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1 Introduction

In the process of modelling and simulation of physical and other phenomena,
it is desirable that numerical quantities reflect the original system behaviour,
e.g. in electrical engineering, where the charge transport in semiconductor
devices is usually described by a convection-diffusion equation. Here the charge
transport is described in terms of charge carrier densities, which should be non-
negative. Similar reasoning holds for the simulation of the pollutant density in
air pollution problems [1]. Also, in financial applications, e.g. the computation
of the fair price of an option, one is interested in numerical methods that
guarantees the positivity of the solution.

Hence, it is of tremendous importance to construct such positivity preserving
schemes [2,3] that avoid unrealistic negative values for the solution and, as a
side-effect, are stable with respect to the maximum norm. One possibility are
so-called nonstandard finite difference (NSFD) methods. These methods are
tailor made special schemes for the numerical integration of differential equa-
tions in order to preserve certain properties (positivity, asymptotic behaviour,
etc.) of the analytic solution on the discrete computational grid. The general
basic rules to construct NSFDs [4,5] are the following:

• The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives appearing in the differential equations.

• Discrete representations for derivatives must, in general, have nontrivial
denominator functions.

• Nonlinear terms should, in general, be replaced by nonlocal discrete repre-
sentations.

• Special conditions that hold for the differential equation and/or its solutions
should also hold for the difference equation model and/or its solutions.

Here we will demonstrate how to construct an explicit NSFD scheme for a
general convection-diffusion type PDE having constant coefficients of the form

uτ + b ux = a uxx − c u, (1)

by using the subequation method in the context of the NSFD scheme method-
ology. The use of subequations and their discretizations form the basis for
these constructions of the full PDE.

The basic idea is to start from an explicit upwind discretization, construct
suitable denominator functions and then develop a strategy for choosing the
time step appropriately. In general, the NSFD methodology gives a functional
relation between the space step ∆x and the time step ∆t. This follows immedi-
ately from the positivity requirement. Thus, there will be a time step limitation
for a given ∆x, but usually it will be less restrictive than for other standard
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explicit finite difference schemes. Here we focus on the financial application,
especially the option pricing problem, but also explain an application in air
polllution simulation.

This work is organized as follows: first we introduce in §2 the Black–Scholes
equation for pricing European and American options, recall the standard
transformation to a forward-in-time heat equation which is of the form (1).
Next, in §3 we describe briefly the PDEs appearing in air pollution simu-
lations, which is another application field: In §4 we present the subequation
method which is the basic tool in deriving the NSFD scheme. Here, it will turn
out to be necessary to distinguish between the two cases with and without a
reaction rate. Afterwards we analyze in §5 the properties of the resulting nu-
merical scheme by the modified equation technique. Finally, we illustrate in
§6 the accuracy and efficiency of the new method with a numerical textbook
example and compare it to classical finite difference schemes.

2 Option Pricing

The famous Black–Scholes equation is an effective model for option pricing. It
was named after the pioneers Black, Scholes and Merton who suggested it 1973
[6,7] and received in 1997 the Nobel Prize in Economics for their discovery [8].
Mathematically it is a final value problem for a backward-in-time second order
parabolic equation. A concise derivation of the Black–Scholes equation can be
found in [9].

An option is a contract that admits the owner the right (not the duty) to
buy (‘call option’ ) or to sell (‘put option’ ) an asset (typically a stock or a
parcel of shares of a company) for a prespecified price K (‘strike price’ ) by
the date T to receive some payoffs. The basic problem here is to specify a fair
price to charge for permitting these rights. A closely related question is how to
hedge the risks that arises when selling these options. ‘European’ options can
only be exercised at the expiration date T . For ‘American’ options exercise is
permitted at any time until the expiry date. The notion European or American
are not meant geographically, they just declare the type of option.

In general, closed–form solutions do not exist (especially for American options)
and the solution has to be computed numerically. The standard approach for
solving the Black–Scholes equation for pricing options consists in transform-
ing the original equation to a convection-diffusion equation posed on a semi-
unbounded domain [10,9]. Often finite differences are used to discretize this
convection-diffusion equation and artificial boundary conditions (ABCs) [11]
are introduced in order to confine the computational domain appropriately
and retain the accuracy and stability properties of the underlying scheme.
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Next we present one standard example, the European put, that will lead us
to a heat equation that is of the form (1).

