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Abstract

The simulation of lattice QCD on massively parallel computers stimulated the
development of scalable algorithms for the solution of sparse linear systems.
We tackle the problem of the Wilson-Dirac operator inversion by combining
a Schwarz alternating procedure (SAP) in multiplicative form with a flexible
variant of the GMRES-DR algorithm. We show that restarted GMRES is not
able to converge when the system is poorly conditioned. By adding deflation
in the form of the FGMRES-DR algorithm, an important fraction of the infor-
mation produced by the iterates is kept between successive restarts leading to
convergence in cases in which FGMRES stagnates.

1. Introduction

The simulation of Lattice QCD is among one of the most challenging prob-
lems in computational science because of its enormous computational cost, see
[1], e.g.. With sufficiently powerful computers becoming available during the
last fifteen years, the simulation of Lattice QCD including dynamical fermions
became a reality. The de-facto standard algorithm used to accomplish this task
is the Hybrid Monte Carlo (HMC) algorithm [2]. HMC introduces a fictious
time, in which a dynamical system is evolved according to the system Hamilto-
nian. In order to integrate the Hamiltonian equations of motion, the forces due
to both, gauge field and pseudo-fermion field, have to be evaluated accurately.
The by far most demanding numerical task is the inversion of the fermionic
Dirac matrix, needed to evaluate the fermion force. In this paper we investi-
gate a class of inverters for the fermionic Dirac matrix which is particularly well
adapted to current high performance hardware architecture. Our work was pri-
marily inspired by the architecture of the QPACE machine, see [3, 4], but it is
of a general nature and applies to all architectures were data movements rather
than arithmetic operations tend to be the limiting factor on performance.
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The development of machine-aware algorithms has become particularly im-
portant during the last years as computer architectures move towards dramati-
cally increased floating point (FP) speed and increased on-chip parallelism. For
reasons of cost and because of physical limitations, these improvements are not
accompanied by comparable progresses in the bandwidths and latencies of main
memory and processor interconnects. It is predicted that this situation will be
even aggravated as we move towards the Exascale area, see [5], e.g..

An often used rough indicator of balance between processor and memory
subsystems is the ratio between peak main memory bandwidth and peak floating
point performance. In the past few years this value went down from ≈ 1 to
≈ 1/8 and less for the CELL processor, modern GPUs and general purpose
x86 systems. This increasing gap is the main reason for a line of computer
science research on software techniques aimed at maximizing cache utilization.
A famous example is [6].

The algorithm cost evaluation must take into account not only the FP op-
erations (as it was traditionally done some years ago when FP was the most
relevant bottleneck in numerical applications), but has to carefully evaluate the
amount and pattern of data movement among the levels of memory hierarchy
and the network as these are now the most limiting factors.

Algorithms that are more suitable for these increasingly unbalanced com-
puter architectures are particularly attractive as they can give easier access to
the FP performances offered today.

We describe an algorithm for the Dirac-Wilson matrix inversion that is able
to exploit the architectural features of modern machines. We show the conver-
gence behaviour and demonstrate the performance with our implementation on
the peculiar SFB-TR55 QPACE architecture based on the IBM PowerXCell8i
processor with state of the art lattices.

2. Domain decomposition and SAP

The Wilson fermion matrix Dw [7] describes a (periodic) nearest neighbor
coupling on the 4-dimensional space-time lattice. Without further explanation,
our desire is to solve the linear system

Dwx = b.

Owed to the complexity and size of Dw, a direct solution is not feasible and
we therefore exploit the structure of Dw. We decompose the overall lattice
into sublattices, called domains. For each domain, we obtain a local Wilson
fermion operator by simple restriction; at the local boundary of a domain, we
remove the couplings with neighboring domains. To describe this formally, let
n = (n1, n2, n3, n4) stand for a 4-tupel describing a lattice site and let L = {n :
(0, 0, 0, 0) ≤ n ≤ (d1 − 1, d2 − 1, d3 − 1, d4 − 1)} denote the overall lattice. The
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Dirac Wilson operator can then be written as

[Dw]nm = δn,m−κ

 4∑
j=1

(1 + γj)Un,jδn+ĵ,m + (1− γj)U†n−ĵ,jδn−ĵ,m

 , n,m ∈ L,

(1)
where n± ĵ is to be taken mod dj .

A domain L` is characterized by the bounds a`j , d
`
j for its lattice sites which

are given by L` = {n : (a`1, a
`
2, a

`
3, a

`
4) ≤ n ≤ (d`1− 1, d`2− 1, d`3− 1, d`4− 1)}. The

local Dirac operator for domain L` is thus given as

[D`
w]nm = δn,m−κ

 4∑
j=1

′(1 + γj)Un,jδn+ĵ,m + (1− γj)U†n−ĵ,jδn−ĵ,m

 , n,m ∈ L`,

(2)
where

∑′
indicates that the sum is to be taken only over those contributions

for which n+ ĵ or n− ĵ is in L`.
Assuming that the local Wilson operators are easy to invert, we can perform

the following basic domain decomposition iteration, known as the multiplicative
Schwarz method in the domain decomposition literature [8, 9].

Algorithm 1: Multiplicative Schwarz method

choose intitial guess x
repeat

for ` = 1, . . . , p do
compute residual r` for domain `: r` = (b−Dwx)`

solve D`
wy

` = r`

update: replace part x` in x by y`

until until convergence

Herein, the superscript ` indicates that we only take the part which cor-
responds to the subdomain `. Due to the nearest neighbor coupling of Dw,
computing r` is a local operation which involves only those components of x
which belong to subdomain L`, i.e. x` and those from neighboring subdomains
which are at the boundary to domain L`.

