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Abstract This chapter is concerned with the derivation and analysis of discrete
transparent boundary conditions (TBCs) for transient systems ofSchr̈odinger-type
equationsin one space dimension. These systems occur i.e. in the physics oflayered
semiconductor devicesas the so calledk· p-Schr̈odinger equations, which are a well
established tool forband structure calculations.
The new TBCs are constructed directly for the chosen discrete scheme, in order to
ensure the stability of the underlying scheme and to completely avoid any numeri-
cal reflections. The discrete TBCs are constructed using thesolution of the exterior
problem with Laplace andZ -transformation, respectively.
These discrete TBCs can easily be obtained by an inverseZ -transformation based
on FFT, but these exact discrete TBCs are non-local in time and thus very costly.
Hence, as a remedy, we present approximate discrete TBCs, that allow a fast calcu-
lation of the boundary terms using a sum-of-exponentials approach.
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1 Introduction

Many modern quantum-electronic semiconductor devices such asresonant tunnel-
ing diodes(RTD) [40, Chapter 14] or opto-electronic devices such as quantum-
cascade lasers [41] and multi-quantum-well electro-absorption modulators [20] are
based on the tunneling process of carriers through barrier structures. Typically these
kind of barrier structures arelayered semiconductor heterostructures[40, 41, 20]
with a barrier thickness of a few nanometer. The transient simulation of wave pack-
ets tunneling through such nano-scale semiconductor heterostructures plays a key
role in the understanding of such transport processes [48, 43, 39].

In this respect, transient simulations can be used to estimate charging and escape
times [48, 43], tunneling times [39], or carrier life times [20, 46]. For the time-
dependent simulation of a tunneling process usually a scalar Schr̈odinger equation
defined by BenDaniel-Duke-type Hamiltonians [6, Chapter 3]is used [48, 39, 46].
Here the electronic band structure is approximated by a single parabolic band. These
parabolic single-band approximations are in good agreement with the real band
structure in the vicinity of the minima of the conduction bands, which is the part
of the band structure that is usually occupied by the electrons. For the treatment of
the holes, occupying the maxima of the valence bands, the accuracy of parabolic
single-band models is often not sufficient since the valencebands possess a much
more complex band structure [16, 6, 17, 19, 10, 39, 20].

However, the electronic states of the holes can be approximated appropriately
by multi-band states which satisfy a so-calledk · p-Schr̈odinger equation. The time-
dependentk· p-Schr̈odinger equation describes the time evolution of the multi-band
electronic state and can be regarded as a linear coupled system of scalar Schrödinger
equations. The evolution is governed by thek · p-Schr̈odinger operator which is an
extension to the single-band models and describes a system of bands of the band
structure, e.g. the four topmost valence bands [6, 17, 19, 10].

There exists a couple of such multi-bandk · p-models [36] including also com-
bined models for conduction and valence bands. The later also allow for a non-
parabolic approximation of the conduction bands. Suchk · p-models can be used
for devices where the parabolic conduction band approximation is not sufficient.
For unipolar devices where by crossing a barrier a conduction-band to valence-band
transition is possible such asresonant interband tunneling diodes(RITD) or for
bipolar devices where additionally the hole tunneling processes are important such
as for multi-quantum well electro-absorption modulators multi-band modeling is
necessary. In this cases the numerical solution of the transient k · p-Schr̈odinger
equation can be used to understand and to determine the tunneling properties of the
corresponding semiconductor heterostructures by studying the time evolution of the
multi-band electronic state.

In this chapter we discuss the appropriate numerical treatment of a transient sys-
tem ofk · p-Schr̈odinger-type. We notice that such type of Schrödinger systems also
arise as ”parabolic systems” in electromagnetic wave propagation. Artificial bound-
ary conditions (BCs) have to be imposed to restrict the unbounded domain, on which
the partial differential equation (PDE) is originally defined, to a finite computational
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domain. Such BCs are calledtransparent boundary conditions(TBCs), if the solu-
tion on the whole space (restricted to the computational domain) is equal to the
solution with the artificial BCs. The artificial boundary splits the problem into three
parts: the interesting interior problem and a left and rightexterior problem. For
constant coefficients the exterior problems can be solved explicitly by the Laplace
method in the continuous andZ -transformation in the discrete case.

Claiming (spatial)C1-continuity of the solution at the artificial boundaries yields
the TBC as a Dirichlet–to–Neumann (DtN) map [2, 22]. An ad-hoc discretisation of
these continuous TBC can destroy the stability of the employed numerical scheme
for the PDE and induce numerical reflections [1]. To avoid this, we derivediscrete
TBCsfor the fully discretised PDE. The procedure is analogous tothe continuous
case and uses theZ -transformation. The inverse Laplace/Z -transformation yields
a convolution in time. Hence, the perfectlyexactBC is non-local in time and there-
fore very costly for long–time simulations. To reduce the numerical effort, we in-
troduce approximate discrete TBCs. Since the inverseZ -transformation must be
accomplished numerically for Schrödinger–type systems, an additional small nu-
merical error is induced.

This chapter is organised as follows: In Section 2 we introduce the system of
k · p-Schr̈odinger equations and present as an example a quantum well structure
with a double barrier that will be considered throughout this work. Next we derive in
Section 3 the analytic TBC and afterwards its discrete variant in Section 4. Here, we
also scrutinise the coefficients of the discrete convolution and explain our strategy
to compute the coefficients by a numerical inverseZ -transformation. In Section 5
we approximate the coefficients by a sum-of-exponentials ansatz and present a fast
evaluation of the approximate discrete TBC. Finally, in Section 6 we give the results
of numerical simulations for a quantum heterostructure.