2.1 The European Call Option

Here we focus on European Call options ; the treatment of European Put op-
tions is analogous. The value of a Call option is denoted by V and depends on
the current market price of the underlying asset, S, (the letter ’S’ symbolizes
stocks) and the calendar time t: V = V (S, t). The Black–Scholes equation is
a backward–in–time parabolic equation

∂V

∂t
+

σ2

2
S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > 0, 0 ≤ t < T, (2)

where σ denotes the annual volatility of the asset price, r the risk–free interest
rate and T is the expiry date (t = 0 means ’today’).

The terminal condition (‘payoff condition’) at the expiry t = T reads

V (S, T ) = (S −K)+, S ≥ 0, (3)

with the notation f+ = max(f, 0). Here K > 0 denotes the previously agreed
exercise price or ‘strike’, of the contract.

The ‘spatial’ or asset–price boundary conditions for European Call options at
S = 0, and S → ∞ are

V (0, t) = 0, 0 ≤ t ≤ T, (4a)

V (S, t) ∼ S −K e−r(T−t) as S → ∞, 0 ≤ t ≤ T. (4b)

i.e. at S = 0 the option is worthless. Correspondingly, we have for a European
Put the terminal condition

V (S, T ) = (K − S)+, S ≥ 0, (5)

and the boundary conditions

V (0, t) = 0, as S → ∞, 0 ≤ t ≤ T, (6a)

V (S, t) = K e−r(T−t) − S for S ≈ 0, 0 ≤ t ≤ T. (6b)

The focus of this paper is the numerical solution of the problem, which is
achieved by initially analytically approaching the solution for the European
call by transforming (2) with (3), (4) into a forward-in-time parabolic problem.
In the following sections both a classical and a NSFD scheme will be specified
and used to solve the transformed problem.
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2.2 The Transformation to the Heat Equation

We now review how to transform (2) into a pure diffusion equation (cf. [9,
§ 5.4]). It is convenient to apply time reversal and transform (2) to a forward–
in–time equation by the change t = T−2τ/σ2. The new time variable τ stands
for (up to the scaling by σ2/2) the remaining life time of the option. We denote
the new variables by:

Ṽ (S, τ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, r̃ =

2

σ2
r, T̃ =

σ2

2
T.

The resulting forward–in–time equation then reads:

∂Ṽ

∂τ
= S2 ∂

2Ṽ

∂S2
+ r̃S

∂Ṽ

∂S
− r̃ Ṽ , S > 0, 0 ≤ τ < T̃ , (7)

which is supplied, in case of a European call, with the initial condition

Ṽ (S, 0) = (S −K)+, S ≥ 0, (8)

and the boundary conditions

Ṽ (0, τ) = 0, 0 ≤ τ ≤ T̃ , (9)

Ṽ (S, τ) ∼ S −Ke−r(2τ/σ2) as S → ∞, 0 ≤ τ ≤ T̃ . (10)

The right hand side of (7) is the well–known Euler‘s differential equation
expression and therefore it is standard practice (cf. [10]) to transform (7) to
the heat equation. To do so, we let α = −(r̃− 1)/2, λ = −α2 − r̃, and use the
change of variables

S = K ex, Ṽ (S, τ) = K eαx+λτv(x, τ).

Then problem (7)–(10) is equivalent to the initial boundary value problem for
the heat equation:

∂v

∂τ
=

∂2v

∂x2
, x ∈ R, 0 ≤ τ < T̃ , (11)

with the initial condition

v(x, 0) =
(
e

1

2
(r̃+1)x − e

1

2
(r̃−1)x

)+
, x ∈ R, (12)

and with the asymptotic boundary conditions for 0 ≤ τ ≤ T̃ :

v(x, τ) = 0 for x → −∞, (13)

v(x, τ) = exp
(
r̃ + 1

2
x+

(r̃ + 1)2

4
τ
)

for x → ∞. (14)

5



The problem how to appropriately confine the spatial domain for solving the
whole space problem (11) posed on x ∈ R by (discrete) artificial boundary
conditions that preserve the stability, accuracy and computational effort of
the interior scheme, was discussed concisely in [11]. Thus, in the following
work we will restrict ourselves to the task of constructing a suitable interior
NSFD method.

