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Abstract

Aim of the paper is to analyze multigrid methods based on smoothed aggre-
gation in the case of circulant and Toeplitz matrices. The analysis is based
on the classical convergence theory for these types of matrices and results
in optimal smoothing parameters that have to be chosen for the smoothing
of the grid transfer operators in order to guarantee optimality of the result-
ing multigrid method. The theoretical findings are backed up by numerical
experiments.
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1. Introduction

The development of multigrid methods for τ -matrices and Toeplitz ma-
trices go back to [1], the two level case was considered in [2]. Using the same
ideas methods for circulant matrices were developed later in [3, 4]. While
these works provide the basis to develop and analyze multigrid methods for
Toeplitz matrices and matrices from different matrix algebras, including the
τ - and circulant algebra, they did not provide a prove of optimality of the
multigrid cycle, in the sense that the convergence rate is bounded by a con-
stant c < 1 independent on the number of levels used in the multigrid cycle.
This prove was added later in [5, 6].

The theory that is used to build up the two-grid and multigrid methods
and to prove their convergence is based on the classical variational multigrid
theory, as it is presented in e.g. [7, 8, 9, 10].
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1.1. Toeplitz and circulant matrices

A Toeplitz matrix Tn ∈ Cn×n is a matrix with constant entries on the
diagonals, i.e. Tn is of the form

Tn =



t0 t−1 t−2 · · · t−n+1

t1 t0 t−1
. . .

...

t2 t1 t0
. . .

...
...

. . .
. . .

. . .
...

tn−1 tn−2 tn−3 · · · t0


. (1)

As a consequence the matrix entries are completely determined by the 2n−1
values t−n+1, . . . , tn−1. There exists a close relationship of a Toeplitz matrix
to its generating symbol f : R→ C, a 2π-periodic function given by

f(x) =
∞∑

j=−∞
tje

i2πjx, (2)

so the entries on the diagonals are given as the Fourier coefficients of f and
consequently by

tj =
1

2π

π∫
−π

f(x)e−i2πjxdx. (3)

The generating symbol f always induces a sequence {Tn(f)}∞n=1 of Toeplitz
matrices Tn(f). In the case of f being a trigonometric polynomial, the
resulting Toeplitz matrices are band matrices for n large enough. There
are various theoretical results on sequences of Toeplitz matrices and their
generating symbol, most important for the analysis of iterative methods for
Toeplitz matrices is the fact that the distribution of the eigenvalues of the
Toeplitz matrix is given by the generating symbol in the limit case n→∞,
for details see [11].

Circulant matrices are of a very similar form. A circulant matrix is a
Toeplitz matrix, where the entry t−k = tn−k, k = 1, 2, . . . , i.e.

Cn =



t0 tn−1 tn−2 · · · t1

t1 t0 t1
. . .

...

t2 t1 t0
. . .

...
...

. . .
. . .

. . .
...

tn−1 tn−2 tn−3 · · · t0


.

With the help of the matrix Zn that is given by

Zn =


0 · · · 0 1
1 0

. . .
...

0 1 0
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Cn can alternatively be written as

Cn =
n−1∑
j=0

tjZ
j
n,

further Cn is diagonalized by the Fourier matrix Fn, where

(Fn)j,k =
1√
n

e−
2πi
n
jk, j, k = 0, . . . , n− 1,

i.e.
Cn = Fn diag(λ(n))FHn ,

for λ(n) = (λ
(n)
0 , . . . , λ

(n)
n−1) given by

λ
(n)
j = f

(
2πj

n

)
, j = 0, . . . , n− 1.

Allowing negative indices to denote the diagonals above the main diagonal
as in the Toeplitz case, i.e. in (1), results in demanding tk = tk mod n. Using
the generating symbol f in (2) similarly to the Toeplitz case a sequence
{Cn(f)}∞n=1 of matrices Cn(f) is defined. In contrast to the Toeplitz case
the circulant matrices form a matrix algebra as they are diagonalized by the
Fourier matrix Fn.

The concept of Toeplitz and circulant matrices can easily be extended to
the block case, i.e. the case where the matrix entries are not elements of the
field of complex numbers but rather of the ring of m×m matrices. In this
case the generating symbol becomes a matrix-valued 2π-periodic function
and the matrices are called block Toeplitz and block circulant matrices,
respectively. The aforementioned properties of the matrices transfer to this
case, e.g. a block circulant matrix with block size m ×m and n blocks on
the main diagonal is block diagonalized by Fn ⊗ Im, where ⊗ denotes the
Kronecker product and Im denotes the identity matrix of size m×m. The
analysis of multigrid methods with more general blocks is beyond the scope
of this article, for further details see e.g. [12].

An interesting special type of block matrices that we will deal with is the
case where the blocks itself are Toeplitz/circulant, again. The resulting ma-
trix will be called block Toeplitz Toeplitz block (BTTB) or block circulant
circulant (BCCB) and it can be described by a bivariate 2π-periodic gener-
ating symbol f . In the d-level case the generating symbols are f : Rd → C
a 2π periodic functions having Fourier coefficients

tj =
1

(2π)d

∫
[−π,π]d

f(x)e−i〈j|x〉 dx, j = (j1, . . . , jd) ∈ Zd,

where 〈 · | · 〉 denotes the usual scalar product between vectors. From the
coefficients tj one can build the sequence {Cn(f)}, n = (n1, . . . , nd) ∈ Nd,

3



of multilevel circulant matrices of size N =
∏d
r=1 nr. Every matrix Cn(f) is

explicitly written as

Cn(f) =
∑
|j|6n−e

aj(Z
j1
n1
⊗ · · · ⊗ Zjdnd)

=
∑

|j1|6n1−1

. . .
∑

|jd|6nd−1

a(j1,...,jd)Z
j1
n1
⊗ · · · ⊗ Zjdnd ,

Here ⊗ denotes the usual Kronecker product, so that A ⊗ B is the block
matrix [aijB]ij , e = (1, . . . , 1) ∈ Nd and the relations between two multi-
indices (as |j| 6 n − e) should be intended componentwise. Defining the
d-dimensional Fourier matrix Fn = Fn1 ⊗· · ·⊗Fnd , the matrix Cn(f) can be
written as

Cn(f) = Fn diag(λ(n))FHn ,

where λ(n) = λ(n1) × · · · × λ(nd) if n is a d-index.