2 Transient k · p-Schrödinger Systems

In this chapter we considerk · p-Schr̈odinger systems that are well established mod-
els for band structure calculations[18] for one-dimensional semiconductor nano-
structures. They are layeredheterostructuresconsisting of layers of different semi-
conductor materials with abrupt, planar heterojunction interfaces between the layers
[40]. Typical examples are semiconductor quantum wells anddouble-barrier struc-
tures orresonant interband tunneling diodes(RITDs) [6, 19, 40, 44].

Fig. 1 depicts the typical valence and conduction band profile of a quantum well
structure. Usually one is interested in the computation of the bound eigenstates (with
eigenvalue smaller (large) thanEc (Ev) in the barrier material) in the quantum well.
HereEg denotes the bandgap andeg′ is the middle of the bandgap that can be as-
sumed to be constant on each material and thus as piecewise constant functions.

The typical valence and conduction band profile for a RITD is shown in Fig. 2.
For the RITD one is usually interested in the computation of the transmission and
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Fig. 1 Band edge profile for
a quantum well structure.
The electrons and holes are
confined between the barriers
in the well region.

reflection amplitudes in dependence on the wave vector of theincoming wave to-
gether with the corresponding wave functions.

Fig. 2 Band edge profile
for a RITD structure. By
crossing from barrier to well
region the electrons become
a hole which is attracted by
its potential well given by the
valence band edge profile.
This increases the density
between the barriers and
improves the performance of
the tunneling device.

Thek · p-method [26] in combination with the envelope function approximation
[6, 40, 19, 16, 6, 14, 15] is a frequently used approach for themodeling of the near-
band-edge electronic states in semiconductor nanostructures. Within this approach
the electronic stateΨ(r) is approximated in terms ofd bands

Ψk‖(r) = exp(ik‖ · r‖)
d

∑
ν=1

ϕν (x;k‖)uν ,k=0(r) with r = (r‖,x) ∈ R
3 .

The index‖ indicates in-plane vectors andx denotes the growth direction of the
semiconductor layers.k‖ = (k1,k2) ∈ R

2 is the reduced wave vector, which will be
fixed for each simulation model.uν ,k=0(r) are lattice periodic, zone-center Bloch
functions varying on the atomic scale andϕν (x;k‖) are the corresponding envelope
functions describing the variation of the wave function on the (larger) nanoscale.
The vector of the envelope functionsϕ = (ϕ1, · · · ,ϕd) with ϕ (x, t) ∈ C

d fulfill the
one-dimensionalk · p-Schr̈odinger equation



Transient Simulation ofkp-Schr̈odinger Systems using Discrete TBCs 5

i
∂
∂ t

ϕ = H
(

k‖,−i
∂
∂x

)
ϕ .

There is a hierarchy ofk · p-models [36] including 4-band, 6-band and 8-band
Hamiltonians. Depending on the model Hamiltonian, effectssuch as quantum con-
finement, band-mixing, spin-orbit interaction and mechanical strain can be treated
consistently. The basic stage in this model hierarchy is the4× 4 Luttinger-Kohn-
Hamiltonian [35] which describes the band-mixing between the heavy holes and the
light holes [6, 17, 18, 19].

In our notation we will follow Bandelow et al. [8] who performed a rigorous
analysis of spectral properties for the spatially one dimensionalk · p-Schr̈odinger
operators. The considered system reads as follows

i
∂
∂ t

ϕ =− ∂
∂x

(N(x)
∂
∂x

ϕ )+M0(x)
∂
∂x

ϕ − ∂
∂x

(MH
0 (x)ϕ )

+k1

(
M1(x)

∂
∂x

ϕ − ∂
∂x

(MH
1 (x)ϕ )

)
+k2

(
M2(x)

∂
∂x

ϕ − ∂
∂x

(MH
2 (x)ϕ )

)

+k1U1(x)ϕ +k2U2(x)ϕ +k2
1U11(x)ϕ +k1k2(U12(x)+U21(x))ϕ

+k2
2U22(x)ϕ +v(x)ϕ +e(x)ϕ , x∈ R, t > 0, k1,k2 ∈ R,

(1)

whereϕ (x, t)∈C
d, the mass matrixN andeare real diagonald×d-matrices.Ui , Ui j

andv are Hermitiand×d-matrices. Thed×d-matricesM0(x), M1(x) andM2(x)
are skew-Hermitian. In the sequel we abbreviate

MS(x) := M0(x)+k1M1(x)+k2M2(x), (2a)

V(x) := k1U1(x)+k2U2(x)+k2
1U11(x)+k2

2U22(x)

+k1k2(U12(x)+U21(x))+v(x)+e(x). (2b)

ThenMS(x) is skew-Hermitian,V(x) is Hermitian and (1) reads

i
∂
∂ t

ϕ =− ∂
∂x

(N(x)
∂
∂x

ϕ )+MS(x)
∂
∂x

ϕ − ∂
∂x

(MH
S (x)ϕ )+V(x)ϕ , (3)

x ∈ R, t > 0. The real diagonal matrixe(x) describes the variation of the band-
edges. The band-mixing due to thek · p-interaction of the first and second order
are described by the terms containing the matricesMα , Uα , α = 0,1,2, andUαβ ,
α ,β = 1,2, respectively. The potentialv can cover couplings induced by the spin-
orbit interaction or by mechanical strain. When neglecting all non-diagonal cou-
pling terms, the system would reduce to an uncoupled system of scalar Schr̈odinger
equations corresponding to the case of uncoupled parabolicbands. In this sense the
couplings can be interpreted as correction terms to the parabolic band structure ap-
proximation.
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An important property of the system (3) is the conservation of mass, i.e.||ϕ ||2
L2

is constant in time. This property can be easily verified: we multiply (3) with ϕ H

from the left and integrate by parts:

∂
∂ t

||ϕ ||2L2 =
∂
∂ t

∫

R

ϕ Hϕ dx= 2 Im
∫

R

iϕ Hϕt

= 2 Im

(
−
∫

R

ϕ H ∂
∂x

(m
∂
∂x

ϕ )dx+
∫

R

ϕ HVϕ dx

+

∫

R

ϕ HMS
∂
∂x

ϕ dx−
∫

R

ϕ H ∂
∂x

(MH
S ϕ )dx

)

= 2 Im



∫

R

ϕ H
x mϕx dx+

∫

R

ϕ HVϕ dx+
∫

R

ϕ HMϕx+ϕ H
x MHϕ︸ ︷︷ ︸

∈R

dx




= 0.