If we use a red-black coloring of the subdomains as depicted in Fig. 1 for a
two-dimensional lattice, and we have an even number of sub-domains in each
dimension of the lattice, then there is no coupling between subdomains of the
same color. When we order all red (say) domains first, we see that in the
algorithm above the values of the residual r` does not depend on whether or
not we updated the part xj of the iterate for the other subdomains of the same
color. If we proceed by colors, we end up with the following variant of the
basic domain decomposition iteration which is termed the Schwarz alternating
procedure (SAP) in [10].
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Figure 1: domain decomposition in 2 dimensions

Algorithm 2: SAP iteration

choose intitial guess x
repeat

for all red domains ` do
compute residual r` for domain `: r` = (b−Dwx)`

solve D`
wy

` = r`

update: replace part x` in x by y` for all red domains `
for all black domains ` do

compute residual r` for domain `: r` = (b−Dwx)`

solve D`
wy

` = r`

update: replace part x` in x by y` for all black domains `

until until convergence
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3. SAP in computational practice

In computational practice, the SAP method can rarely be used directly in
the form given by Algorithm 2. On one hand it is usually too costly to solve the
local systems D`

wy
` = r` exactly. One rather computes an approximation to y`

using another, inner iterative method on the systems D`
wy

` = r`. Usually, the
fastest overall method arises if one requires a fairly low accuracy in the inner
iteration. For example, one requires that the approximate solution ỹ` reduces
the initial residual by just a factor of 10, i.e. one requires

‖r` −D`
wỹ

`‖ ≤ 0.1 · ‖r`‖.

Such a method is termed an inexact SAP method.
On the other hand, even the exact SAP iteration may diverge for the Wilson

Dirac operator when the hopping parameter κ approaches the critical value
κc. Indeed, most of the convergence theory for multiplicative Schwarz methods
assumes that the operator is hermitian and positive definite, see [8, 9], which is
not the case for the Wilson Dirac operator.

The usage of SAP methods is particularly suitable on parallel machines and
in general on machines with a memory hierarchy. Provided that at least two
subdomains are assigned to a machine node, there is no need for network com-
munication during the solution of the Wilson equation on the subdomains, since
all the necessary data is on the node. Data only needs to be communicated for
the update of the residual. In practice, there are more than two subdomains
per node giving the possibility to overlap network communication and com-
putation. The required network bandwidth, and in particular latency, is less
stringent than for a simple Krylov solver, since the approximate solution of the
subdomain Wilson equation requires some iterations. The required machine
performance on global network operations (i.e. global sum, barrier, etc.) is also
typically reduced, since the frequency of such operations is lower than in the
case of a Krylov solver. We have chosen SAP as a preconditioner to be used on
the most time-critical solves on our machine QPACE. The QPACE torus net-
work [4] is designed with a typical Krylov solver in mind and has therefore high
bandwidth and low latency, nevertheless SAP is particularly appealing due to
the peculiar memory hierarchy architecture of the IBM PowerXCell 8i Processor.
On this processor, the fast on-chip memory is not managed automatically by the
hardware as on standard processors (cache), but its control is completely left to
the programmer. If the size of the subdomain is chosen such that it fits the fast
memory, no main memory access is necessary for the subdomain solve, giving
the possibility to achieve impressive sustained performance for the subdomain
solves (up to 50% of the peak) [11], [12]. This feature of the SAP algorithm is
interesting also for future architectures as the main memory performance will
continue to improve at a lower rate than processor performance.
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4. Domain decomposition preconditioner

Exact or inexact SAP iterations can be used as a preconditioner in a Krylov
subspace method like GMRES [13] or GCR [14]. This will usually result in an
iterative process which converges faster than the Krylov subspace method with-
out preconditioning or the stand-alone SAP iteration. We will discuss GMRES
and GCR in quite some detail later in section 5. At this point, we concentrate
on aspects pertaining to the use of inexact SAP iterations in the context of
preconditioning.

Loosely speaking, the speed of convergence of a Krylov subspace method for
a generic system

Ax = b

gets faster the closer A is to the identity. So, to accelerate the convergence one
tries to construct (or implicitly use) a matrix M , the preconditioner, such that
the matrix AM of the (right) preconditioned system

(AM)y = b, x = My

is close to the identity. In this sense, M should be an approximation to the
inverse of A. Such M is given implicitly if we perform some steps of an iterative
procedure like SAP.

Each step of the Krylov subspace method requires one multiplication with
A and one with M . If we perform exact SAP with a fixed number, s say, of
iterative steps, the preconditioner M can be expressed as the truncated series

M =

s−1∑
j=0

(A−1L AU )A−1L ,

where the matrices AL and AU result from a splitting A = AL−AU of the matrix
A. To be specific, for the SAP iteration from Algorithm 2, where A = Dw, this
splitting is based on the red-black permuted matrix Dw given as

Dw =

[
Dbb

w Dbr
w

Drb
w Drr

w

]
.

Herein, the blocks Dbb
w and Drr

w are made up of all the local Dirac operators D`
w

of the black and the red subdomains, respectively and the off-diagonal blocks
contain the couplings between subdomains of different color. Then

AL =

[
Dbb

w 0
Drb

w Drr
w

]
, AU =

[
0 −Dbr

w

0 0

]
.

In inexact SAP we invert AL only approximately, using some inner iteration
on the diagonal blocks D`

w. If this inner iteration is non-stationary, as it is
the case if we perform some steps of GMRES or MR [15], the implicitly given
preconditioner changes at each iteration. This is a fact one has to account for
when formulating the preconditioned Krylov subspace methods. In the linear
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algebra literature such methods are termed flexible, see [16, 15] since they adapt
themselves to situations where the preconditioner varies from one iteration to
the next.

The next chapter will first introduce the flexible restarted GMRES method
before turning to the crucial subject of this paper, namely its acceleration via
deflation.

5. F-GMRES-DR

To simplify the presentation we will use a generic notation in this chapter,
i.e. the linear system to solve will be denoted

Ax = b.

A preconditioner will be denoted M . In a variable preconditioning context,
where the preconditioner will depend on the current iterative step j, we denote
the preconditioner by Mj . Note that Mj will usually not be given explicitly but
rather be the result of some steps of a non-stationary iteration like inexact SAP.

Particular aspects for (inexact) SAP preconditioning of the Wilson Dirac
operator will be discussed later.