1.2. Multigrid methods

A multigrid method is a method to solve a linear system of equations.
When traditional stationary iterative methods like Jacobi are used to solve
a linear system, the methods perform poorly when the system gets more
ill-conditioned, e.g. when the mesh width is decreased in the discretiza-
tion of a PDE. The reason for this is that error components belonging to
large eigenvalues are damped efficiently, while error components belonging
to small eigenvalues get damped slowly. In the discretized PDE example
the first correspond to the rough error modes, while the latter correspond
to the smooth error modes. For this reason methods like Jacobi are known
as “smoothers”. Motivated by the PDE-case the construction of a two-
grid method proceeds by computing the residual, resampling it on a coarser
grid, where the smooth components are “rougher”, and solving for an ap-
proximate error on the coarser grid. This approximation is then used to
correct the current approximate solution, this correction can be followed
by another application of the smoother. Proceeding in this manner finally
yields a multigrid solution where only on the coarsest grid the system is
solved directly, applying ξ = 1, 2, . . . recursive calls yields different cycling
strategies.

To construct a multigrid method various components have to be chosen.
Assume that the solution of a linear system

Ax = b,

where A ∈ CN×N , x ∈ CN and b ∈ CN is sought for. To construct a
multigrid method the system on the finest level is denoted by A0 = A,
the multi-index of the size is denoted by n0 = n ∈ Nd. The multi-indices
of the system sizes on the coarser grids are then denoted by ni < ni−1,
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i = 1, . . . , lmax, where lmax is the maximum number of levels used. Defining
Ni =

∏d
j=1(ni)j , to transfer a quantity from one level to another restriction

operators Ri : CNi → CNi+1 , i = 0, . . . , lmax − 1 and Pi : CNi+1 → CNi , i =
0, . . . , lmax−1 are needed, furthermore a hierarchy of operators Ai ∈ CNi×Ni ,
i = 1, . . . , lmax has to be defined. On each level appropriate smoothers Si
and S̃i and the numbers of smoothing steps ν1 and ν2 have to be chosen, we
limit ourselves to stationary iterative methods although other smoother like
Krylov-subspace methods can be used, as well. After ν1 presmoothing steps
using Si, the residual rni ∈ CNi is computed and restricted to the coarse
grid, the result is rni+1 . On the coarse grid the error is computed by solving

Ai+1eni+1 = rni+1 ,

in the multigrid case this is done by a recursive application of the multigrid
method. The resulting error is interpolated back to obtain the fine level
error ei and the current iterate is updated using this error. Afterwards, the
iterate is improved by postsmoothing. The process of correcting the current
iterate using the coarse level is known as coarse grid correction, it has the
iteration matrix

Mi = I − PiA−1
i+1RiAi. (4)

In summary the multigrid method MGi is given by Algorithm 1.

Algorithm 1 Multigrid cycle xni =MGi(xni , bni)
xni ← S

ν1
i (xni , bni)

rni ← bni −Aixni
rni+1 ← Rirni
eni+1 ← 0
if i+ 1 = lmax then
enlmax

← A−1
lmax

rnlmax

else
for j = 1, . . . , ξ do
eni+1 ←MGi+1(eni+1 , rni+1)

end for
end if
eni ← Pieni+1

xni ← xni + eni
xni ← S̃

ν2
i (xni , bni)

The classical algebraic convergence analysis is based on two properties,
the smoothing property and the approximation property that are coupled
together by an appropriately chosen norm ‖ ·‖∗, where in the classical AMG
theory the AD−1A-norm with D = diag(A) is chosen and in the circulant
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case the A2-norm turns out to be helpful. The two properties are given by
the following definitions:

Definition 1.1 (Smoothing properties). An iterative method Si with iter-
ation matrix Si fulfills the presmoothing property if there exists an α > 0
such that for all vni ∈ CNi it holds

‖Sivni‖2Ai ≤ ‖vni‖
2
Ai − α‖Sivni‖

2
∗. (5)

Analogously, it fulfills the postsmoothing property if there exists a β > 0
such that

‖Sivni‖2Ai ≤ ‖vni‖
2
Ai − β‖vni‖

2
∗. (6)

Definition 1.2 (Approximation property). Let Mi be the iteration matrix
of the coarse grid correction defined in (4). The coarse grid correction fulfills
the approximation property if there exists a γ for all vni ∈ CNi such that

‖Mivni‖2Ai ≤ γ‖vni‖
2
∗. (7)

To show convergence of a multigrid method, usually, Ri is chosen to be
the adjoint of Pi and the coarse grid operator Ai+1 is chosen as the Galerkin
coarse grid operator PHi AiPi. Using a variational argument it can then be
shown that the resulting method converges, for details we refer to [10]. If
both smoothing and approximation properties are fulfilled, one easily shows
that a two-grid method converges, as stated by the following lemma for the
postsmoothing.

Lemma 1.3. Assume that Ri = PHi and Ai+1 = PHi AiPi, let Si be a
smoother with iteration matrix Si fulfilling the postsmoothing property (6) for
β > 0 and let the coarse grid correction fulfill the approximation property (7)
for γ > 0 with the same norm ‖ · ‖∗. Then we have γ ≥ β and for all
vni ∈ CNi

‖SiMivni‖Ai ≤
√

1− β/γ‖vni‖Ai .

The proof of this lemma as well as results regardig two-grid methods
using presmoothing or both can be found e.g. in [10].

2. Multigrid for circulant and Toeplitz matrices

In the following, we will introduce multigrid methods for circulant ma-
trices and briefly review the convergence results for these methods, as our
analysis of aggregation based methods is based on such results. After that,
we will provide an overview over the modifications necessary to deal with
Toeplitz matrices in a conceptually very similar way.

Let fi be the symbol of Ai, in this paper we assume fi ≥ 0 thus Ai is
positive definite (adding the Strang correction if necessary). In general, to
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design a multigrid method, the smoother, a coarse level with fewer degrees
of freedom and the prolongation and restriction have to be chosen appro-
priately. The common choice for both, pre- and postsmoothing is relaxed
Richardson, i.e. Si is chosen as

Si(xni , bni) = (I − ωiAi)︸ ︷︷ ︸
=Si

xni + ωibni ,

and S̃i is chosen like this, but with a different ω̃i. Using appropriate relax-
ation parameters ωi and ω̃i this smoother fulfills the presmoothing property
(5) respectively the postsmoothing property (6) as stated by the following
theorem that can be found as Proposition 3 in [6].