The last equality follows from the fact thatV and N are Hermitian and thus the
imaginary part of the quadratic forms vanishes. The other term is of the formy+yH

and thus obviously real.
We now briefly review an illustrative example from [50] that we will use through-

out this chapter for the numerical results.

Example 1 (double-barrier stepped quantum-well structure[50]). We consider the
GaAs/AlGaAs double-barrier stepped quantum-well structure(DBSQW) intro-
duced in [48]. The variation of the band-edgese(x) is depicted in Fig. 3. For this kind
of structure an analysis of the time evolution of wave packets tunneling through the
structure has been performed using a scalar Schrödinger equation [48]. We consider
the more accurate four-band Luttinger-Kohn-Hamiltonian [6, 17, 18, 19] modeling
the band-mixing of heavy and light holes. In atomic units adapted to the light holes
(h̄= 1, m0/(γ1+2γ2) = 1) the coefficient matrices for the corresponding 4×4 sys-
tem of Schr̈odinger equations are given byN = 0.5·diag(γ,1,1,γ), M0 = 0,

M1 =
1
2

γ3

γ1+2γ2

√
3i




0 1 0 0
1 0 0 0
0 0 0 −1
0 0−1 0


 , M2 =

1
2

γ3

γ1+2γ2

√
3




0 1 0 0
−1 0 0 0
0 0 0−1
0 0 1 0


 ,

U11,22 =
1
2

1
γ1+2γ2




γ1+γ2 0 ∓
√

3γ2 0
0 γ1−γ2 0 ∓

√
3γ2

∓
√

3γ2 0 γ1−γ2 0
0 ∓

√
3γ2 0 γ1+γ2


 ,

U12+U21 =

√
3γ3i

γ1+2γ2




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,
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andU1 = U2 = 0 with

γ =
γ1−2γ2

γ1+2γ2
.

The values of the band structure parameters for GaAs are given by

γ1 = 6.85, γ2 = 2.1, γ3 = 2.9.

For the in-plane wave-vectork‖ we choosek1 = 2.3, k2 = 0. As initial condition we
use a Gaussian wave packet

ϕ (x,0) = (2πσ2)
1
4 exp

(
ikrx−

(x−x0)
2

σ2

)
· ζ , (4)

whereζ ∈ C
d is a linear combination of eigenmodes calculated via the dispersion

relation of (3) andσ = 3, x0 =−2σ andkr =
√

6.99. The band-edge profilee(x) =
e(x)I (with the identity matrixI ) of the DBSQW is taken from [48] and defined by

e(x) =





0, x≤ 0
15
2 , 0< x≤ 0.5
3
2, 0.5< x≤ 1

0, 1< x≤ 1.5
15
2 , 1.5< x≤ 2

0, 2< x

. (5)

right

exterior

domain

computational domain

left

exterior

domain

x< 0 x> L

     L0

Fig. 3 Variation of the band-edgee(x) for the GaAs/AlGaAs DBSQW structure.

The computational domain is now defined such that it containsthesignificantpart
of the initial data and thex-dependent part of the band-edge potential (cf. Fig. 3).
For a strategy to soften this restriction on the inital data we refer the reader to [23].
Next we introduce in Section 3 TBCs at the left and right boundaryx= 0 andx= L.
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3 The Transparent Boundary Conditions

In this section we derive the TBCs for thek · p-Schr̈odinger equation (1). In the
scalar case (classical Schrödinger equation of quantum mechanics), the Laplace-
transformed equation in the exterior domain can be solved explicitly. Afterwards
the solution is inverse transformed, thus yielding the analytic boundary condition,
cf. [2]. Here, for a system the inverse transform can not be calculated explicitly.
Nevertheless, we will present the derivation of the Laplacetransformed TBC.

For the derivation we proceed as follows: we consider the Schrödinger equation
in the exterior domain. A Laplace transformation with respect to time yields a sys-
tem of ordinary differential equations (ODEs), that can be reduced to first order.
Then the solution of this system can be given in terms of its eigenvalues and eigen-
vectors. Next, we prove, that half of the eigenvalues have positive real parts and thus
yield solutions increasing forx→ ∞; the other half has negative real parts, yielding
decreasing solutions. Requiring that the part of the increasing solutions in the right
(and the decreasing solutions in the left) exterior domain vanish, yields the TBC.

We consider equation (1) in the bounded domain[0,L] supplied with TBCs at
x = 0 andx = L. Since the derivation for the left and right TBC is analogous, we
focus on the right boundary atx= L. The TBC atx= L is constructed by considering
(1) with constant coefficients forx> L, the so calledright exterior problem

iϕt =−Nϕxx+ iMϕx+Vϕ , x> L, t > 0, (6)

whereM = MH , V = VH . N is diagonal, real and regular and given by

M =−i
(
M0−MH

0 +k1(M1−MH
1 )+k2(M2−MH

2 )
)

=−i(MS−MH
S ), (7a)

V = k1U1+k2U2+k2
1U11+k2

2U22+k1k2(U12+U21)+v+e. (7b)

If MS is skew-Hermitian, thenMS−MH
S = 2MS is also skew-Hermitian, thusM =

−2iMS is Hermitian. Analogously we define theleft exterior problemfor x< 0 and
denote the occurring matrices with “˜ ”.