5.1. GMRES and GCR

We consider a generic non-singular linear system

Ax = b with solution x∗ = A−1b.

Given an initial guess x0 and its residual r0 = b−Ax0, the j-th Krylov subspace
Kj(A, r0) is defined as

Kj(A, r0) = span{r0, Ar0, . . . , Aj−1r0}.

For ease of notation, we will often write Kj instead of Kj(A, r0). It is known that
the solution x∗ = A−1b is contained in the space x0 +Kj∗ where j∗ denotes the
smallest j for which Kj = Kj+1. Krylov subspace methods work by iteratively
choosing approximations xj from x0 +Kj to approximate x∗. The GMRES and
GCR method are Krylov subspace methods which both obtain the “optimal”
xj in the sense that the residual rj = b − Axj satisfies the minimal residual
condition

‖rj‖ = min
x∈x0+Kj

‖b−Ax‖.

Note that for any subspace V of Cn we have

x = x0 + δx minimizes ‖b−Ax‖ over x0 + V ⇔ r0 −Ax ⊥ AV, (3)

where r0−Ax = b−A(x0 + δx) is the residual of x = x0 + δx. The equivalence
(3) holds because the minimizer δx is such that Aδx represents the orthogonal
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projection of b − A(x0 + δx) onto AV. So the minimal residual condition for
GMRES or GCR is equivalent to

rj ⊥ AKj . (4)

GMRES works by building a sequence of orthonormal vectors v1, . . . , vj which

span Kj(A, r0). The coefficients ηi in xj = x0 +
∑j
i=1 ηivi are then obtained by

solving a small (j + 1) × j least squares problem. GCR computes a sequence
of orthonormal vectors w1, . . . , wj which span AKj , and an auxiliary sequence
s1, . . . , sj with wj = Asj . The iterate xj is obtained by an update xj = xj−1 +
αjsj−1. Both, GMRES and GCR, suffer from the fact that the number of vectors
stored and the cost for the orthogonalizations increase linearly with n. A remedy
is to restart or truncate the methods. GCR requires twice as many vectors
to store as GMRES, and its total arithmetic costs are slightly higher than in
GMRES. If convergence is slow, GMRES is significantly more stable numerically
than GCR as was proven in [17]. There is one advantage of GCR over GMRES,
however: While the GMRES algorithm has to be modified (slightly) to allow for
variable preconditioning, GCR adapts itself “automatically” to such a situation.
For this reason GCR was used in various contexts of variable preconditioners
like, for example, [10]. In the present paper we consider situations where there
is an additional need for (inexact) deflation in order to get sufficiently fast
convergence. While this can be done elegantly and efficiently within the GMRES
framework, there seems to be no such way for GCR. This explains why we focus
on GMRES from now on.

5.2. Flexible GMRES

Standard (non-variable) right preconditioning of the equation Ax = b means
that instead of looking for an iterate xj ∈ x0 + Kj(A, r0) we now look for
one in the space x0 + MKj(AM, r0), where M stands for the preconditioning
matrix. The idea is that with a good preconditioner M (a good approximation
to A−1), the “search space” x0 + MKj(AM, r0) contains substantially better
approximations to the solution than x0 + Kj(A, r0). In right preconditioned
GMRES [15] we obtain the j-th iterate xj as

xj = x0 +Mδyj , where δyj = argminδy∈Kj(AM,r0) ‖b−A(x0 +Mδy)‖. (5)

Right preconditioned GMRES uses the Arnoldi process to compute an or-
thonormal basis of Kj(AM, r0), orthogonalizing AMvj against all previous vec-
tors v1, . . . , vj . The solution of (5) can then be obtained as the solution of a
small (m + 1)×m least squares problem. We do not discuss this further here,
since right preconditioned GMRES appears as a special case of flexible GMRES
[16] which we develop in all its details now.

In a flexible context, the preconditioning matrix depends on the iterative
step, i.e. we have a new preconditioning matrix Mj in each step j. In a “flexi-
ble” Arnoldi process we thus orthogonalize AMjvj against all previous vectors
v1, . . . , vj . It will turn out useful to also keep track of the preconditioned vectors

8



Algorithm 3: Flexible Arnoldi Process

Input : A ∈ Cn×n, b ∈ Cn, an integer m
Output: Vm+1 = [v1| . . . |vm+1] ∈ Cn×(m+1), Zm = [z1| . . . |zm] ∈ Cn×m ,

Ĥm = (hi,j) ∈ Cm+1×m

1 β = ‖b‖
2 v1 := 1

β b

3 for j = 1, . . . ,m do
4 zj := Mjvj /* preconditioning of new basis vector */

5 w := Azj
6 for i = 1, . . . , j do /* orthogon. against previous vectors */

7 hij := vHi w
8 w = w − hijvi
9 hj+1,j := ‖w‖

10 vj+1 := w/hj+1,j /* normalization */

zj = Mjvj for future use when computing (flexible) GMRES iterates. So we
end up with the flexible Arnoldi process described as Algorithm 3.

The flexible Arnoldi relation

AZm = Vm+1Ĥm (6)

summarizes the computations of Algorithm 3, its j-th column representing

hj+1,jvj+1 = Azj −
j∑
i=1

hijvi.

Note that the (m + 1) × m matrix Ĥm is upper Hessenberg, i.e. its elements
below the first subdiagonal, hij for i > j+ 1, are all 0. The columns vj of Vm+1

are orthonormal, so we have V Hm+1Vm+1 = I ∈ C(m+1)×(m+1).
In the non-flexible case, i.e. Mj = M for all j, the orthonormal vectors

v1, . . . , vj span the Krylov subspace Kj(AM, r0), and the vectors zi = Mvi, i =
1, . . . , j span the search space MKj(AM, r0). In this case we can formulate (6)
without Zm to retrieve the standard Arnoldi relation

(AM)Vm = Vm+1Ĥm. (7)

In the case of a variable preconditioner, there is no immediate notion of a
(preconditioned) Krylov subspace, but we can still use the space spanned by
the vectors zi, i.e. range(Zm) as a search space. This is the approach taken in
flexible GMRES (F-GMRES) [16], where we obtain the iterates xm by imposing
the minimal residual condition for xm ∈ x0+range(Zm). So we have to compute

η = argminξ∈Cm ‖b−A(x0 + Zmξ)‖. (8)
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Using the flexible Arnoldi relation (6) and the fact that Vm+1 has orthonormal
columns, we have

‖b−A(x0+Zmξ)‖ = ‖r0−Vm+1Ĥmξ‖ = ‖Vm+1βe1−Vm+1Ĥmξ‖ = ‖βe1−Ĥmξ‖.