Theorem 2.1. Let Ai = Cni(fi), where fi : Rd → R and let Si as defined
above with ωi ∈ R. Then for all vni ∈ CNi and ν1 ∈ N

‖Sν1i vni‖
2
A ≤ ‖vni‖2A − α‖S

ν1
i vni‖

2
A2

holds, if one of the following two is satisfied:

1. 0 ≤ ωi ≤ 1/‖fi‖∞ or

2. 1/‖fi‖∞ < ωi ≤ 2/‖fi‖∞.

In the first case we have α < 2ωiν1, in the latter we obtain

α ≤ min

{
2ωiν1,

1

‖fi‖∞

[
1

(1− ωi‖fi‖∞)2ν1
− 1

]}
.

Further on, if 0 ≤ ω̃i ≤ 2/‖fi‖∞ then for all vni ∈ CNi and ν2 ∈ N

‖S̃ν2i vni‖
2
A ≤ ‖vni‖2A − β‖vni‖2A2

holds with

β ≤ 1− (1− ω̃i‖fi‖∞)2ν2

‖fi‖∞
.

Proof. See [6].

Regarding the choice of the coarse level we assume that the number of
unknowns in each “direction” is divisible by 2, i.e. (ni)j mod 2 = 0 for
j = 1, . . . , d. We then on the coarse level choose every other degree of
freedom, effectively dividing the number of unknowns by 2d when moving
from level i to level i + 1. This corresponds to standard coarsening in
geometric multigrid. Other coarsenings, e.g. by a factor different from 2
[13] or corresponding to semi-coarsening [14, 15] are derived and used in a
straightforward way. The reduction from the fine level to the coarse level is
described with the help of a cut matrix Kni ∈ Cni+1×ni that in the case of
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even system size on the fine level and of a 1-level circulant matrix is given
by

Kni =


1 0

1 0
. . .

1 0

 .
The effect of this cut matrix is that every even variable is skipped when it
is transferred to the coarse level. Regarding the action of the cut matrix on
the Fourier matrix we obtain

KniFni =
1√
2

[1, 1]⊗ Fni+1 =
1√
2
Fni+1([1, 1]⊗ Ini+1) (8)

in the 1-level case. In the d-level case the cut matrix is defined by Kronecker
product

Kni = K(ni)1 ⊗ · · · ⊗K(ni)d . (9)

Combining (8) with (9) and due to the properties of the Kronecker product
we have

KniFni = K(ni)1F(ni)1 ⊗ · · · ⊗K(ni)dF(ni)d

=
1√
2d

(F(ni+1)1([1, 1]⊗ I(ni+1)1))⊗ · · · ⊗ (F(ni+1)d([1, 1]⊗ I(ni+1)d))

=
1√
2d
Fni+1Θni+1 , (10)

where Θni+1 = ([1, 1] ⊗ I(ni+1)1) ⊗ · · · ⊗ ([1, 1] ⊗ I(ni+1)d). With the help of
the cut matrix the prolongation is now defined as

Pi = Cni(pi)KT
ni

given some generating symbol pi and the restriction is defined as the adjoint
of the prolongation. To show the approximation property, we first define
the set Ω(x) of all “corners” of x, given by

Ω(x) = {y : yj ∈ {xj , xj + π}},

and the set M(x) of all “mirror points” of x as

M(x) = Ω(x)\{x}.

To obtain optimal, i.e. level independent, multigrid convergence the gen-
erating symbol pi of the prolongation has to fulfill certain properties. For
that purpose let x0 in [−π, π)d be the single isolated zero of the generating
symbol fi of the system matrix on level i. Choose pi such that

lim sup
x→x0

∣∣∣∣pi(y)

fi(x)

∣∣∣∣ < +∞, y ∈M(x), i = 0, . . . , lmax − 1 (11)
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and such that for all x ∈ [−π, π) we have

0 <
∑

y∈Ω(x)

|pi|2(y), i = 0, . . . , lmax − 1. (12)

Using this, the approximation property can be stated for circulant matrices.

Theorem 2.2. Let Ai = Cni(fi) with fi being the d-variate nonnegative
generating symbol of Ai, having a single isolated zero in [−π, π)d, let Mi be
as in (4), with Pi = Cni(pi)KH

ni and Ri = PHi . If pi fulfills (11) and (12),
then there exists a µ > 0 such that for all vni ∈ CNi we have

‖Mivni‖2Ai ≤ µ‖vni‖
2
A2
i
.

Proof. See [6].

If the order of the zero x0 of the generating symbol is 2q, pi is usually
being chosen as

pi(x) = c ·
d∏
j=1

(cos(x0
j ) + cos(xj))

q,

plus optionally a Strang correction.
If the system matrix A is not circulant but Toeplitz, a few changes are

necessary. In the case of a Toeplitz matrix which has a generating symbol
f being a trigonometric polynomial of degree at most one, the matrix is in
the τ -algebra. Matrices out of the τ -algebra are diagonalized by the matrix
Qn,

(Qn)j,k =

√
2

n+ 1
sin

(
jkπ

n+ 1

)
, j, k = 1, . . . , n.

Assuming ni odd, the cut matrix Kni is chosen as

Kni =


0 1 0

1 0
. . .

1 0

 (13)

in the τ -case, the results on multilevel matrices and convergence transfer to
this case immediately, if Qn is chosen instead of Fn and the appropriate cut
matrix is used. If A is Toeplitz but the generating symbol is a higher degree
trigonometric polynomial of degree δ, the cut matrix has to be chosen as

Kni(δ) =


0 · · · 0 1 0

1 0
. . .

1 0 · · · 0

 , (14)
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where the first and last δ columns are zero, so the non-constant entries in
the first δ and in the last δ rows and columns are not taken into account on
the coarser level to guarantee the Toeplitz structure on all levels.

We will now focus on the choice of pi in an aggregation based framework.

3. Aggregation and smoothed aggregation for circulant and Toeplitz
matrices

Aggregation based multigrid goes back at least to [16], where the so-
called aggregation/disaggregation methods [17, 18] have been used in a
multigrid setting. The idea of aggregation based multigrid is to not choose
a C/F-splitting, i.e. a partitioning of the unknowns into variables that are
present on the coarse and the fine level and variables that are present on
the fine level, only. Rather than that the unknowns are grouped together
into aggregates, these aggregates form one variable on the coarse level, each.
The pure aggregation can be improved by smoothing [19] that improves
the quality of the prolongation and restriction and thus the performance of
the method. Recent results on aggregation-based multigrid methods can be
found in [20, 21]. In the following, we will start with the definition of simple
aggregation based multigrid methods for 1-level circulant matrices, corre-
sponding to one dimensional problems. Emphasizing the downside of pure
aggregation we will then introduce smoothed aggregation in the circulant
setting and finally transfer the results to the d-level case.