To solve the right exterior problem forx> L we apply the Laplace-transformation

ϕ̂ (x,s) =
∫ ∞

0
e−stϕ (x, t)dt, s= α + iξ , α > 0, ξ ∈ R, (8)

to (6) and obtain the system of ODEs

Nϕ̂xx− iM ϕ̂x = (V− isI)ϕ̂ , x> L. (9)

This transformed right exterior problem (9) posses aunique classical solution:

Lemma 1. [50, Lemma 3.1] LetRe(s) > 0. Then, the boundary value problem(9)
with the boundary data
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ϕ̂ (x= L) = Φ̂ ∈ C
d, ϕ̂ (x= ∞) = 0 (10)

has a unique (classical) solution.

It is exactly this linear mapping from the boundary data to the (derivative of the)
solutionϕ̂L 7→ ϕ̂x(L), the so-called Dirichet-to-Neumann (DtN) map, that represents
the Laplace transformed TBC we are seeking for.

Next, to derive an explicit form of this TBC being accessiblefor numerical im-
plementations, we defineν = ϕ̂ andη = ϕ̂x. Doing so, we reduce the order of the
ODE and obtain a system of first order ODEs

(
M iN
−iN 0

)

︸ ︷︷ ︸
A

(
νx

ηx

)
=

(
iV+sI 0

0 −iN

)

︸ ︷︷ ︸
B

(
ν
η

)
, x> L. (11)

In [50, Lemma 3.4] we proved the regularity of the matrixA−1B for Re(s)> 0 and
thus we can rewrite (11) as

(
νx

ηx

)
=

(
0 I

N−1(V− isI) iN−1M

)

︸ ︷︷ ︸
A−1B

(
ν
η

)
, x> L. (12)

In order to understand the structure of the solution we have to distinguish
between increasing and decaying solutions of the system (12). For this purpose we
proved using a continuity argument in [50] the Splitting Theorem:

Theorem 1. [50, Theorem 3.2] The regular matrixA−1B has d eigenvalues with
positive real part and d with negative real part.

The next step is to transformA−1B in (12) to a Jordan form with

A−1B = PJP−1,

whereP contains the left eigenvectors in columns. We sort the Jordan blocks inJ
with respect to an increasing real part of the correspondingeigenvalue. ThusJ can
be written as a block diagonal matrixJ = diag(J1,J2), whereJ1 holds all Jordan
blocks to eigenvalues with negative real parts andJ2 those with positive real parts.
Due to the Splitting TheoremJ1 andJ2 ared×d-matrices and equation (12) reads

(
P1 P2

P3 P4

)

︸ ︷︷ ︸
P−1

(
νx

ηx

)
=

(
J1 0
0 J2

)(
P1ν +P2η
P3ν +P4η

)
. (13)

Obviously, the upper part of this system yields parts of the solution, which decay
for x→ ∞ and grow forx→−∞. The opposite is true for the lower part. An analo-
gous equation holds for the left exterior problem. Thus thetransformed transparent
boundary conditionsfor the left (a) and right (b) boundary is obtained by extin-
guishing the respectively increasing parts of the exteriorsolutions:
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P̃2ϕ̂x(0,s) =−P̃1ϕ̂ (0,s), (14a)

P4ϕ̂x(L,s) =−P3ϕ̂ (L,s). (14b)

Here,P̃1 andP̃2 are the corresponding matrices for the left exterior probemP3 and
P4 (resp.P̃1,P̃2) are sub-matrices ofP−1 which holds the eigenvectors ofA−1B
and is thus regular. Therefore(P3 P4) has rankd and thus at least one of the two
matricesP3 andP4 (resp.P̃1 andP̃2) is regular. If the matrices̃P2 andP4 are regular,
then the Laplace-transformed TBC can be written inDirichlet-to-Neumann form. It
is not clear, if these matrices are regular in general, but for our example this hold for
all tested values ofs.

4 The Discrete Transparent Boundary Conditions

Our proposed strategy is a purely discrete one, i.e. we do notdiscretise the equation
(14) (by a numerical inverse Laplace transformation), but instead we derive discrete
TBCs for a discretisation of (1). For the discretisation we choose a uniform grid
with the step sizesh in space andk in time: x j = jh, tn = nk with j ∈ Z, n ∈ N0.
We discretise (3) using the classical unitary Crank-Nicholson scheme in time and
the central differences for the first and second spatial derivatives. The discretek · p-
Schr̈odinger equation then reads

i
h2

k
(ϕ n+1

j −ϕ n
j )

=−∆0
h
2
(N j∆0

h
2
ϕ n+ 1

2
j )+MS j∆0ϕ n+ 1

2
j −∆0(MH

S jϕ
n+ 1

2
j )+Vjϕ

n+ 1
2

j , (15)

with the centered difference operators

∆0
h
2
ϕ j = ϕ j+ 1

2
−ϕ j− 1

2
, (16a)

∆0ϕ j =
1
2
(∆++∆−)ϕ j = ϕ j+1−ϕ j−1, (16b)

where∆+ = ϕ j+1 − ϕ j , ∆− = ϕ j − ϕ j−1 are the standard forward and backward

differences and the arithmetic time average is denoted byϕ n+1/2
j = (ϕ n+1

j +ϕ n
j )/2.

An appropriate discretisation scheme should carry over properties of the contin-
uous equation to the difference equation. This is the case for the Crank-Nicolson
scheme: it conserves the discreteℓ2-norm on j ∈ Z and thus it is unconditionally
stable for the whole space problem. The procedure to show this is analogue to the
continuous case: we multiply the discrete equation with(ϕ n

j )
H from the left and

add the Hermitian of the discrete equation multiplied byϕ n+1
j from the right. This

shows, that the discreteℓ2-norm is conserved in time.
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For the case of a scalar Schrödinger equation Arnold [2] derived 1998 a discrete
TBC. This discrete TBC is reflection-free and conserves the stability properties of
the whole-space Crank-Nicolson scheme. The discrete TBC has the form of a dis-
crete convolution. The convolution coefficients are a function of Legendre polyno-
mials but can be obtained more easily by a three-term recurrence formula. Ehrhardt
and Arnold [22] showed that the imaginary parts of the convolution coefficients are
not decaying and therefore introduced summed coefficients.