So solving the (m+ 1)×m least squares problem η = argminξ∈Cm ‖βe1− Ĥmξ‖
gives the coefficient vector η from which we retrieve the FGMRES iterate xm
as

xm = x0 + Zmη.

We note in passing that the (m + 1) ×m least squares problem is usually

solved via a QR-factorization of Ĥm. Due to the upper Hessenberg structure
of Ĥm, this can easily be done in an iterative manner by updating the QR-
decomposition of Ĥj to that of Ĥj+1 using one additional Givens rotation.
Moreover, it is possible to very cheaply update the norm of the residual of the
j-th GMRES iterate without explicitly computing the iterate. This can be used
to implement an early termination criterion in cases where the j-th (F)GMRES
iterate is already accurate enough for j < m. Details can be found in [15], e.g..
See also section 5.6.

5.3. Restarts and Deflation

If larger values of m are required to obtain a sufficiently accurate approxi-
mation xm, full F-GMRES as described in the previous section is not feasible
since we have to store the 2m vectors vj and zj and the total cost for the or-
thogonalizations in the flexible Arnoldi process grow like O(nm2). It is therefore
common practice to use restarted F-GMRES. The integer m is fixed to a moder-
ate value. One then goes through several cycles. Each cycle performs m steps of
the full F-GMRES algorithm, with its initial guess given by the approximation
to the solution computed in the previous cycle.

While restarts overcome problems with storage and computational complex-
ity, they may severely degrade the convergence behaviour, and it might even
happen that the method stagnates at a large residual norm without achieving
any further progress. For difficult problems, this phenomenon has been widely
observed in the literature, and several cures have been proposed. One of the
most appropriate ones is the deflated restart modification which we discuss now.

Upon a restart, all the information contained in the search space K built
up so far is lost. In particular, in the new cycle we do not keep the residuals
orthogonal to AK. The idea of deflated restarts is to extract a low-dimensional
subspace U of K which contains the most important information in order to
speed-up convergence, and to at least maintain the residuals orthogonal to AU .
The new cycle can then be characterized as an augmenting Krylov subspace
method with U as the augmenting space. The crucial point is that, as we will
see in the next section, it is possible to construct this deflating augmenting
subspace in such a way that we do not need additional multiplications with A.
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5.4. Augmentation by Deflation

We first describe the ideas and technicalities of deflated restarts for the non-
flexible case. The extension to FGMRES will be given in section 5.5. So for now
we assume we have a fixed preconditioner M in every iteration, and to further
simplifiy the notation we base our whole discussion on the non-preconditioned
system Ax = b. The (right) preconditioned case is obtained by merely replacing
A with AM everywhere.

The presence of eigenvector components corresponding to small eigenvalues
in a residual r induces a large contribution of these eigenvectors in the error
e = A−1r. It is thus desirable to chose the augmenting subspace U as one that
contains approximations to eigenvectors belonging to small eigenvalues. Those
can be approximated from the Krylov subspace built up in the previous cycle.
If this is done in the right manner, one can establish an Arnoldi type process
for the augmented spaces with little additional cost as compared to standard
Krylov subspaces, so that one ends up with an efficient method. We now give the
details, following [18], which in turn builds on [19, 20, 21]. The key ingredient
is to use harmonic Ritz vectors [22].

Definition 1. Given a matrix A ∈ Cn×n and a subspace K ⊂ Cn, a harmonic
Ritz pair (λ, v) with λ ∈ C, v ∈ K for A with respect to K satisfies

Av − λv ⊥ AK. (9)

Harmonic Ritz pairs are well suited to approximate eigenpairs with a small
eigenvalue [22]. The following lemma shows how harmonic Ritz pairs can be
computed in cases where K is a Krylov subspace or an appropriately augmented
Krylov subspace.

Lemma 1. Let K be a subspace of Cn of dimension m and assume that

AK ⊂ K ⊕ 〈s〉 for some vector s ∈ Cn.

Let the columns v1, . . . , vm+1 of Vm+1 ∈ Cn×(m+1) be orthonormal vectors such
that v1, . . . , vm span K and v1, . . . , vm+1 span K⊕〈s〉, so that there exists a full

rank matrix Ĥm ∈ C(m+1)×m with

AVm = Vm+1Ĥm. (10)

Moreover, let

Ĥm =

[
Hm

hHm

]
with Hm ∈ Cm×m, hm ∈ Cm.

Then:

a) The harmonic Ritz pairs of A w.r.t. K are given as (λ, Vmg), where (λ, g)
is an eigenpair of the matrix

Hm + fmh
H
m, where HH

mfm = hm.

11



b) The residual Au− λu of a harmonic Ritz pair satisfies

Au− λu ∈ 〈r〉,

where r spans the orthogonal complement of AK in K ⊕ 〈s〉, i.e.

AK ⊕⊥ 〈r〉 = K ⊕ 〈s〉.

Proof. Using (10), the defining property (9) for the Ritz pair (λ, v) with
v = Vmg turns into

(AVm)H(Av − λv) = 0

⇔ (Vm+1Ĥm)H(Vm+1Ĥmg − λVmg) = 0

⇔ ĤH
m

(
Ĥmg −

[
λIm

0

]
g

)
= 0.

