light holes. In atomic unitspdd to the light holes
(h=1,mp/(y1 + 2y») = 1) the coefficient matrices for the corresponding 4 sys-
tem of Schédinger equations are given by= 0.5-diag(y,1,1,y), Mg =0,

010 0 0100
M.t [Lto0 0 1 g ~100 0
YT o2vit2p 000 -1’ 2T 21 2p 0 00-1]f

00-1 0 0010

i+, 0 FV3p 0
1 1 0 n-yp 0 FV3p
2yi+2 [FV3 0 y—p O ’
0 FV3 0 y+p

0 010
V3si | 0 001
vit2p | -1 0 00|

0 -100

U120 =

Uip+Up =
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andU; = U, = 0 with
y= i—2y
Vit2y
The values of the band structure parameters for GaAs ara give

y1 = 6.85, yo=21, y3=2.9.

For the in-plane wave-vecttkr” we choosék; = 2.3, ko = 0. As initial condition we
use a Gaussian wave packet

) )2
¢ (x,0) = (2rma?)? exp(ier W) -Z, (4)

wherel e CY is a linear combination of eigenmodes calculated via thpettision
relation of (3) ando = 3, Xp = —20 andk, = v/6.99. The band-edge profix) =
e(x)l (with the identity matrix ) of the DBSQW is taken from [48] and defined by

0, x<0
2, 0<x<05
e(x) = g, 25<x§1. )
, <x<15
L 15<x<2
0, 2<x

left right
exterior exterior
domain

x<0 x> L

3 T >

|
I

domain
' computational domain
|

Fig. 3 Variation of the band-edge(x) for the GaAs/AlGaAs DBSQW structure.

The computational domain is now defined such that it contdiasignificantpart

of the initial data and th&-dependent part of the band-edge potential (cf. Fig. 3).
For a strategy to soften this restriction on the inital da¢arefer the reader to [23].
Next we introduce in Section 3 TBCs at the left and right baurgat = 0 andx = L.
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3 The Transparent Boundary Conditions

In this section we derive the TBCs for tte p-Schibdinger equation (1). In the
scalar case (classical Sédinger equation of quantum mechanics), the Laplace-
transformed equation in the exterior domain can be solvexdicity. Afterwards
the solution is inverse transformed, thus yielding the wiaboundary condition,
cf. [2]. Here, for a system the inverse transform can not Beutated explicitly.
Nevertheless, we will present the derivation of the Laplaaesformed TBC.

For the derivation we proceed as follows: we consider the@&lihger equation
in the exterior domain. A Laplace transformation with rete time yields a sys-
tem of ordinary differential equations (ODESs), that can éduced to first order.
Then the solution of this system can be given in terms of gemialues and eigen-
vectors. Next, we prove, that half of the eigenvalues hagdipe real parts and thus
yield solutions increasing for— o; the other half has negative real parts, yielding
decreasing solutions. Requiring that the part of the irginggsolutions in the right
(and the decreasing solutions in the left) exterior domaimsh, yields the TBC.

We consider equation (1) in the bounded dom@ir.] supplied with TBCs at
x = 0 andx = L. Since the derivation for the left and right TBC is analogous
focus on the right boundary at=L. The TBC aix = L is constructed by considering
(1) with constant coefficients for> L, the so calledight exterior problem

ipy = —Npyx+iMx+ V9, x>L,t>0, (6)
whereM = MH vV = VH_ Nis diagonal, real and regular and given by
M =—i(Mo—M§ +k(M1—MY) + k(M —ME))
= —i(Ms—MY), (72)
V = kUs +koUz + K§U11 + k5Uz22+ kika(U12+ Ua1) + v +€. (7b)

If Mgis skew-Hermitian, themMs— Mg = 2M g is also skew-Hermitian, thud =
—2iMsis Hermitian. Analogously we define theft exterior problenfor x < 0 and
denote the occurring matrices with ™.