3.1. 1-level circulant matrices

Let A = Cn(f) with generating symbol f having a single isolated zero of
order 2 at the origin, n = 2lmax+1. In an aggregation-based multigrid method
with aggregates of size 2 this corresponds to a prolongation operator Pi given
by

PHi =


1 1

1 1
. . .

1 1

 ∈ Cni+1×ni .

Transferring this to the circulant case yields a prolongation Pi = Cni(pi)KT
ni

with pi = a1,2, where

a1,2 : [−π, π)→ C
x 7→ a1,2(x) = 1 + e−ix.

10



Note that Cni(pi) is not hermitian. We easily check that this projector fulfills
(12) as ∑

y∈Ω(x)

|pi(y)|2 =
∑

y∈Ω(x)

|1 + e−iy|2

=
∑

y∈Ω(x)

2 + 2 cos(y) > 0

This projection does not fulfill (11), but as f has a second-order zero at
x0 = 0, we can show that it fulfills a weaker condition sufficient for two-grid
optimality, namely

lim sup
x→x0

|pi(y)|2

|fi(x)|
≤ +∞, y ∈M(x), i = 0, . . . , lmax − 1. (15)

Therefore the aggregation defines an optimal two-grid method but it is not
strong enough for the optimality of V-cycle. This agrees with results in [20].

To fulfill the stronger condition (11) the prolongation can be improved
by smoothing, i.e. applying a step of an iterative method used as a smoother.
In the case of Richardson this corresponds to the generating symbol

si,ω(x) = 1− ωfi(x). (16)

Under the assumption that fi has its single maximum at position x = π
no additional zero is introduced when ω is chosen as ω = 1/f(π) and the
symbol of the prolongation operator

pi(x) = si,1/f(π)(x) a1,2(x)

fulfills (11) since si,1/f(π)(π) = 0.
We like to note that if the introduced zero is of second order it suffices to

smooth either the prolongation or the restriction operator, as the symbol of
the pure aggregation already has a zero of order 1 at the mirror point x = π.
Since in this case Ri 6= Pi the previous theory does not apply. Nevertheless,
defining Ri = KniCni(ri), in [22] it is shown that the condition (12) can be
replaced with

0 <
∑

y∈Ω(x)

ri(y)pi(y), i = 0, . . . , lmax − 1. (17)

and the two-grid condition (15) replaced with

lim sup
x→x0

|ri(y)pi(y)|
|fi(x)|

≤ +∞, y ∈M(x), i = 0, . . . , lmax − 1. (18)

Similarly, assuming that ripi ≥ 0, the condition (11) can be replaced with

lim sup
x→x0

∣∣∣∣∣
√
ri(y)pi(y)

fi(x)

∣∣∣∣∣ < +∞, y ∈M(x), i = 0, . . . , lmax − 1. (19)
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The coarse matrix Ai+1 = RiAiPi is Ai+1 = Cn(fi+1) with

fi+1(x) =
1

2

∑
y∈Ω(x/2)

ri(y)fi(y)pi(y)

and hence it is nonnegative definite for ripi ≥ 0. Smoothing only the re-
striction or the prolongation operator, we have

ri(x)pi(x) = si,ω(x)a1,2(x)a1,2(x) = si,ω(x)(2 + 2 cos(x)).

Under the assumption that f has maximum at π, si,1/f(π) is nonnegative
and has a zero of order 4 at π. Hence conditions (17) and (19) are satisfied
and Ai+1 is nonnegative definite.

Remark 3.1. This choice of pi is only valid for system matrices A = Cn(f)
where the generating symbol has a single isolated zero at x0 = 0. In general
for a system matrix with generating symbol fi having a single isolated zero
at x0 we choose pi as

pi : [−π, π)→ C

x 7→ pi(x) = 1 + e−i(x+x0).

For this prolongation operator we have

|pi(x)|2 = 2 + 2 cos(x+ x0),

so (12) and (15) are fulfilled, the latter for a single isolated zero x0 of order 2.
The stronger condition (11) is fulfilled in the case that fi has its single
maximum at x0 + π by smoothing the operator using ω-Richardson with
ω = fi(x0 + π).

In general, aggregation with aggregates of sizes g corresponds to using
the cut matrix

Kni,g =


1 0 · · · 0

1 0 · · · 0
. . .

1 0 · · · 0

 (20)

with g − 1 zero columns after each column containing a one and the pro-
longation defined by this cut matrix and the generating symbol pi = a1,g

with

a1,g : [−π, π)→ C

x 7→ a1,g(x) =

g−1∑
k=0

e−ikx

12



as
Pi = Cni(pi)KT

ni,g. (21)

The effect of the cut matrix applied to the Fourier matrix is similar to (8)
described by

Kni,gFni =
1
√
g
eTg ⊗ Fni+1 =

1
√
g
Fni+1(eTg ⊗ Ini+1),

where eTg = [1, . . . , 1] ∈ Ng and the set of mirror points consists of the g− 1
points in Mg(x) = Ωg(x)\{x} where

Ωg(x) =

{
y : y = x+

2πj

g
(mod2π), j = 0, 1, . . . , g − 1

}
.

Assuming n0 = n = glmax+1, for a given matrix Ai = Cni(fi) the coarse level
matrix Ai+1 = PHi AiPi, ni+1 = ni/g is given by Ai+1 = Cni+1(fi+1) with

fni+1(x) =
1

g

∑
y∈Ωg(x/g)

|p|2f(y), x ∈ [−π, π).