Since Ĥm has full rank, the matrix Hm is non-singular. The last equality can
thus be further reduced to(

HH
mHm + hmh

H
m

)
g − λHH

mg = 0

⇔
(
Hm + fmh

H
m

)
g − λg = 0, where HH

mfm = hm,

which shows a). Part b) is trivial, since the residual of any harmonic Ritz pair
is in AK + 〈s〉 and is orthogonal to AK. �

So, to obtain harmonic Ritz pairs, we first compute fm as the solution of an
m×m linear system and then compute the eigenpairs of Hm + fmh

H
m.

Note that by (3) the vector r from part b) of Lemma 1 is also the residual of
the GMRES iterate with respect to the search space K. Since in the situation
of Lemma 1 we have

AU ∈ U + 〈r〉 (11)

for any subspace U spanned by some harmonic Ritz vectors, we see that the
augmented Krylov subspaces Kj(A, r,U) := U +Kj(A, r) satisfy

A · (U +Kj(A, r)) ⊂ U +Kj+1(A, r).

This has two major consequences. The first is that, starting from an orthonor-
mal basis of K1(A, r,U), we can build nested orthonormal bases for the spaces
Kj(A, r,U) in an Arnoldi type manner. The second is that we can compute har-
monic Ritz vectors with respect to Km(A, r,U) in the way given in Lemma 1.

This is why we are able to set up a restarted GMRES method with deflation
of harmonic Ritz vectors, where each cycle consists of the following steps:

1. Extract k harmonic Ritz pairs from the “search space” Upr +Km(A, rpr)
built in the previous cycle; these harmonic Ritz vectors span the current
augmenting subspace U .

12



2. With r denoting the residual of the iterate x at the beginning of the current
cycle, compute nested orthonormal bases v1, . . . , vk+j for Kj(A, r,U), j =
1, . . . ,m, such that for Vk+j = [v1| . . . |vk+j ] we have the Arnoldi type
relation

AVk+j = Vk+j+1Ĥk+j , Ĥk+j ∈ C(k+j+1)×(k+j). (12)

3. Compute the current GMRES iterate and its residual using (12).

Here, as in the sequel, we use the superscript pr to denote quantities from
the previous cycle; no superscript refers to the current cycle. For an efficient
implementation, all three steps are coupled by the way in which we construct
the orthogonal basis for the current search space Kj(A, r,U). We now discuss
the three steps in detail.

Extracting the Ritz pairs. Let V prm̃ , m̃ = k+m, denote the matrix containing the
orthonormal basis vectors of the search space built up in the previous cycle. By
Lemma 1a), the k harmonic Ritz vectors u`, ` = 1, . . . , k to augment the current

Krylov subspace can be computed using Ĥpr
m̃ from the Arnoldi-type relation

(12) of the previous cycle. The harmonic Ritz vectors are then given as

u` = V prm̃ g`, g` ∈ Cm̃, ` = 1, . . . , k,

which we summarize as

Uk := [u1| . . . |uk] = V prm̃ Gk, Gk = [g1| . . . |gk]. (13)

Computing the next GMRES iterate and its residual.. Assume that we have
already built Vk+m+1, the columns which represent an orthonormal basis of the
current search space. We have to compute η ∈ Ck+m such that ‖b − A(x +
Vk+mη)‖ is minimal. The residual r = b−Ax of the current iterate, which is in
K1(A, r,Upr) and thus in range(Vk+1), can be expressed as

r = b−Ax = Vk+m+1c, where c =

[
V Hk+1r

0

]
.

Taking (12) as granted for the moment, we have

b−A(x+ Vm+kη) = Vm+k+1

(
c− Ĥm+kη

)
.

Since the columns of Vm+k+1 are orthonormal, minimizing b − A(x + Vm+kη)
is therefore equivalent to solving the small (m+ k + 1)× (m+ k) least squares
problem

η = argmin
∥∥∥c− Ĥm+kη

∥∥∥ .
This gives the next GMRES iterate xnext = x+ Vm+kη with residual

rnext = Vm+k+1(c− Ĥm+kη). (14)
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Building the orthonormal basis for the current search space. The crucial part
here is to obtain an orthonormal basis for K1(A, r,U) without investing multi-
plications with A.

From the columns of V prm̃ being orthonormal, we obtain an orthonormal
basis v1, . . . , vk of U by computing an orthonormal basis for rangeGk from (13),
i.e. by computing the QR-factorization Gk = QkRk, where Qk ∈ Cm̃×k has
orthonormal columns, and putting

Vk := [v1| . . . |vk] = V prm̃ Qk.

From (4) we have AU ⊂ U + 〈r〉, where r is the residual of the iterate at the

beginning of the current cycle, r = V prm̃+1

(
cpr − Ĥpr

m̃ η
pr
)

according to (14).

Defining Gk+1 ∈ C(m̃+1)×(k+1) as

Gk+1 =

[
Gk
0

cpr − Ĥpr
m̃ η

pr

]
, (15)

we thus have that range(V prm̃+1Gk+1) = U + 〈r〉. So we can extend v1, . . . , vk to
an orthonormal basis v1, . . . , vk+1 of U + 〈r〉 by extending the QR-factorization
Gk = QkRk to a QR factorization Gk+1 = Qk+1Rk+1 where

Qk+1 =

[
Qk ∗
0 ∗

]
∈ C(m̃+1)×(k+1).

This gives the relation

Vk+1 = [v1| . . . |vk|vk+1] = V prm̃+1Qk+1. (16)

On the other hand, by (11) for j = 0 there exists a matrix Ĥk ∈ C(k+1)×k

such that
AVk = Vk+1Ĥk. (17)

This matrix is actually given as

Ĥk = QHk+1Ĥ
pr
m̃Qk, (18)

which can be seen by comparing

AVk = AV prm̃ Qk = V prm̃+1Ĥ
pr
m̃Qk

which follows from the Arnoldi relation of the previous cycle and

AVk = Vk+1Ĥk = V prm̃+1Qk+1Ĥk,

which is due to (16) and (17). We have therefore shown (12) for j = 0.
The Arnoldi-type relation (17) for an orthonormal basis of U +K1(A, r) can

now be extended to an orthonormal basis of U +Kj(A, r) through the standard
Arnoldi orthogonalization procedure, where in step j we orthogonalize Avk+j
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against all previous basis vectors. As a consequence, the matrices Ĥk+j in the
resulting Arnoldi-type relation (12) have the form

Ĥk+j =



Ĥk

h1,k+1 . . . . . . h1,k+j
...