To solve the right exterior problem far> L we apply the Laplace-transformation

(ﬁ(x,s):/ eSto(xt)dt, s—a-tif, a>0, EcR, ®)
0
to (6) and obtain the system of ODEs

Nfux—iMPy = (V —isl),  x>L. (9)

This transformed right exterior problem (9) possemajue classical solutian

Lemma 1.[50, Lemma 3.1] LeRe(s) > 0. Then, the boundary value problgi®)
with the boundary data
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dx=L)=decC?  H(x=w)=0 (10)

has a unique (classical) solution.

It is exactly this linear mapping from the boundary data ®(ttherivative of the)
solutiong, — @x(L), the so-called Dirichet-to-Neumann (DtN) map, that repnés
the Laplace transformed TBC we are seeking for.

Next, to derive an explicit form of this TBC being accessiflienumerical im-
plementations, we define= ¢ andn = ¢«. Doing so, we reduce the order of the
ODE and obtain a system of first order ODEs

(NS G =(Me* () en e
X —

In [50, Lemma 3.4] we proved the regularity of the ma#ix'B for Re(s) > 0 and
thus we can rewrite (11) as

<;§> N <N1(v0—is|) iNI1M> (;) x>L (12)

A-1B

In order to understand the structure of the solution we haveistinguish
between increasing and decaying solutions of the systein kb2 this purpose we
proved using a continuity argument in [50] the Splitting ©rem:

Theorem 1.[50, Theorem 3.2] The regular matri&a —'B has d eigenvalues with
positive real part and d with negative real part.

The next step is to transform~1B in (12) to a Jordan form with
AlB=PJP 1,

whereP contains the left eigenvectors in columns. We sort the Joldiacks inJ
with respect to an increasing real part of the corresponeiggnvalue. Thud can
be written as a block diagonal matrix= diag(J1,J2), whereJ; holds all Jordan
blocks to eigenvalues with negative real parts anthose with positive real parts.
Due to the Splitting Theorerdy andJ, ared x d-matrices and equation (12) reads

P P> Vx _ J1 0 P1v+P2n (13)
P3 P4/ \ Nx 0J2) \Psv+Pan )"

—————
p-1

Obviously, the upper part of this system yields parts of tlat®on, which decay
for x — o and grow forx — —o. The opposite is true for the lower part. An analo-
gous equation holds for the left exterior problem. Thustthesformed transparent
boundary conditiongor the left (a) and right (b) boundary is obtained by extin-
guishing the respectively increasing parts of the extesidutions:
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PZ‘ﬁX(O? S) = _Pl(ﬁ (07 S)a (14a)

P4d«(L,s) = —P3d(L,s). (14b)

Here,P; andP; are the corresponding matrices for the left exterior proBgrand
P4 (resp.P1,P,) are sub-matrices dP~* which holds the eigenvectors & 1B
and is thus regular. Therefo(®; P,4) has rankd and thus at least one of the two
matricesPs andP, (resp.P1 andPy) is regular. If the matriceB, andP, are regular,
then the Laplace-transformed TBC can be writte@irichlet-to-Neumann formit

is not clear, if these matrices are regular in general, uddio example this hold for
all tested values o,

4 The Discrete Transparent Boundary Conditions

Our proposed strategy is a purely discrete one, i.e. we ddisotetise the equation
(14) (by a numerical inverse Laplace transformation), bstdad we derive discrete
TBCs for a discretisation of (1). For the discretisation wease a uniform grid
with the step sizeh in space and in time: xj = jh, t, = nkwith j € Z, n € No.
We discretise (3) using the classical unitary Crank-Nisbolscheme in time and
the central differences for the first and second spatialdtves. The discretk- p-
Schiddinger equation then reads

_h?