For further details see [13], where it is proved that the two-grid convergence
follows as in the case g = 2 outlined in section 2 with the requirements (15)
and (12) stated on the sets Mg and Ωg, respectively. In more detail, the
two-grid optimality requires

lim sup
x→x0

|pi(y)|2

|fi(x)|
≤ +∞, y ∈Mg(x), i = 0, . . . , lmax − 1, (22)

0 <
∑

y∈Ωg(x)

|pi|2(y), i = 0, . . . , lmax − 1, (23)

for all x ∈ [−π, π), see Theorem 5.1 in [13]. The V-cycle optimality for a
coarsening factor g > 2 is an open problem, but we can conjecture that in
(11), similarly to (15), it is enough to replace M with Mg, namely

lim sup
x→x0

∣∣∣∣pi(y)

fi(x)

∣∣∣∣ < +∞, y ∈Mg(x), i = 0, . . . , lmax − 1. (24)

As the pure aggregation pi = a1,g fulfills only (22) but not (24), the prolonga-
tion has to be improved for all mirror points, possibly resulting in more than
one smoothing parameter ω and thus multiple necessary smoothing steps.
The extension to the case of zeros at other positions is possible analogously to
the case outlined in Remark 3.1 with the same symbol pi(x) = 1+e−i(x+x0).
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3.2. The d-level case

Using the 1-level case as motivation, we will now introduce aggregation
and smoothed aggregation multigrid for d-level circulant matrices, d ∈ N,
usually associated to d-dimensional problems. First of all, we have to extend
the theoretical results in [13] to d > 1. For that purpose let A = Cn(f),
where f : Rd → C is a nonnegative function 2π-periodic in each variable,
n ∈ Nd, g ∈ Nd is the size of the aggregates and assume that n = glmax+1,
i.e., nj = glmax+1

j , j = 1, . . . , d. As before, we define the fine level operator
A0 = A with f0 = f and recursively the system size as ni+1 = ni/g (all
the multi-indices operations in the paper are intended component-wise), the
prolongation as in (21) where Kni,g = K(ni)1,g1 ⊗ · · · ⊗ K(ni)d,gd , and the

coarse grid operator as Ai+1 = PHi AiPi. The set of all corners of x ∈ Rd
associated to the cut matrix Kni,g is

Ωg(x) =

{
y

∣∣∣∣ yj ∈ {xj +
2πk

gj
(mod 2π)

}
, k = 0, . . . , gj − 1, j = 1, . . . , d

}
.

To simplify the following notation we define G =
∏d
j=1 gj .

Analogously to the 1-level case, the generating symbol of the system
matrix of the coarser level is given as stated by the following lemma.

Lemma 3.2. Let Ai = Cni(fi), Pi defined in (21), and ni+1 = g · ni ∈ Nd,
then the coarse level system matrix Ai+1 = PHi AiPi is Ai+1 = Cni+1(fi+1)
where

fi+1(x) =
1

G

∑
y∈Ωg(x/g)

|pi|2fi(y), x ∈ [−π, π)d. (25)

Proof. The proof is a generalization of the proof of Proposition 5.1 in [4].
First we note that in analogy to (10) with eTgj = [1, . . . , 1] ∈ Ngj , j = 1, . . . , d,
we have

Kni,gFni = K(ni)1,g1Fni,1 ⊗ · · · ⊗K(ni)d,gdFni,d

=
1√
G

(Fni+1,1(eTg1 ⊗ Ini,1))⊗ · · · ⊗ (Fni+1,d
(eTgd ⊗ Ini,d))

=
1√
G

(Fni+1,1 ⊗ · · · ⊗ Fni+1,d
)((eTg1 ⊗ Ini,1)⊗ · · · ⊗ (eTgd ⊗ Ini,d)),

so

KniFni =
1√
G
Fni+1Θni,g, (26)

where Θni,g = (eTg1 ⊗ Ini,1) ⊗ · · · ⊗ (eTgd ⊗ Ini,d). So, for Ai+1 = PHi AiPi we
have

PHi AiPi = Kni,gCHni(pi)Cni(fi)Cni(pi)K
H
ni,g

= Kni,gFniDni(|pi|2fi)FHniK
H
ni,g

=
1

G
Fni+1Θni,gDni(|pi|2fi)ΘH

ni,gF
H
ni+1

.

14



Here,
Dni(f) = diag0≤j≤ni−ed(f((xi)j)),

where (xi)j ≡ 2πj/ni = (2πj1/(ni)1, . . . , 2πjd/(ni)d)
T and 0 ≤ j ≤ ni − ed

is intended component-wise. For a given multi-index k = (k1, . . . , kd), 0 ≤
kj ≤ (ni+1)j we have

(Θni,gx)k =

g−ed∑
l=0

xk+l,

so we obtain

Θni,gDni(|pi|2fi)ΘT
ni,g =

g−ed∑
l=0

Dni,g,l(|pi|
2fi),

where
Dni,g,l(f) = diagni+1·l≤j′≤ni+1·(l+ed)−ed(f((xi)j′)).

Here the products and inequalities are again intended component-wise. For
an example of the multi-index notation in the case d = g = 2 we refer to
the proof of Proposition 5.1 in [4]. As result we obtain

PHi AiPi =
1

G
Fni+1

(
g−ed∑
l=0

Dni,g,l(|pi|
2fi)

)
FHni+1

and with

(xi)j′ = (xi+1)j/g + π · l (mod 2π), 0 ≤ j ≤ ni+1 − ed, j′ = j + ni+1 · l,

where products, divisions and inequalities are intended component-wise, we
get

PHi AiPi = Cni+1(fi+1),

with fi+1 defined in (25).

The two-grid optimality can be obtained similarly to the 1-level case if
the conditions (22) and (23) are satisfied for x ∈ [−π, π)d. The proof is
a combination of Theorem 5.1 in [13] and Lemma 6.3 in [4]. It requires a
quite complicate notation, but the main point is the standard reduction, by
proper permutations, to a diagonal blocks matrix with diagonal blocks of
size G×G. The boundedness of the modulus of the entries, and hence the
boundedness of the norm of the matrix, follows from conditions (22) and
(23).

Remark 3.3. If the two conditions (22) and (23) are satisfied with x ∈
[−π, π)d, we obtain as consequence of Lemma 3.2 that if x0 is a zero of fi
then g · x0 mod 2π is a zero of fi+1 with the same order.
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In the pure aggregation setting the generating symbol of the prolongation
is given by

ad,g(x) =

d∏
j=1

gj−1∑
k=0

e−ikxj , x ∈ [−π, π)d. (27)

Theorem 3.4. For the function ad,g defined in (27) there exists a constant
c with 0 < c < +∞ such that

lim sup
x→0

|ad,g(y)|∑d
j=1 x

z
j

= c, y ∈Mg(x). (28)

where z = d−# {yj | yj = 0, j = 1, . . . , d} is the number of directions along
which ad,g is zero.
Further on, if fi has a single isolated zero of order 2 at the origin, pi = ad,g
fulfills (23) and (22).