Next, we briefly sketch another application from environmental simulations
that can be written as a convection-diffusion equation in 1D. Also here it is
essential that the computed concentrations of the pollutants remain positive.

3 Air Pollution Simulation

The process of pollutant transport and diffusion in the atmosphere (and also
in water) is described by the following advection–diffusion equation [12]:

∂ϕ

∂t
+u

∂ϕ

∂x
+ v

∂ϕ

∂y
+(w−wg)

∂ϕ

∂z
−µ(

∂2ϕ

∂x2
+

∂2ϕ

∂y2
)− ∂

∂z
(ν

∂ϕ

∂z
)+σϕ = f, (15)

where ϕ is the concentration of pollutants, (u, v, w) are the components of the
wind velocity, wg = const > 0 the falling velocity of the pollutants by gravity,
f the power of the source, σ = const ≥ 0 the transformation coefficient of
pollutants and µ, ν are the horizontal and vertical diffusion coefficients.

In many practical situations, e.g. the substance propagation in rivers, the
stationary problem of air pollution generated by a point source (modeled by
a Dirac delta function) can be reduced to the one–dimensional advection–
diffusion equation

∂ϕ

∂t
+ u

∂ϕ

∂x
− µ

∂2ϕ

∂x2
+ σϕ = f, x > 0, t > 0. (16)

This is an inhomogeneous version of the considered equation (1).

Besides, the two–dimensional or three–dimensional equations by the splitting
method [12] or local one–dimensional (LOD) method [13,14] are also reduced
to the one–dimensional equation (16). Therefore, the equation (16) has at-
tracted great attention from many researchers. A suitable numerical method
for solving (16) must guarantee the positivity of the solution, since nega-
tive values would loose the physical meaning of a concentration. Dang and
Ehrhardt [1] proposed a so-called monotone difference scheme to ensure the
positivity of the solution.

We will turn to the main part of this work, the subequation method [4].
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4 The Subequation Method

In this section, we will explain in detail the subequation method to obtain
a NSFD for the convection-diffusion PDE. To start, let us consider the pure
heat equation for the unknown u = u(x, τ)

uτ = a uxx, x ∈ R, τ > 0. (17)

Then, the standard (explicit) finite difference discretization reads

un+1
j − un

j

∆τ
= a

un
j+1 − 2un

j + un
j+1

(∆x)2
, j ∈ Z, n ∈ N0, (18)

i.e.

un+1
j = a µ (un

j+1 + un
j+1) + (1− 2aµ) un

j , (19)

with the parabolic mesh ratio µ = ∆τ/(∆x)2 and the pointwise approximation
un
j ≈ u(xj, tn), where xj = j∆x, tn = n∆t, j ∈ Z, n ∈ N0.

Now positivity requires

1− 2aµ ≥ 0. (20)

Here, positivity means that solutions of this finite difference scheme obey a
discrete maximum principle

max
j

|un+1
j | ≤ max

j
|un

j |, n ∈ N0. (21)

A way to ensure this condition (20) is to use the ansatz

1− 2aµ = γaµ, γ ≥ 0, (22)

where γ is a parameter whose value we may select. From (22), it follows that

∆τ =
(∆x)2

(2 + γ) a
. (23)

In practice, we have found that the choice γ = 2 in (22) gives good stability
and smoothness behavior for the solutions.

4.1 An illustrative Example

We want to outline the method of subequations for NSFD schemes using as
an illustrative example the equation

uτ + ux = u(1− u), x ∈ R, τ > 0. (24)
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A subequation of (24) is an ordinary differential equation (ODE) or partial
differential equation (PDE) obtained by dropping one or more terms appear-
ing in the full equation (24). Thus, we have from (24) the following three
subequations

uτ = u(1− u), an ODE (25a)

ux = u(1− u), an ODE (25b)

uτ + ux = 0, a PDE (25c)

All three subequations have known exact schemes, cf. [4,5]. They are respec-
tively

un+1 − un

Φ1(∆τ)
= un − unun+1, Φ1(∆τ) = e∆τ − 1, (26a)

uj+1 − uj

Φ2(∆x)
= uj − ujuj+1, Φ2(∆x) = e∆x − 1, (26b)

un+1
j − un

j

Ψ(∆τ)
+

un
j − un

j−1

Ψ(∆x)
= 0, ∆τ = ∆x. (26c)