'?( jnH —o7)

89N A26]"F) + M%) 2 — A%MEE) +vig] 2, (15)

with the centered difference operators

0g. —
Andj =019 1. (16a)
£09; = (8% +07)0y =811~ b 1 (16b)
whereA™ = ¢j.1— ¢j, A~ = ¢; — ¢j_1 are the standard forward and backward

differences and the arithmetic time average is denotexﬂl“ﬁ)%/z ¢”+1 +¢7)/2.
An appropriate discretisation scheme should carry ovqmept(es of the contln—
uous equation to the difference equation. This is the casthéCrank-Nicolson
scheme: it conserves the discrétenorm onj € Z and thus it is unconditionally
stable for the whole space problem. The procedure to sha@ndldnalogue to the
continuous case: we multiply the discrete equation v(ﬂ}lp)"' from the left and

add the Hermitian of the discrete equation muItipIied¢i§y“1 from the right. This
shows, that the discret8-norm is conserved in time.
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For the case of a scalar Sédinger equation Arnold [2] derived 1998 a discrete
TBC. This discrete TBC is reflection-free and conserves takilgty properties of
the whole-space Crank-Nicolson scheme. The discrete TBGheaform of a dis-
crete convolution. The convolution coefficients are a fiomcbf Legendre polyno-
mials but can be obtained more easily by a three-term rewcerformula. Ehrhardt
and Arnold [22] showed that the imaginary parts of the comioh coefficients are
not decaying and therefore introduced summed coefficients.

To derive the discrete TBC for a system of Sidinger equations we solve the
Z -transformed system of ordinary difference equationdES) in the exterior do-
main. Then all its solutions are determined by eigenvalueseégenvectors, which
can distinguish between decaying and increasing solubigriee absolute value of
the involved eigenvalue. We obtain the transformed discf&C by claiming, that
no influence of increasing solutions exists.

In the exterior domair > J (x; = L) the Crank-Nicholson scheme (15) simplifies

Oy o) =

~NATA=¢! M2 1ihM %(A+ AT RVt 2 (17)

A Z-transformation given by

0

Z{¢7} =469 = ZOZ_”¢1"7 zeC, |74>1, (18)
n=
applied to (17) yields fofz| > 1 the system of second orde/A@s
2i£22;1¢' _—NA+A7¢'+ihM}(A++A7)(ﬁ-+h2V¢- i>] (19)

As in the continuous case we proved in [50] that this tramséat right exterior
problem (19) possesuique solution

Lemma 2.[50, Lemma 4.1] For eache C with |z > 1 the Z-transformed exterior
problem(19) with the boundary data

$11= @, ¢ =0 (20)
has a unique solution.

We proceed with the construction of the discrete TBC and défiﬁ: A~ ¢j inorder
to write (19) as a system of first ordeAEs

i3M =N\ (474, h22Z14il —h?V —iiMY (¢ _
(2' ' )<A+3;):( 0 2 ><5:> >3 (1)
~——

A B
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In [50, Lemma 4.5] we proved the regularity of the ma#ix'B + 1 for |z # 1 and
thus we can rewrite (21) as

()-eren(@) = e

As in the continuous case there exist a discrete versioredbftitting Theorem:

Theorem 2.[50, Theorem 4.2] Fotz| # 1 d of the2d eigenvalues oA 1B +1 have
an absolute value strictly larger than 1 and d have an absolatue strictly smaller
than 1.

In other words, the eigenvalu@s, ..., s, of A~1B split into two commensurate
groups, i.e. the solutions involving those wjth + 1| < 1 fork=1,...,n decay for
j — o and those withAx + 1| > 1 fork=n,...,2n decay forj — —co.