...
...

...
hk+1,k+1 . . . . . . hk+1,k+j

0j×k

hk+2,k+1 . . . . . . hk+2,k+j

0
. . .

... hk+3,k+j

...
. . .

. . .
...

0 . . . 0 hk+j+1,k+j


∈ C(k+j+1)×(k+j),

which has upper Hessenberg structure except for the first k + 1 rows. Herein,
Ĥk is from (18); for the other entries hi` see Algorithm 4 below.

5.5. Deflating flexible GMRES

If we use a constant preconditioner M , the deflating procedure described so
far can be directly extended to right preconditioned GMRES by just changing
the operator from A to AM . Note that we now compute harmonic Ritz values
and vectors for AM rather than A.

As was pointed out in [23, 24], going from constant to varying precondi-
tioning, is conceptionally almost trivial: For each j the preconditioner Mj oc-
curs only once in the matrix-vector product zj = Mjvj of the flexible Arnoldi
process. Since the vectors vj are linearly independent—they are even mutu-
ally orthogonal—there exist a constant matrix M for which Mvj = Mjvj for
j = 1, . . . ,m. We don’t have to know M explicitly, all we need is its action on
the vj which is given through the variable preconditioning. So we can perform
the deflation procedure in exactly the same way as in the case of a constant
preconditioner.

Algorithmically, we have to take care of storing the preconditioned vectors
zj = Mjvj explicitly, as it is done in the flexible Arnoldi process. The resulting
deflated, flexible restarted GMRES method (FGMRES-DR) is formulated as
Algorithm 4.

5.6. Computing the implicit norm of the residual within GMRES-DR

As noted in section 5.2, the QR factorization of H can be updated at each
step using Givens rotations. The implicit norm of the residual is easily computed
by applying in sequence the rotations to the right hand side c of the little
least squares problem and computing the absolute value of the last element
of c′ = QHc. The set of rotations form the unitary matrix QH such that
QHm+1Hm+1 = Rm with Rm triangular. The application of QHm+1 to c is easily
seen as a change of basis. This new basis is composed by a set of orthonormal
vectors which spans the subspace inverted by the iteration, plus a vector which
is not inverted. The first m vectors of the new basis Ṽm+1 satisfy AZm =
ṼmR. The m + 1 element of c′ is the component of b on the non-inverted,
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Algorithm 4: F-GMRES-DR

Input : A ∈ Cn×n, b ∈ Cn, restart length m, dimension of augmenting
(harmonic Ritz) subspace k

1 choose initial guess x0, compute r0 = b−Ax0
/* first cycle: flexible GMRES, no deflating subspace */

2 Perform m steps of the flexible Arnoldi process starting with r0. This

gives Zm, Vm+1, Ĥm from (6).
3 Put c = ‖r0‖e1 ∈ Cm+1.

4 Compute η = argminξ∈Cm ‖c− Ĥmξ‖
5 Obtain GMRES iterate x = x0 + Zmη and residual r = r0 − Vm+1Ĥmη
6 repeat /* all other cycles */

/* get augmenting (harmonic Ritz) subspace */

7 Compute all m eigenpairs (λi, gi) of Hm + fmh
H
m /* Lemma 1a) */

8 Identify the k smallest (in modulus) harmonic Ritz values λi, collect

the corresponding Ritz vectors gi as columns of Gk ∈ Cm×k.
/* initialization for augmented Arnoldi process */

9 Build Gk+1 =

[
Gk
0

c− Ĥmη

]
from (15) and compute its

QR-factorization Gk+1 = Qk+1Rk+1.

10 Update Ĥk := QHk+1ĤmQk, where Qk results from Qk+1 by deleting

its last row and column.
11 Update Vk+1 = Vm+1Qk+1, Zk = ZmQk.

/* Remaining part of augm. flex. Arn. */

12 for j = k + 1, . . . ,m do
13 zj := Mjvj
14 w := Azj
15 for i = 1, . . . , j do
16 hij := vHi w
17 w = w − hijvi
18 hj+1,j := ‖w‖
19 vj+1 := w/hj+1,j

/* express (old) residual in terms of new basis */

20 Compute c =

[
V Hk+1r

0

]
∈ Cm+1 /* so r = Vm+1c */

/* Now obtain iterate and residual for this cycle */

21 Compute η = argminξ∈Cm ‖c− Ĥmξ‖
22 Update GMRES iterate x = x+ Zmη and corresponding residual

r = r − Vm+1Ĥmη

23 until convergence
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normalized vector ṽm+1. In GMRES-DR the matrix H is not Hessenberg. It is
however possible to compute the implicit norm of the residual by computing a
QR factorization of the non-Hesseberg submatrix of H and then updating the
QR factorization by Givens rotations.

5.7. Mixed precision

On most of modern CPUs, GPUs as well as on the CELL processor, single
precision arithmetic is twice as fast as double precision arithmetic. The natural
way of exploiting the possible acceleration provided by single precision arith-
metic units, while aiming at a full double precision result when solving a linear
system, is by using the technique of iterative refinement, see, e.g., [25].

Given two different available machine precisions, a high precision ph and
a low precision pl, iterative refinement is based on the algorithmic principle
described in Algorithm 5.