To derive the discrete TBC for a system of Schrödinger equations we solve the
Z -transformed system of ordinary difference equations (O∆Es) in the exterior do-
main. Then all its solutions are determined by eigenvalues and eigenvectors, which
can distinguish between decaying and increasing solutionsby the absolute value of
the involved eigenvalue. We obtain the transformed discrete TBC by claiming, that
no influence of increasing solutions exists.

In the exterior domainj ≥ J (xJ = L) the Crank-Nicholson scheme (15) simplifies

i
h2

k
(ϕ n+1

j −ϕ n
j ) =

−N∆+∆−ϕ n+1/2
j + ihM

1
2
(∆++∆−)ϕ n+1/2

j +h2Vϕ n+1/2
j . (17)

A Z -transformation given by

Z {ϕ n
j }= ϕ̂ j(z) :=

∞

∑
n=0

z−nϕ n
j , z∈ C, |z|> 1, (18)

applied to (17) yields for|z|> 1 the system of second order O∆Es

2i
h2

k
z−1
z+1

ϕ̂ j =−N∆+∆−ϕ̂ j + ihM
1
2
(∆++∆−)ϕ̂ j +h2Vϕ̂ j , j ≥ J. (19)

As in the continuous case we proved in [50] that this transformed right exterior
problem (19) posses aunique solution:

Lemma 2. [50, Lemma 4.1] For each z∈C with |z|> 1 theZ -transformed exterior
problem(19)with the boundary data

ϕ̂J−1 = Φ̂, ϕ̂∞ = 0 (20)

has a unique solution.

We proceed with the construction of the discrete TBC and define ξ̂ j =∆−ϕ̂ j in order
to write (19) as a system of first order O∆Es

(
i h
2M −N
−I I

)

︸ ︷︷ ︸
A

(
∆+ϕ̂ j

∆+ξ̂ j

)
=

(
h22z−1

z+1
1
k iI −h2V −i h

2M
0 −I

)

︸ ︷︷ ︸
B

(
ϕ̂ j

ξ̂ j

)
, j ≥ J (21)
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In [50, Lemma 4.5] we proved the regularity of the matrixA−1B+ I for |z| 6= 1 and
thus we can rewrite (21) as

(
ˆϕ j+1
ˆξ j+1

)
= (A−1B+ I)

(
ϕ̂ j

ξ̂ j

)
, j ≥ J. (22)

As in the continuous case there exist a discrete version of the Splitting Theorem:

Theorem 2. [50, Theorem 4.2] For|z| 6= 1 d of the2d eigenvalues ofA−1B+ I have
an absolute value strictly larger than 1 and d have an absolute value strictly smaller
than 1.

In other words, the eigenvaluesλ1, . . . ,λ2n of A−1B split into two commensurate
groups, i.e. the solutions involving those with|λk+1|< 1 for k= 1, . . . ,n decay for
j → ∞ and those with|λk+1|> 1 for k= n, . . . ,2n decay forj →−∞.

Thus, as in the continuous case, we can split the Jordan formJ = diag(J1,J2)
of A−1B, J1 containing the Jordan blocks corresponding to solutions decaying for
j → ∞ andJ2 those which increase. With the matrix of left eigenvectorsP−1 the
equation

(
P1 P2

P3 P4

)

︸ ︷︷ ︸
P−1

(
∆+ϕ̂ j

∆+ξ̂ j

)
= P−1A−1B

(
ϕ̂ j

ξ̂ j

)
=

(
J1 0
0 J2

)(
P1ϕ̂ j +P2ξ̂ j

P3ϕ̂ j +P4ξ̂ j

)
(23)

holds and thetransformed discrete TBCsread

P̃1ϕ̂1+ P̃2ξ̂1 = 0, (24a)

P3ϕ̂J +P4ξ̂J = 0, (24b)

for the left (a) and right (b) boundary respectively. For nonsingularP4 andP̃2 (either
P4 or P3 is regular, since their composition is a linear independentset of eigenvec-

tors - the same holds for̃P2 andP̃1) and forD̂=−P−1
4 P3 and̂̃D=−P̃−1

2 P̃1 we write

∆−ϕ̂1 =
̂̃Dϕ̂1, (25a)

∆−ϕ̂J = D̂ϕ̂J. (25b)

After an inverseZ -transformation thediscrete TBCsread

ϕ n+1
1 −ϕ n+1

0 − D̃0ϕ n+1
1 =

n

∑
k=1

D̃n+1−kϕ k
1, (26a)

ϕ n+1
J −ϕ n+1

J−1−D0ϕ n+1
J =

n

∑
k=1

Dn+1−kϕ k
J. (26b)

We remark that in equation (25a) and (26a) the left boundary convolution is given at
the interior grid pointj = 1. Of course, the boundary condition can also be formu-



Transient Simulation ofkp-Schr̈odinger Systems using Discrete TBCs 13

lated atj = 0 usingξ̂ j = ∆+ϕ̂ j . This changes the lower row inA andB and thus the
matrix D̃ differs fromD. Posing the boundary condition atj = 1 as we do, has the
advantage, that these matrices coincide, if the coefficients for x < 0 andx > L are
equal, what occurs often in the application. In that case we can reduce the numerical
effort to calculate the convolution coefficients by half.