Proof. The limit (28) follows from the Taylor series of ad,g: Consider y ∈
Mg(x), i.e., yj = xj + 2π`

gj
(mod 2π) for ` = 0, . . . , gj−1, then the j-th factor

of ad,g(y) is

gj−1∑
k=0

e−ikyj =

gj−1∑
k=0

e
−ik(xj+

2π`
gj

)
=

gj−1∑
k=0

e
−i2πk`
gj e−ikxj .

Since
gj−1∑
k=0

e
−i2πk`
gj =

{
gj if ` = 0,
0 otherwise,

the j-th factor in (27) has an infinite Taylor series with the constant term
equal to zero only if ` 6= 0.
If fi has a single isolated zero of order 2 at the origin then

lim sup
x→0

fi(x)∑d
j=1 x

2
j

= ĉ, 0 < ĉ < +∞

and hence pi = ad,g fulfills (22).
Regarding (23), let x be such that |ad,g|2(x) = 0. If x lies on the axes

then 0 ∈ Ωg(x) and |ad,g|2(0) > 0. If x does not lie on the axes, then there
exists a y ∈ Ωg(x) that lies on an axis and that fulfills |ad,g|2(y) > 0.

Figure 1 gives a visual representation of the behaviour of pi = ad,g at
Mg(0) for two examples.

The order of the zero at the points where pi = ad,g is zero in one direction,
only, can again be improved by applying smoothing. For that purpose we
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Figure 1: Order of y ∈ Mg(0) for the aggregation operator ad,g: ◦ → order = 1, � →
order = 2, ♦→ order = 3.

again use an ω-Richardson smoother. In the d-level case the generating
symbol of this smoother is given by

si,ω : [−π, π)d → C (29)

x→ si,ω(x) = 1− ωfi(x). (30)

Lemma 3.5. Assume that fi ≥ 0 has a single isolated zero of order 2 at
the origin and that fi obtains the maximum only at all y ∈ Mg(0) lying on
the axes and let ỹ be one of these points. Then the symbol of the smoothed
prolongation given by

pi(x) = si,1/f(ỹ)(x) ad,g(x)

fulfills (24) and (23).

Proof. Since ỹ is of maximum for fi, the function si,1/f(ỹ) is nonnegative
and vanishes for y ∈Mg(0) lying on the axes with order at least one. From
Theorem 3.4 ad,g vanishes at y ∈Mg(0) with order one if y lies on the axes
and with order at least two, otherwise. Therefore, pi = si,1/f(ỹ) ad,g vanishes
with order at least two for all y ∈Mg(0) and hence it fulfills (24).

Regarding (23), the assumptions on fi implies that si,1/f(ỹ)(y) = 0 only
for y ∈Mg(0) lying on the axes. Hence {x | si,1/f(ỹ)(x) = 0} ⊂ {x | ad,g(x) =
0} and pi = ad,gsi,1/f(ỹ) fulfills (23) since it is already satisfied by pi = ad,g
thanks to Theorem 3.4.

Again, if the smoother introduces a zero of order two, it is sufficient
to smooth either the prolongation or the restriction operator generalizing
the results in [22] to g > 2. Moreover, like in Remark 3.1 the aggregation
operator for a zero at a position x0 6= 0 ∈ Rd is defined by

pi(x) =

d∏
j=1

gj−1∑
k=0

e−ik(xj+x
0
j ), x ∈ [−π, π)d.
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Now we turn to discretizations of the two-dimensional Laplacian. In
this case we are able to formulate some results based on the developed
theory. The first result is valid for isotropic stencils in the case of standard
coarsening.

Lemma 3.6. Let f be an even trigonometric polynomial obtained by an
isotropic discretization of the 2D Laplacian. If g = (2, 2) or g = (3, 3), (i.e.,
coarsening 1 : 2 and 1 : 3, respectively, in x- and y-direction), there always
exists a smoother si,ω defined in (29) with unique ω such that the resulting
projection pi = si,ω a2,g fulfills (24). In particular

i) for g = (2, 2) we obtain ω = 1/f(0, π),

ii) for g = (3, 3) we obtain ω = 1/f(0, 2π
3 ).

Proof. The function f is nonnegative and vanishes only at the origin with
order two, thus p0 has to vanish at all y ∈ Mg(0) with order at least two.
For y ∈ Mg(0), from Theorem 3.4 the aggregation part a2,g vanishes in
y with order one if y lies on the axes and with order two otherwise. The
isotropic discretization leads to a symmetry on f such that f(0, z) = f(z, 0),
that is inherited by s0,ω. For g = (2, 2), the smoother si,ω can be defined
with one unique ω leading to s0,ω(0, π) = 1 − ωf(0, π) = 0. For g = (3, 3),
we observe that cos(4π/3) = cos(2π/3) and hence the smoother si,ω can be
again defined with one unique ω leading to s0,ω(0, 4π/3) = s0,ω(0, 2π/3) =
1 − ωf(0, 2π/3) = 0. The coarse symbols fi, i > 0, preserve the same
properties of f thanks to Lemma 3.2 and Remark 3.3.

In the case that every fourth point is taken in each direction, i.e. the
number of unknowns is reduced by a factor of 16, we obtain a similar result.

Lemma 3.7. Let f be an even trigonometric polynomial obtained by an
isotropic discretization of the 2D Laplacian. If g = (4, 4) (i.e., coarsening
1 : 4 in x- and y-direction), we need two smoothers with two different ω given
by ω1 = 1/f(0, π/2) and ω2 = 1/f(0, π) such that the resulting projection
pi = si,ω1si,ω2 a2,g fulfills (24).

Proof. The proof is analogous to that of Lemma 3.6. Two different ω are
necessary in view of cos(π/2) = cos(3π/2) 6= cos(π). The smoother si,ω1 can
be defined by s0,ω1(0, π/2) = 1 − ω1f(0, π/2) = 0, while the smoother si,ω2

can be defined by s0,ω2(0, π) = 1− ω2f(0, π) = 0

For anisotropic stencils even with standard coarsening in general two ω
are needed.

Lemma 3.8. Let f be an anisotropic discretization of the 2D Laplacian.
If g = (2, 2) (i.e., coarsening 1 : 2 in x- and y-direction), we need two
different ω given by ω1 = 1/f(π, 0) and ω2 = 1/f(0, π) such that the resulting
projection pi = si,ω1si,ω2 a2,g fulfills (24).
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Proof. Due to the anisotropic discretization f(π, 0) 6= f(0, π) and hence two
different ω are necessary like in Lemma 3.7.