Algorithm 5: Iterative Refinement

choose initial guess x0 /* precision ph */

1 compute r0 = b−Ax0 with precision ph
2 repeat /* refinement cycles */

3 convert r0 to precision pl, r ← r0
4 solve Ax = r up to precision pl using pl
5 convert x to precision ph and update x0 ← x0 + x
6 compute r0 = b−Ax0 with precision ph;

7 until convergence

In practice, where we work with IEEE single (pl = 2−24 ≈ 10−7) and double
(ph = 2−53 ≈ 10−16) precision and where we aim at a final norm of the residual
of the order of 10−12, for example, two cycles are usually sufficient to obtain
the desired accuracy. However, if the solver used in each refinement cycle is
deflated flexible GMRES, we may encounter problems if we want to use the
harmonic Ritz vectors from the last GMRES cycle of the current refinement
cycle as a deflating subspace for the first GMRES cycle in the next refinement
cycle: Upon convergence in low precision, the updated, low precision residual
obtained via FGMRES-DR and the explicitly computed high precision residual
may differ substantially. Then, including the more precise, explicitly computed
high precision residual into the next deflated GMRES cycle is not possible, even
when converted to low precision, because the fundamental relation (11) between
the residual and the harmonic Ritz vectors, which is at the heart of the efficient
use of deflation in FGMRES-DR, is lost.

To cope with this situation, we developed the following approach: Our re-
finement cycles correspond one-to-one to the restart cycles of FGMRES-DR, so
that we have more than just the 2 or 3 usual refinement cycles. Still, of course,
the overwhelming part of all computation is done in low precision arithmetic.
We then recompute the residual r = b − Ax of the current iterate x explicitly
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in high precision and convert it back to low precision. This explicitly computed
residual r is used in Algorithm 4 to obtain the right hand side c of the least
squares problem that has to be solved in each cycle of FGMRES-DR (last 4

lines), and for c − Ĥmη when obtaining the matrix Gk+1 at the beginning of
the repeat-loop. We use r also when updating the last vector of Vk+1. This last
vector corresponds to the residual after orthonormalization against the updated
Vk. Our approach can thus be regarded as an attempt to sneak in exact residual
information via the right hand side of the least squares problem and one vector
of the subspace while at the same time maintaining the crucial relation (11)
although it will probably not hold exactly after using r to get vk+1.

This approach works satisfactorily well in practice. Nevertheless, it may
still happen that after some cycles the updated and the explicitly recomputed
residual differ by more than a small amount. In this case, we perform a “clean”
restart of the method, i.e. we start Algorithm 4 from scratch with a first cycle
that does not use any deflating subspace. As a criterion for triggering the clean
restart we use ‖re‖/‖ri‖ > t, with re being the explictly recomputed residual,
ri being the implicit residual computed as described in section 5.6, and t being
a tunable threshold. From our experiments, 2 ≤ t ≤ 10 is a reasonable search
range.

6. Numerical results

We now report results of several numerical experiments which illustrate the
impact of including deflation into the restarted flexible GMRES method. Our
target systems are dynamically produced Wilson-Dirac operators with clover
improvement [26]. We start with the results of a series of experiments for a
relatively small 163 × 32 lattice. We used a thermalized configuration obtained
from a dynamical simulation at β = 5.29 and κsea = 0.135. The value of csw
in the clover improvement was 1.91; the resulting critical value for the hopping
parameter κ was κc ≈ 0.13707.

Our implementation used 4 nodes of QPACE, i.e. 32 CELL SPU cores in
total. For the domain decomposition, we divided the lattice into 64 sublattices
of size 43×8 each, so that each of the 32 cores is assigned 8 of these sublattices.
We always performed 8 SAP-cycles for preconditioning, and the solves for the
subdomains were done approximately via 5 steps of MR, independently of the
subdomain and of the accuracy of the solution thus obtained. This choice of
parameters was found to be the best by an extensive numerical study.

Figure 2 shows the results for flexible GMRES without deflation (left) and
with deflation (right) for various choices of the cycle length m. Here, as every-
where, we plot the 2-norm of the residual against the number of matrix-vector
multiplications invested, i.e. for every “interior” step of the restarted GMRES
cycle. In these experiments the hopping parameter was set to κ = 0.1368, which
is still quite far from κc, so that we may consider the system as relatively well
conditioned. The figures illustrate the fact that a larger value of the cycle length
m results in fewer iterative steps. Deflation results in fewer iterations when the
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Figure 2: Results without (left) and with (right) deflation. 163 × 32 configuration, κc ≈
0.13707, κ = 0.1368. The legend on the left figure refers to the cycle length m; in the right
figure the pair (m, k) denotes the cycle length m and the size of the deflating subspace k.

cycle length is fixed. Note that the arithmetic cost related to the Arnoldi pro-
cess grows like nm2 due to the orthogonalizations, so larger cycle lengths m can
significantly increase the computing time. This being said, Figure 2 shows that
by investing just 4 vectors for deflation, we get a better performance by using
a restart value m = 16 than by using a restart value m twice as large and no
deflation.

Figure 3 presents similar experiments for a different value of the hopping
parameter, κ = 0.1371, which is very close to the critical value. Now the
system is much more ill conditioned, and we see that deflation starts to have an
even more significant impact on the performance of the method. For example,
reserving k = 4 vectors for deflation while using a restart value ofm = 16 reduces
the required iterations from about 450 to 115. The best deflated method uses
m = 20 and deflates k = 8 vectors. It requires roughly only half as many
iterations as the best non-deflated method which requires a much larger cycle
length, m = 32. In some of the residual plots in the figure to the right we
observe an increase of the residual around iterations 50-70 for some choices of
the parameters. At these points we had to do a “clean” restart of FGMRES-
DR, and the jump in the residual indicates the that the explicitly computed
residual is considerably larger than the updated one. Since a clean restart
discards all subspace information acquired so far, the subsequent GMRES cycle
is comparably as slow as the very first cycle of the iteration. This shows that it
might be advisable to use quite small values for the subspace dimension k, since
in these cases a clean restart was never necessary, thus resulting in the fastest
overall convergence.