For a scalar Schrödinger equation Ehrhardt and Arnold showed in [22] that the
imaginary parts of the coefficients were not decaying but oscillating. As a rem-
edy they introducedsummed coefficientsthat decay rapidly likeO(n−3/2). Since
the scalar equation is as a special case included in our system, it suggests itself to
use the summed coefficients, although we cannot give any proof of the asymptotic
behaviour of the systems’ coefficients.
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Fig. 4 Real parts of the convolution coefficientsDn
k,l

In the Figs. 4–7 we plot typical examples of the numerically calculated coef-
ficients for a 4× 4 system. Especially in Fig. 5 one can observe in the diagonal
elements the typical oscillating beaviour known from the scalar case. The diagonal
elements show the same properties as those for the scalar case. For the summed
coefficients

̂̃Ss,l =
z+1

z
̂̃Ds,l and Ŝs,l =

z+1
z

D̂s,l (27)

the boundary conditions read



14 Andrea Zisowsky, Anton Arnold, Matthias Ehrhardt and ThomasKoprucki

0 50 100
−2

0

2

0 50 100
−0.5

0

0.5

0 50 100
−5

0

5

10
x 10

−3

0 50 100
−2

0

2
x 10

−3

0 50 100

0

0 50 100
−1

−0.5

0

0.5

0 50 100
−2

0

2
x 10

−3

0 50 100
−2

0

2

4
x 10

−3

0 50 100
−2

0

2

4
x 10

−3

0 50 100
−2

0

2
x 10

−3

0 50 100
−1

−0.5

0

0.5

0 50 100

0

0 50 100
−2

0

2
x 10

−3

0 50 100
−5

0

5

10
x 10

−3

0 50 100
−0.5

0

0.5

0 50 100
−2

0

2

Fig. 5 Imaginary parts of the convolution coefficientsDn
k,l

ϕ n+1
1 −ϕ n+1

0 − S̃0ϕ n+1
1 =

n

∑
k=1

S̃n+1−kϕ k
1−ϕ n

1+ϕ n
0, (28a)

ϕ n+1
J −ϕ n+1

J−1−S0ϕ n+1
J =

n

∑
k=1

Sn+1−kϕ k
J −ϕ n

J +ϕ n
J−1. (28b)

In order to compute the convolution coefficients we need to inverseZ -transform
the transformed kernels. We assume that theZ -transform (18) is analytic for|z|>
R≥ 0. The coefficients are then recovered by

ℓn =
1

2πi

∮

Sρ
ℓ̂(z)zn−1dz,

whereSρ denotes the circle with radiusρ > R. With the substitutionz= ρeiϕ we
obtain

ℓn =
ρn

2π

∫ 2π

0
ℓ̂
(
ρ eiϕ )einϕ dϕ . (29)

For ρ > 1, theamplification factorsρn in (29) will be the reason for the nu-
merical instabilities. On the other hand,ρ = 1 cannot be chosen either for the ap-
plication to DTBCs, due to the poor regularity ofD̂(z) on the unit circle. For the
scalar Schr̈odinger equation, e.g.,̂d(z) has two branch-points of type

√
z2−1 (cf.

[2, 22]), and hence too many quadrature points would be necessary for the numeri-
cal evaluation of (29). But̂d(z) is analytic for|z| > 1. So, one has to chooseρ as a
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Fig. 6 Real parts of the summed convolution coefficientsSn
k,l
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compromise between more smoothness ofℓ̂
∣∣
|z|=ρ (which allows for an efficient dis-

cretisation of (29)), and growing instabilities for largeρ. This situation depending
on the inversion radius is depicted in Fig. 8

Fig. 8 Rounding and dis-
cretisation errors depending
on the inversion radius. 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10
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−40
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10
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40

numerical error
bound for ε

round
bound for ε

approx

For the numerical inverse transformation we choose a radiusr andN equidistant
sampling pointszk = r e−ik2π/N. The approximate inverse transform,

ℓN
n =

1
N

rn
N−1

∑
k=0

ℓ̂(zk) eink2π
N , n= 0, . . .N−1 (30)

can then be calculated efficiently by an FFT. The numerical error of ℓN
n can be sep-

arated intoεapprox, the approximation error due to the finite number of sampling
points, and the roundoff errorεround, which is amplified byρn. We refer the reader
to [50] for more details and error estimates for this numerical inversion problem.

5 The Sum-of-Exponentials Approach and the Fast Evaluation of
the Convolution

In order to reduce the numerical effort of the boundary convolutions (26), below
that effort of the interior scheme, it is necessary to make some approximation. We
will use the approach of Arnold, Ehrhardt and Sofronov [3] toapproximate the
coefficientss̃n

s,l by thesum-of-exponentialsansatz and show a method to evaluate
the discrete convolution with the approximated convolution coefficientsãn

s,l very
efficiently. Afterwards we explain how these approximated convolution coefficients
ãn

s,l enable us to evaluate the discrete convolution efficiently.
The sum-of-exponentials approximation has to be done for each element inS

separately. We use for eachs,τ = 1, . . . ,d the following ansatz
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s̃n
s,τ ≈ ãn

s,τ :=





s̃n
s,τ , n= 0, . . . ,ν −1

L(s,τ )
∑

l=1
bs,τ ,l q−n

s,τ ,l , n= ν ,ν +1, . . .
, (31)

where the number of summand in the approximationL(s,τ ) ∈N and the starting in-
dexν ≥ 0 (to disregard outliers) are tuneable parameters. The approximation qual-
ity of this sum-of-exponentials ansatz depends onL(s,τ ), ν and the sets{bs,τ ,l} and
{qs,τ ,l} for all s,τ = 1, . . . ,d.