3.3. Toeplitz case

As noted at the end of section 2 the circulant case can be applied and
extended to the Toeplitz case. In analogy to (13) the cut matrix Kni,g given
by (20) in the Toeplitz case is given by

Kni,g =


0 · · · 0 1 0 · · · 0

1 0 · · · 0
. . .

1 0 · · · 0

 ,
where the first and last g − 1 columns are zero. The multilevel counterpart
is formed with the help of Kronecker products. In the case that the degree
of the trigonometric polynomial is smaller than g in the 1-level case of the
degree of each variable in the multilevel case is smaller than the correspond-
ing gj the Toeplitz structure is kept on the coarser levels. This is a general
advantage of multigrid methods that use reductions of the system size that
are different from 2. If the degree is higher the cut matrix can be padded
with zeros as in (14).

3.4. Non-constant coefficient case

While non-constant coefficients do not lead to circulant or Toeplitz ma-
trices, circulant or Toeplitz matrices can be used as a local model by freezing
the coefficients and analyzing the resulting methods. This approach is fol-
lowed in [22] and in general when local Fourier analysis (LFA) for multigrid
methods is used to analyze geometric multigrid methods. For a detailed re-
view of LFA see [23]. The developed theory can be used to choose different
smoothers based on the local stencil within the smoothing process in general
smoothed aggregation multigrid methods. This is beyond the scope of this
paper and will be considered in future investigations.

4. Numerical examples

All numerical tests were obtained using MATLAB R2011b. We imple-
mented the outlined method based on the developed theory for circulant
and Toeplitz d-level matrices with generating symbols with second order
zero at the origin. The optimal ω was chosen automatically according to
lemmas 3.6–3.8. In any case we used 3 steps each of the Richardson itera-
tion as pre- and postsmoother. Unless indicated otherwise the coarsest grid
was of size 2d. We report the number iterations to yield a reductions of the
residual by a factor of 10−10, the operator complexity and the asymptotic
convergence rate given by the residuals of the last two cycles.
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# dof # iter. op. compl. asymp. conv.

22 6 1.3333 0.0156
23 6 1.8333 0.0156
24 6 2.2500 0.0189
25 6 2.6250 0.0181
26 10 2.8542 0.1828
27 9 3.0938 0.1793
28 9 3.3177 0.1813

Table 1: Results for the circulant case for stencil (31) for a coarsening by 1:2.

# dof # iter. op. compl. asymp. conv.

22 6 1.3333 0.0156
23 7 1.6667 0.0568
24 8 1.8333 0.0763
25 8 1.9167 0.0703
26 8 1.9583 0.0686
27 8 1.9792 0.0686
28 8 1.9896 0.0786

Table 2: Results for the circulant case for stencil (31) for a coarsening by 1:2 (non-Galerkin
case).

4.1. 1-level example

As a simple 1-level example we consider the 2nd-order accurate dis-
cretization of the Laplace operator given by the stencil[

−1 2 −1
]

(31)

that corresponds to the generating symbol

f(x) = 2− 2 cos(x).

If the operator is discretized with periodic boundary conditions we obtain
the circulant matrix given by this generating symbol, when Dirichlet bound-
ary conditions are used, the respective Toeplitz matrix is obtained. We ob-
serve that f attains its single maximum at xmax = π, so the requirement
of Lemma 3.5 is fulfilled. The results for a reduction ratio of two for the
circulant case can be found in Table 1. Only one ω was needed on each grid
level. The operator complexity is growing strongly, a behavior that can be
reduced by smoothing one grid transfer operator, only, as discussed above.
The results obtained in the non-Galerkin case where only the prolongation
operator is smoothed can be found in Table 2. The other option to reduce
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# dof # iter. op. compl. asymp. conv.

32 12 1.3333 0.1584
33 13 1.4444 0.1766
34 12 1.4815 0.1822
35 12 1.4938 0.1783

Table 3: Results for the circulant case for stencil (31) for a coarsening by 1:3.

# dof # iter. op. compl. asymp. conv.

32 − 1 12 1.1818 0.1763
33 − 1 13 1.3421 0.1976
34 − 1 12 1.4286 0.1795
35 − 1 12 1.4696 0.1794

Table 4: Results for the Toeplitz case for stencil (31) for a coarsening by 1:3.

the operator complexity is a more aggressive coarsening that translates to
larger aggregates. In Table 3 the results for stencil (31) can be found for a
reduction ratio of 3. While the operator complexity is obviously lower than
in the previous case, still only one ω is needed and the convergence rate is
still satisfactory and independent of the size of the system. The results for
the Toeplitz case are very similar to those in the circulant case, they are
presented in Table 4.

Another example is the 4th-order discretization of the Laplacian corre-
sponding to the stencil [

1 −16 30 −16 1
]

(32)

and having the generating symbol

f(x) = 30− 32 cos(x) + 2 cos(2x).

The results obtained for a reduction ratio of 3 for circulant matrices with
this stencil can be found in Table 5. Again, only one ω is needed.

# dof # iter. op. compl. asymp. conv.

32 14 1.2000 0.2324
33 16 1.4000 0.2581
34 16 1.4667 0.2690
35 16 1.4889 0.2861

Table 5: Results for the circulant case for stencil (32) for a coarsening by 1:3.
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# dof # iter. op. compl. asymp. conv.

32 × 32 20 1.2000 0.3581
33 × 33 24 1.2222 0.4361
34 × 34 23 1.2247 0.4354
35 × 35 24 1.2250 0.4388

Table 6: Results for the circulant case for stencil (33) for a coarsening by 1:9.

# dof # iter. op. compl. asymp. conv.

(32 − 1)× (32 − 1) 24 1.0556 0.4043
(33 − 1)× (33 − 1) 25 1.1526 0.4420
(34 − 1)× (34 − 1) 25 1.1981 0.4431
(35 − 1)× (35 − 1) 24 1.2156 0.4427

Table 7: Results for the Toeplitz case for stencil (33) for a coarsening by 1:9.

4.2. 2-level example

As a first example we choose the well-known 2nd-order accurate dis-
cretization of the Laplacian given by the stencil −1

−1 4 −1
−1

 . (33)

The generating symbol is given by

f(x) = 4− 2 cos(x1)− 2 cos(x2).

The results for a coarsening by a factor of 3 in each direction can be found in
Table 6. The results for the Toeplitz case given in Table 7 are comparable.
In any case, thanks to Lemma 3.6, only one ω is needed and the stencil is
replicated on the coarse grid.