Thus, as in the continuous case, we can split the Jordan Joendiag(Js, J2)
of A~1B, J; containing the Jordan blocks corresponding to solutiomsigiag for
j — o andJ, those which increase. With the matrix of left eigenvecters the
equation

P1 P, A+¢j> a1 ((5]) <J1 0) Plfﬁj‘f‘Pzgj
N =PrATB( Y | = 2 23
(PB P4) <A+5j & 0 J2) \ P2 + Psé; (23)
N—_——
p—l
holds and théransformed discrete TBGsad
Pry + Poé1 =0, (24a)

P3dy+Paé; =0, (24b)

for the left (a) and right (b) boundary respectively. For siagularP, andP, (either
P4 or P3 is regular, since their composition is a linear independehbf eigenvec-

tors - the same holds fét, andP;) and forD = — P, *P3 andD = —P,1P; we write

A~ $1=Dgy, (25a)
A~y = D@ (25b)

After an inverseZ -transformation the&liscrete TBCsead

n
2-&-1 _ ¢8+1 _ DO¢T+1 _ z Dn+1_k¢|i, (26&)
k=1
n
51+l _ E]P_r% _ D0¢51+1 — Z Dn+1—k¢5_ (26b)
k=1

We remark that in equation (25a) and (26a) the left boundanyaution is given at
the interior grid pointj = 1. Of course, the boundary condition can also be formu-
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lated atj = 0 usingéj = A" ¢;. This changes the lower row & andB and thus the
matrix D differs fromD. Posing the boundary condition at= 1 as we do, has the
advantage, that these matrices coincide, if the coeffigifamtx < 0 andx > L are
equal, what occurs often in the application. In that caseamereduce the numerical
effort to calculate the convolution coefficients by half.

For a scalar Sclidinger equation Ehrhardt and Arnold showed in [22] that the
imaginary parts of the coefficients were not decaying butllatag. As a rem-
edy they introducegdummed coefficienthat decay rapidly IikeO(n*3/2). Since
the scalar equation is as a special case included in oumsygteuggests itself to
use the summed coefficients, although we cannot give anyf pfabe asymptotic
behaviour of the systems’ coefficients.
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Fig. 4 Real parts of the convolution coefficieriy

In the Figs. 47 we plot typical examples of the numericallyculated coef-
ficients for a 4x 4 system. Especially in Fig. 5 one can observe in the diagonal
elements the typical oscillating beaviour known from thalaccase. The diagonal
elements show the same properties as those for the scatarkasthe summed
coefficients

SS| = ?DsJ and Sgl = 7D5-,| (27)

the boundary conditions read
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Fig. 5 Imaginary parts of the convolution coefficier§,

n

#1795 - ST = 5 ST - 61+ 45, (282)
k=1

Pyt ghtl - Lpit=y S kgk gty gn . (28D)
k=1

In order to compute the convolution coefficients we need verise 2 -transform
the transformed kernels. We assume that#ieransform (18) is analytic fojiz| >
R > 0. The coefficients are then recovered by

_ gt
= jéspe(z)z” dz

whereS, denotes the circle with radiys > R. With the substitutiore = pe? we

obtain
pn 21T

ln ((pe?)edg. (29)

21 Jo

For p > 1, theamplification factorsp” in (29) will be the reason for the nu-
merical instabilities. On the other hang~= 1 cannot be chosen either for the ap-
plication to DTBCs, due to the poor regularity D{z) on the unit circle. For the
scalar Schidinger equation, e.gd(z) has two branch-points of typgz2 — 1 (cf.
[2, 22]), and hence too many quadrature points would be sacg$or the numeri-
cal evaluation of (29). Buti(z) is analytic for|z| > 1. So, one has to choogeas a
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compromise between more smoothnesé] @fzp (which allows for an efficient dis-

cretisation of (29)), and growing instabilities for large This situation depending
on the inversion radius is depicted in Fig. 8

0O F : : : : : : : e
—— numerical error L -
__ bound for ound o
_ bound forg L
approx L
o 7
> ’M
10° \//
107
107
Fig. 8 Rounding and dis-
cretisation errors depending w ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
on the inversion radius. t 12 14 16 18 2 22 24 26 28 3

For the numerical inverse transformation we choose a racansiN equidistant
sampling pointg, = re 2N _The approximate inverse transform,

N = lr”NilE(zk) ¥ n=0,..N-1 (30)
n N k; b )

can then be calculated efficiently by an FFT. The numeriqakref /N can be sep-
arated intogapprox, the approximation error due to the finite number of sampling
points, and the roundoff err@,ung, Which is amplified byp". We refer the reader
to [50] for more details and error estimates for this nun@iiiaversion problem.