Next we present the method to calculate these sets for givenL(s,τ ) andν . We
consider the formal power series

fs,τ (x) := s̃ν
s,τ + s̃ν+1

s,τ x+ s̃ν+2
s,τ x2+ . . . , for |x| ≤ 1. (32)

If the Pad́e approximation of (32)

f̃s,τ (x) :=
n(L(s,τ )−1)

s,τ (x)

d(L(s,τ ))
s,τ (x)

exists (where the numerator and the denominator are polynomials of degreeL(s,τ )−
1 andL(s,τ ) respectively), then its Taylor series

f̃s,τ (x) = ãν
s,τ + ãν+1

s,τ x+ ãν+2
s,τ x2+ . . .

satisfies the conditions

ãn
s,τ = s̃n

s,τ for n= ν ,ν +1, . . . ,2L(s,τ )+ν −1

according to the definition of the Padé approximation rule. In [3] Arnold, Ehrhardt
and Sofronov showed how to compute the coefficient sets{bs,τ ,l} and{qs,τ ,l}.

Theorem 3 ([3], Theorem 3.1.).Let dL(s,τ )
s,τ have L(s,τ ) simple roots qs,τ ,l with

|qs,τ ,l |> 1, l = 1, . . . ,L(s,τ ). Then

ãn
s,τ =

L(s,τ )

∑
l=1

bs,τ ,l q−n
s,τ ,l , n= ν ,ν +1, . . . ,

where

bs,τ ,l :=− n(L(s,τ )−1)
s,τ (qs,τ ,l )(
d(L(s,τ ))

s,τ
)′
(qs,τ ,l )

qν−1
s,τ ,l 6= 0, l = 1, . . . ,L(s,τ ) .

The asymptotic decay of thẽan
s,τ is exponential. This is due to the sum-of-

exponentials ansatz (31) and the assumption|qs,τ ,l |> 1, l = 1, . . . ,L(s,τ ).
If we use a[L(s,τ )−1|L(s,τ )] Pad́e approximant to (32) then the first 2L(s,τ )+

ν −1 coefficients are reproduced exactly; however, the asymptotic behaviour of̃sn
s,τ

andãn
s,τ (asn→ ∞) differs strongly (algebraic versus exponential decay).
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We note that the Padé approximation must be performed with high precision
(2L(s,τ )−1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill conditioned
steps in the Lanczos algorithm (cf. [13]). If such problems still occur or if one root
of the denominator is smaller than 1 in absolute value, the orders of the numerator
and denominator polynomials are successively reduced. In our numerical test case
we started withL(s,τ ) ≡ 30 and except from two outlier values the finally reached
values ofL(s,τ ) were between 25 and 30. Fig. 9 shows the error|s̃n

s,τ − ãn
s,τ | versusn

for the outlier withL(1,2) = 15 for the imaginary part of̃sn
1,2 (a) and withL(2,2) =

30 for the real part of̃sn
2,2 (b). The error increases significantly forn> 2L(s,τ )+1.
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Fig. 9 Error |s̃n
s,τ − ãn

s,τ | versusn: imaginary part (a) fors= 1, τ = 2 and (b) real part fors= τ = 2.

Now we describe the fast evaluation of the discrete approximate convolution

C(n+1)
s,τ (u) :=

n+1−ν

∑
k=1

ãn+1−k
s,τ uk

τ ,J , with ãn
s,τ :=

L(s,τ )

∑
l=1

bs,τ ,l q−n
s,τ ,l , n= ν ,ν +1, . . .

that can be calculated efficiently by a simplerecurrence formula:

Theorem 4 ([3], Theorem 4.1.).

C(n+1)
s,τ (u) =

L(s,τ )

∑
l=1

C(n+1)
s,τ ,l (u) (33)

with

C(n+1)
s,τ ,l (u) = q−1

s,τ ,lC
(n)
s,τ ,l +bs,τ ,l q

−ν
s,τ ,l u

n+1−ν
τ ,J , n= ν ,ν +1, . . . (34)

C(ν)
s,τ ,l (u)≡ 0.

This is an efficient and local-in-time approximation, that uses data only fromν lev-
els earlier (typicallyν = 2). Also, there is no need to store the boundary data, which
becomes computationally expensive especially for higher dimensional problems.
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Note that similar recursive convolution algorithms are successfully used in other
applications as well, see [11] and references therein.

Let us summarize the proposed method to evaluate approximate discrete TBCs

1. For eachs,τ chooseL(s,τ ) andν and calculate the exact convolution coefficients
s̃n
s,τ for n= 0, . . . ,2L(s,τ )+ν −1.

2. For eachs,τ use the Pad́e approximation for the Taylor series with̃an
s,τ = s̃n

s,τ , for
n= ν ,ν +1, . . . ,2L(s,τ )+ν −1 to calculate the sets{bs,τ ,l} and{qs,τ ,l} for all
s,τ = 1, . . . ,d according to Theorem 3.

3. Implement the recurrence formulas (33) and (34) to calculate the approximate
convolutions.

6 Numerical Results

Finally we present the numerical results for simulating thetime-dependent be-
haviour of the quantum well with the data of Section 1. We choose the time step
k = 0.015 and the space steph= 1/20 for the computational domain[−12,5] and
compute the convolution coefficients of the discrete TBC as described in Section 5.

First, to study the behaviour of the discrete TBC, we consider a system of
Schr̈odinger equations with potential set to zero (’free Schrödinger system’).
As initial condition we use the Gaussian wave packet of heavyand light holes (4)
stimulating a slow and a fast eigenmode. Fig. 10 shows the time-dependent be-
haviour of the first two componentsϕ1 (solid) andϕ2 (dashed). We focus on the
first two components, since there is less mass in component three and four. The den-
sity oscillates between the components, moves to the right,fragments in two and the
faster wave packet leaves the domain of computation withoutany visible reflections.

Secondly we consider only the faster mode and add the DBSQW structure (5),
cf. Fig. 11. When the wave packet reaches the first barrier, it is partly reflected and
partly transmitted. With advancing time some part of the density accumulates be-
tween the barriers and is slowly transmitted through the second barrier, then leaving
the domain of computation. The part of the density, which is reflected at the first
barrier moves on to the left and after some time most part of the solution leaves the
computational domain in a packet. The wave packet does not recompose smoothly.
A simulation for a slightly different DBSQW structure is shown in Fig. 12.