Another common example is the 2nd-order accurate 9-point discretiza-
tion due to the finite element discretization of the Laplacian. It has the
stencil −1 −1 −1

−1 8 −1
−1 −1 −1

 , (34)

so the generating symbol is given by

f(x) = 8− 2 cos(x1)− 2 cos(x2)− 4 cos(x1) cos(x2),

it fulfills the requirements of Lemma 3.5. The results for the circulant case
given in Table 8 and for the Toeplitz case given in Table 9 are similar to
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# dof # iter. op. compl. asymp. conv.

32 × 32 14 1.1111 0.2286
33 × 33 16 1.1235 0.2748
34 × 34 16 1.1248 0.2786
35 × 35 16 1.1250 0.2790

Table 8: Results for the circulant case for stencil (34) for a coarsening by 1:9.

# dof # iter. op. compl. asymp. conv.

(32 − 1)× (32 − 1) 16 1.0331 0.2571
(33 − 1)× (33 − 1) 17 1.0866 0.2793
(34 − 1)× (34 − 1) 17 1.1108 0.2840
(35 − 1)× (35 − 1) 16 1.1200 0.2833

Table 9: Results for the Toeplitz case for stencil (34) for a coarsening by 1:9.

the case of the 5-point discretization and again just one ω is needed and the
stencil stays the same on each level.

We now turn to an example where more than one ω is necessary. For
that purpose we consider matrices with the stencil − 1

12 − 6b−2a
12a+12b − 1

12

− 6a−2b
12a+12b 1 − 6a−2b

12a+12b

− 1
12 − 6b−2a

12a+12b − 1
12

 , (35)

yielding the symbol

f(x) = 1− 12a− 4b

12a+ 12b
cos(x1)− 12b− 4a

12a+ 12b
cos(x2)− 1

3
cos(x1) cos(x2).

This corresponds to a discretization of an anisotropic PDE. According to
Lemma 3.8, we need two ω to increase the order of the zero at the mirror
points on the axes. First we consider an example with a slight anisotropy
where we choose a = 1 and b = 1.1. The smoothing parameter ω was
chosen automatically on each level and to reduce the growth of the operator
complexity we choose to smooth the prolongation, only. The results for
the circulant case can be found in Table 10 and for the Toeplitz case in
Table 11. If the anisotropy is increased, the convergence rate deteriorates,
as expected. The results for a = 1 and b = 2 can be found in Tables 12 for
the circulant case and 13 for the Toeplitz case.
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# dof # iter. op. compl. asymp. conv.

32 × 32 12 1.1111 0.2675
33 × 33 18 1.1235 0.3436
34 × 34 18 1.1248 0.3428
35 × 35 18 1.1250 0.3451

Table 10: Results for the circulant case for the anisotropic stencil (35) with a = 1 and
b = 1.1 for a coarsening by 1:9.

# dof # iter. op. compl. asymp. conv.

(32 − 1)× (32 − 1) 19 1.0331 0.3139
(33 − 1)× (33 − 1) 19 1.0866 0.3480
(34 − 1)× (34 − 1) 19 1.1108 0.3459
(35 − 1)× (35 − 1) 19 1.1200 0.3467

Table 11: Results for the Toeplitz case for the anisotropic stencil (35) with a = 1 and
b = 1.1 for a coarsening by 1:9.

# dof # iter. op. compl. asymp. conv.

32 × 32 22 1.1111 0.4137
33 × 33 27 1.1235 0.4834
34 × 34 26 1.1248 0.4819
35 × 35 26 1.1250 0.4833

Table 12: Results for the circulant case for the anisotropic stencil (35) with a = 1 and
b = 2 for a coarsening by 1:9.

# dof # iter. op. compl. asymp. conv.

(32 − 1)× (32 − 1) 25 1.0331 0.4251
(33 − 1)× (33 − 1) 28 1.0866 0.4845
(34 − 1)× (34 − 1) 27 1.1108 0.4869
(35 − 1)× (35 − 1) 27 1.1200 0.4870

Table 13: Results for the Toeplitz case for the anisotropic stencil (35) with a = 1 and
b = 2 for a coarsening by 1:9.
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# dof # iter. op. compl. asymp. conv.

32 × 32 × 32 14 1.0476 0.2286
33 × 33 × 33 15 1.0494 0.2694
34 × 34 × 34 15 1.0494 0.2727
35 × 35 × 35 15 1.0495 0.2734

Table 14: Results for the circulant case for stencil (36) for a coarsening by 1:27.

# dof # iter. op. compl. asymp. conv.

(32 − 1)× (32 − 1)× (32 − 1) 15 1.0080 0.2305
(33 − 1)× (33 − 1)× (33 − 1) 17 1.0317 0.2787
(34 − 1)× (34 − 1)× (34 − 1) 17 1.0430 0.2832
(35 − 1)× (35 − 1)× (35 − 1) 16 1.0473 0.2854

Table 15: Results for the Toeplitz case for stencil (36) for a coarsening by 1:27.

4.3. 3-level example

To show the feasibility of the approach for 3-dimensional problems, we
tested the approach for a finite element discretization of the Laplacian. The
stencil of the Laplacian in 3 dimensions using trilinear cubic finite elements
is given by

4

3

−4 −8 −4
−8 −8
−4 −8 −4

 −8 −8
128

−8 −8

 −4 −8 −4
−8 −8
−4 −8 −4

 , (36)

so the generating symbol is given by

f(x) =
4

3
(128− 32 (cos(x1) cos(x2) + cos(x1) cos(x3)+

cos(x2) cos(x3) + cos(x1) cos(x2) cos(x3))) .

As in the 2-dimensional case only one ω is needed and the results are com-
parable. The results of the circulant case can be found in Table 14, those
for the Toeplitz case can be found in Table 15.

5. Conclusion

Aggregation-based multigrid methods for circulant and Toeplitz matri-
ces can be analyzed using the classical theory. The non-optimality of non-
smoothed aggregation-based multigrid methods can be explained easily by
the lack of fulfillment of (11) by the prolongation and restriction operator in
that case. Guided by this observation sufficient conditions for an improve-
ment of the grid transfer operators by application of the Richardson iteration
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can be derived, including the optimal choice of the parameter. The results
carry over from aggregates of size 2d to larger aggregates. In future works
the optimality of other coarsening ratios and the non-constant coefficient
case will be further investigated.
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