5 The Sum-of-Exponentials Approach and the Fast Evaluation of
the Convolution

In order to reduce the numerical effort of the boundary camians (26), below
that effort of the interior scheme, it is necessary to makeesapproximation. We
will use the approach of Arnold, Ehrhardt and Sofronov [3]afgproximate the
coefficientss]; by the sum-of-exponentialansatz and show a method to evaluate
the discrete convolution with the approximated convohuttm)efficientsﬁgI very
efficiently. Afterwards we explain how these approximatedwolution coefficients
al, enable us to evaluate the discrete convolution efficiently.

The sum-of-exponentials approximation has to be done foh eéement inS
separately. We use for easit = 1,...,d the following ansatz
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L n=0,...,v-1

~al ={ LsT) , 31
S 3 bsdry n=vivl oD

where the number of summand in the approximati¢s) 7) € N and the starting in-
dexv > 0 (to disregard outliers) are tuneable parameters. Theogjppation qual-
ity of this sum-of-exponentials ansatz depend$.(8)7), v and the setgbs ;| } and
{0s7)} foralls,t=1,...,d.

Next we present the method to calculate these sets for gifgen) andv. We
consider the formal power series

for(X) =&+ X+ +...,  for|x <1. (32)
If the Pad approximation of (32)

n(S!_r(sa,r)—l) (X)
(

fsr(x) = d L(S,T))(X)
ST

exists (where the numerator and the denominator are polg®of degreéd. (s, ) —
1 andL(s, 1) respectively), then its Taylor series

fsr(x) = ag, +aliix+ayiae + ...
satisfies the conditions
g, =%, for n=v,v+1.. .2 (s1)+v-1

according to the definition of the Pa@pproximation rule. In [3] Arnold, Ehrhardt
and Sofronov showed how to compute the coefficient 8egs) } and{ds }.

Theorem 3 ([3], Theorem 3.1.).Let d;(f’r) have L(s, ) simple roots g, with
[O0s7i|>1,1=1,...,L(s,T). Then

L(s1)
5sn,r: Z bs,nlq;?Jv n=v,v+1...,
=1
where
(L(s,T)—1)
Nst (dsr.1)
bw::—’—q 1#£0,  I=1,..,L(s1).
(dé.Lr(S'T))) (Os7,1) 0

The asymptotic decay of th&l, is exponential. This is due to the sum-of-
exponentials ansatz (31) and the assumptign;| > 1,1 =1,...,L(s,1).

If we use gL(s, 1) — 1|L(s,T)] Pack approximant to (32) then the first&, ) +
v — 1 coefficients are reproduced exactly; however, the asyiapiehaviour o],
andag; (asn — =) differs strongly (algebraic versus exponential decay).
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We note that the P&dapproximation must be performed with high precision
(2L(s,T) — 1 digits mantissa length) to avoid a ‘nearly breakdown’ bgahditioned
steps in the Lanczos algorithm (cf. [13]). If such problenil$ accur or if one root
of the denominator is smaller than 1 in absolute value, tdersrof the numerator
and denominator polynomials are successively reduceduimamerical test case
we started with_(s, 7) = 30 and except from two outlier values the finally reached
values ofL(s, T) were between 25 and 30. Fig. 9 shows the e8br—al ;| versus
for the outlier withL(1,2) = 15 for the imaginary part & , (a) and withL(2,2) =
30 for the real part of; , (b). The error increases significantly for> 2L(s, 7) + 1.