Therelativeℓ2–error is defined as

eL(t) = ‖ϕ −ϕa‖2/‖ϕ (.,0)‖2,

whereϕa denotes the approximate solution obtained with the approximated discrete
TBCs andϕ is the solution calculated with exact discrete TBCs. When using the
parameterL(s,τ ) = 30 initially in the sum-of-exponential approach (31) this rela-
tive ℓ2–error increases moderately with respect to time (due to theinteraction with
the potential) but remains bounded after 1000 time steps below 6· 10−3 which is
acceptable for this application.
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Fig. 10 Time dependent behaviour ofϕ1 j (solid) andϕ2 j (dashed) for a free Schrödinger system.
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Fig. 11 Time dependent behaviour ofϕ1 j (solid) andϕ2 j (dashed) for a system with DBSQW
structure.
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Fig. 12 Time dependent behaviour ofϕ1 j (solid) andϕ2 j (dashed) for a different DBSQW system.
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teurs. PhD. Université Toulouse III - Paul Sabatier (2003)

28. Kisin, M.V., Gelmont, B.L., Luryi, S.: Boundary-condition problem in the Kane model. Phys.
Rev. B58, 4605–4616 (1998)

29. Klindworth, D.: Discrete Transparent Boundary Conditions for Multiband Effective Mass
Approximations. Diploma Thesis, Technische Universität Berlin (2009)

30. Koprucki, T., Baro, M. Bandelow, U., Tien, T.Q., Weik, F., Tomm, J.W., Grau M., Amann,
M.-Ch.: Electronic structure and optoelectronic properties of strained InAsSb/GaSb multiple
quantum wells. Appl. Phys. Lett.87, 81911/1–181911/3 (2005)

31. Koprucki, T., Kaiser, H.-C., Fuhrmann, J.: Modeling and simulation of strained quantum wells
in semiconductor lasers. In: Mielke, A. (ed.): Analysis, Modelingand Simulation of Multi-
scale Problems, Springer, Heidelberg, pp. 365–394 (2006)

32. Koprucki, T.: Onk · p-Schr̈odinger Operators. PhD, Freie Universität Berlin (2008)
33. Lake R., Klimeck G., Bowen R.C., Jovanovic D.: Single and multiband modeling of quan-

tum electron transport through layered semiconductor devices.J. Appl. Phys.81, 7845–7869
(1997)

34. Liu, Y.X, Ting, D.Z.-Y., McGill, T.C.: Efficient, numerically stable multibandk · p treatment
of quantum transport in semiconductor heterostructures. Phys. Rev. B 54, 5675–5683 (1996)

35. Luttinger J.M., Kohn W.: Motion of electrons and holes in perturbed periodic fields. Phys.
Rev.94, 869–883 (1955)

36. Meney, A.T., Gonul, B., O’Reilly, E.P.: Evaluation of various approximations used in the
envelope-function method. Phys. Rev. B50, 10893–10904 (1994)

37. Pokatilov, E.P., Fonoberov, V.A., Fomin, V.M., Devreese,J.T.: Development of an eight-band
theory for quantum dot heterostructures. Phys. Rev. B,64, 245328, (2001)

38. Rodina, A.V., Alekseev, A.Y., Efros, A.L., Rosen, M., Meyer, B.K.: General boundary condi-
tions for the envelope function in the multibandk · p model. Phys. Rev. B65, 125302 (2002)

39. Sankaran, V., Singh, J.: Formalism for tunneling of mixed-symmetry electronic states: Ap-
plication to electron and hole tunneling in direct- and indirect-band-gap GaAs/AlxGa1−xAs
structures. Phys. Rev. B44, 3175–3186 (1991)

40. Singh, J.: Physics of semiconductors and their heterostructures. McGraw-Hill, New York
(1993)

41. Sirtori, C., Kruck, P., Barbieri, S., Collot, Ph., Nagle, J., Beck, M., Faist, J., Oesterle, U.:
GaAs/AlxGa1−xAs quanstum cascade lasers. Appl. Phys. Lett.73, 3486–3488 (1998)

42. S̈oderstr̈om J.R., Yu E.T., Jackson M.K., Rajakarunanayake Y., McGill T.C.: Two-band mod-
eling of narrow band gap and interband tunneling devices. J. Appl. Phys.68, 1372–1375
(1990)

43. Stovneng, J.A., Hauge, E.H.: Time-dependent resonant tunneling of wave packets in the tight-
binding model. Phys. Rev. B44, 13582–13594 (1991)

44. Sweeny M., Xu J.: Resonant interband tunnel diodes. Appl. Phys. Lett.54546–548 (1989)
45. Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of

k · p envelope equations. Phys. Rev. B76, 165320 (2007)
46. Wagner, M., Mizuta, H.: Complex-energy analysis of intrinsic lifetimes of resonances in bi-

ased multiple quantum wells. Phys. Rev. B48, 14393–14406 (1993)
47. Wood, D.M., Zunger, A.: Successes and failures of thek · p method: A direct assessment for

GaAs/AlAs quantum structures. Phys. Rev. B53, 7949–7963 (1996)
48. Zhang, J., Gu, B.: Temporal characteristics of electron tunneling in double-barrier stepped

quantum-well structures. Phys. Rev. B43, 5028–5034 (1991).
49. Zisowsky, A.: Discrete transparent boundary conditions forsystems of evolution equations.

PhD, Technische Universität Berlin (2003)
50. Zisowsky, A., Arnold, A., Ehrhardt, M., Koprucki, T.: Discrete transparent boundary condi-

tions for transientk · p-Schr̈odinger equations with application to quantum heterostructures.
Z. Angew. Math. Mech.85, 793–805 (2005)