In a last experiment for this configuration we set κ = 0.1374, which is beyond
the critical value. The SAP iteration by itself is divergent for this choice of
κ (see Figure 5), and when used as a preconditioner for GMRES we observe
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Figure 3: Results without (left) and with (right) deflation. 163×32 configuration, κc ≈ 0.1371,
κ = 0.1371.
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Figure 4: Results without (left) and with (right) deflation. 163×32 configuration, κc ≈ 0.1371,
κ = 0.1374.
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Figure 5: Convergence and divergence of the SAP method as a stand-alone solver for various
values of κ

complete stagnation unless the restart value m is large enough (m = 48). On
the other hand, deflation with a relatively small dimension of the deflating
subspace results in quite fast convergence for moderate values of the restart
value m. This indicates that the divergence of the pure SAP iteration is due to
the fact that just a few eigenvectors belonging to the corresponding iteration
matrix are troublesome and that they are effectively removed by deflation.

The second set of experiments consists of inversions of a state-of-the-art
483 × 64 Nf = 2 lattice configuration thermalized at β = 5.40, κsea = 0.1366
and csw = 1.8228, while κc ≈ 0.13670

In this case a full 256 nodes QPACE rack was used. The machine is config-
ured as a 3D 4 × 8 × 8 torus and we used an SAP block size of 8 × 2 × 6 × 6
that fits the 8 SPU local stores nicely and satisfies all the lattice and imple-
mentation constraints. For the test inversions presented, we have chosen to use
aggressive preconditioner settings that are particularly advantageous on mas-
sively parallel machines. These settings reduce the overhead of global sums and
scalar products — global sums being limited by network latency and local scalar
products by memory bandwidth. In the preconditioner, we therefore performed
24 SAP cycles with 6 MR iterations for the subdomains. Figure 6 shows that
for κ = 0.13663, using a small dimension for the deflating subspace, i.e., k = 3,
and keeping the restart length fixed to m = 18, the iteration number decreases
from 183 to 159, i.e., by about 15%. For the larger value of κ = 0.13666, de-
flating 3 vectors halves the iteration numbers from approximately 500 down
to 250. Increasing the cycle length does not substantially affect the deflated
method. Figure 7 shows results for larger values of κ. For κ = 0.13668 non-
deflated restarted GMRES almost stagnates even if we use a relatively large
cycle length, m = 36. On the other hand, deflating 3 or 6 vectors cures this
stagnation completely, and we can even reduce the cycle length down to 24 or
even 16. A similar observation holds for κ = 0.13670.
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Figure 6: Results with and without deflation for different solver parameters. 483 × 64 config-
uration, κ = 0.13663 (left), κ = 0.13666 (right).
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Figure 7: Results with and without deflation for different solver parameters. 483 × 64 config-
uration, κ = 0.13668 (left), κ = 0.13670 (right).
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In Table 1 we report the timings on QPACE for all our computations on
483 × 64 configurations. These numbers show that wall clock time follows the
iteration counts very closely. For the range tested, the cycle length m by itself
has only a marginal influence. This is due to the fact that our code spends most
of its time in the 24 SAP iterations of the preconditioner, so that the work for
the Arnoldi process, which increases with m, is relatively cheap for any of our
choices for m.

kappa m k iterations time (s)
0.13663 18 0 183 39.0
0.13663 18 3 159 35.9
0.13666 18 0 507 107.1
0.13666 18 3 255 56.7
0.13666 24 3 252 57.4
0.13668 36 0 3464 741.9
0.13668 16 6 302 70.4
0.13668 18 6 326 74.9
0.13668 24 6 325 73.7
0.13668 24 3 315 69.9
0.13670 48 0 2869 623.6
0.13670 48 4 409 92.3
0.13670 24 4 448 100.0
0.13670 24 6 461 106.1
0.13670 18 6 441 102.0

Table 1: Timings and iterations for the 483 × 64 configuration for the tested κ and solver
settings combinations

7. Conclusions

While SAP can be implemented efficiently on current supercomputers with
a deep memory hierarchy and many compute cores like QPACE, it is not neces-
sarily a convergent iteration, particularly if the hopping parameter κ is close to
the critical value. This can very severely impede the convergence of SAP pre-
conditioned restarted flexible GMRES or restarted GCR. We have introduced
deflated restarted flexible GMRES as a (Clover) Wilson fermion solver to cure
this problem. Numerical results obtained for thermalized configurations of size
up to 483 × 64 show that using a very small dimension for the deflating sub-
space (never more than 6) always results in satisfactory convergence speeds. An
additional benefit is that deflation allows to use relatively small cycle lengths
(in our experiments, m = 16 to 24 was always sufficient), which reduces the
arithmetic cost of the Arnoldi process and, more importantly, keeps memory
requirements low. The benefits of deflation are most prominent when the hop-
ping parameter κ is close to the critical value κc or even larger than κc, so that
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deflation is particularly helpful on exceptional configurations arising during an
HMC simulation.

The parameter space on which the performance of SAP preconditioned de-
flated restarted flexible GMRES can be optimized, is very large: the size and
shape of the subdomains for SAP, the method and number of iterations to use for
the (approximate) subdomain solves, the number of SAP iterations per precon-
ditioning step, the cycle length m and the deflating subspace dimension k. We
could therefore not perform a complete investigation of this parameter subspace.
Rather, our approach was to fix parameters related to the SAP preconditioner
by efficiency considerations for our given hardware, and then find good values
for k and m. Although this quite surely means that we missed the overall best
method, all our results consistently indicate that it is always worth to include a
(small) deflating subspace: Convergence is faster for the same cycle length, and
for hard problems, convergence is enabled at all. We thus think that deflated
restarted flexible GMRES should establish itself as the standard successor to
flexible restarted GMRES or GCR and even more to preconditioned BiCGstab
for which we observed convergence problems relatively often during simulations
for large configurations.

We note that an alternative approach to the method presented here are
multilevel methods like adaptive algebraic multigrid, see [27, 28] or Lüschers
deflated domain decomposition method [29] and its true multilevel variants [30].
As compared to these approaches, the deflated GMRES method does not require
a set-up phase which can be relativley costly for the other methods if only one
or a few right hand sides have to be solved. It has also the advantage of being
quite simple to implement and to fit modern supercomputer architectures well.
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