Error in the Imaginary Part of the Approximated Summed Coefficientsent (1,2) . Error in the Real Part of the Approximated Summed Coefficients (2,2)
T T T T T T T T 1 T T T T T T T r

L L L L L L L L L 3 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
n n

Fig. 9 Error|s; —&g | versus: imaginary part (a) fos= 1,7 =2 and (b) real part fos= 1 = 2.

Now we describe the fast evaluation of the discrete appratéraonvolution

n+1 v 1-k k L(sT)
CST Z ay Uz, Wwith asr Z bsrlqsrp n=v,v+1,.

that can be calculated efficiently by a simpéeurrence formula
Theorem 4 ([3], Theorem 4.1.).

e ) z c;lﬁl (33)
with
1) _
Cé”fl (u) = qST1|C&T,+bST|qST|u+1 v, n=v,v+1,... (34)
) (uy=o.

This is an efficient and local-in-time approximation, thaes data only fronv lev-
els earlier (typicallw = 2). Also, there is no need to store the boundary data, which
becomes computationally expensive especially for higihraedsional problems.
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Note that similar recursive convolution algorithms arecassfully used in other
applications as well, see [11] and references therein.
Let us summarize the proposed method to evaluate appraxiisdrete TBCs

1. For eacls, T choosd_ (s, 7) andv and calculate the exact convolution coefficients
8, forn=0,...,2L(s; 1) +v—1.

2. For eacts, T use the Paglapproximation for the Taylor series w#ly, = s, for
n=v,v+1...,2L(s1)+Vv—1to calculate the setds} and{qgs} for all
s,7=1,...,d according to Theorem 3.

3. Implement the recurrence formulas (33) and (34) to cateuthe approximate
convolutions.

6 Numerical Results

Finally we present the numerical results for simulating time-dependent be-
haviour of the quantum well with the data of Section 1. We dleothe time step
k = 0.015 and the space stép=1/20 for the computational domajr-12,5] and
compute the convolution coefficients of the discrete TBCescdbed in Section 5.
First, to study the behaviour of the discrete TBC, we consaleystem of
Schibdinger equations with potential set to zero ('free ®dmger system’).
As initial condition we use the Gaussian wave packet of heag light holes (4)
stimulating a slow and a fast eigenmode. Fig. 10 shows the-tlapendent be-
haviour of the first two componentf (solid) and¢, (dashed). We focus on the
first two components, since there is less mass in componeret #md four. The den-
sity oscillates between the components, moves to the figlgiments in two and the
faster wave packet leaves the domain of computation withoytisible reflections.
Secondly we consider only the faster mode and add the DBSQ@QWftste (5),
cf. Fig. 11. When the wave packet reaches the first barriex gaitly reflected and
partly transmitted. With advancing time some part of thesitgraccumulates be-
tween the barriers and is slowly transmitted through thesgbarrier, then leaving
the domain of computation. The part of the density, whicheifected at the first
barrier moves on to the left and after some time most parteostiution leaves the
computational domain in a packet. The wave packet does noimpose smoothly.
A simulation for a slightly different DBSQW structure is stioin Fig. 12.
Therelative >—error is defined as

e (t) =9 —dall2/l¢(. 02,

whereg, denotes the approximate solution obtained with the appratéd discrete
TBCs and¢ is the solution calculated with exact discrete TBCs. Whengiéie

parametet (s, T) = 30 initially in the sum-of-exponential approach (31) thésar

tive ¢>—error increases moderately with respect to time (due tintieeaction with

the potential) but remains bounded after 1000 time stepmab8l 102 which is

acceptable for this application.
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Fig. 10 Time dependent behaviour ¢f; (solid) and¢,; (dashed) for a free Sobdinger system.
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Fig. 11 Time dependent behaviour @k (solid) and¢,; (dashed) for a system with DBSQW

structure.
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