Note that for uτ + ux = 0, we have a relationship between the step sizes, i.e.
∆τ = ∆x. Further, any function Ψ(z) can be used as a denominator function,
as long as

Ψ(z) = z +O(z2). (27)

The issue is to combine the equations (26) into a scheme for (24). For the
above three subequations (26), the only way to do this results in the scheme

un+1
j − un

j

Φ(h)
+

un
j − un

j−1

Φ(h)
= un

j−1 − un
j−1u

n+1
j , (28)

where

Φ(h) = eh − 1, h = ∆τ = ∆x. (29)

In fact, (28) can be shown to be the exact NSFD scheme [5] for (24).

We briefly check this result. First we consider the space independent equation
(25a) and drop the j-dependence in (28) to obtain

un+1 − un

Φ(∆τ)
= un − unun+1, Φ(∆τ) = e∆τ − 1. (30)

For the time-independent equation (25b) we drop the n-dependence in (28) to
get after an index shift j → j + 1

uj+1 − uj

Φ(∆x)
= uj − ujuj+1, Φ(∆x) = e∆x − 1. (31)
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Finally, dropping the terms on the right hand side of (28) gives

un+1
j − un

j

Φ(h)
+

un
j − un

j−1

Φ(h)
= 0, Φ(h) = eh − 1, (32)

with h = ∆τ = ∆x.

4.2 The Nonstandard Difference Scheme for the Linear Convection-Diffusion-
Reaction Equation

We consider a convection-diffusion PDE for the unknown u = u(x, τ)

uτ + b ux = a uxx − c u, x ∈ R, τ ≥ 0 (33)

In general, the diffusion coefficient a > 0 and the reaction rate c > 0, but the
convection speed b may have either sign. In this work we assume for simplicity
b > 0, but the other case where b < 0 can be treated analogously.

The NSFD methodology requires the use of the so-called upwinding for the
advection term. It is not really relevant that this also is needed in some of the
simple standard finite difference schemes. Our NSFD scheme has no choice
but to use this structure since we wish to have the positivity condition hold.

In the preceeding subsection 4.1 we used three subequations to construct a
NSFD scheme for the original PDE (24). For the PDE (33) there are six
subequations, but, in general we cannot use all of them. The NSFD scheme for
the general convection-diffusion equation (33) proposed here used the following
four subequations

uτ = −c u, an ODE (34a)

0 = a uxx − c u, an ODE (34b)

uτ = b ux, a PDE (34c)

0 = b ux − c u, a ODE (34d)

All four subequations have known exact schemes, cf. [4].

4.3 The Case without Reaction

Let us first consider the special case without reaction rate, i.e. we consider
(33) with c = 0:

uτ + b ux = a uxx, x ∈ R, τ ≥ 0. (35)
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The explicit (upwind) scheme for (33) is:

un+1
j − un

j

∆τ
+ b

un
j − un

j−1

∆x
= a

un
j+1 − 2un

j + un
j−1

∆x2
, j ∈ Z. (36)

n ∈ N0. Now define the parabolic and hyperbolic mesh ratios as

µ =
∆τ

∆x2
, λ =

∆τ

∆x
, with ∆τ = ∆τ(a, b, γ1,2), (37)

then (36) becomes

un+1
j = aµun

j+1 + (bλ+ aµ)un
j−1 + (1− bλ− 2aµ)un

j . (38)

Now, positivity requires 1 − bλ − 2aµ ≥ 0. To proceed, we introduce two
parameters γ1 ≥ 0, γ2 ≥ 0. The following two cases are allowed

Case A

1− bλ− 2aµ = γ1aµ (39)

Then we have the scheme

un+1
j = aµun

j+1 + (bλ+ aµ)un
j−1 + γ1aµu

n
j . (40)

with

∆τ =
∆x2

(2 + γ1)a+ b∆x
(41)

λ =
∆x

(2 + γ1)a+ b∆x
, µ =

1

(2 + γ1)a+ b∆x
. (42)

Case B

1− bλ− 2aµ = γ2bλ (43)

Then we have the scheme

un+1
j = aµun

j+1 + (bλ+ aµ)un
j−1 + γ2bλu

n
j . (44)

with

∆τ =
∆x2

2a+ (1 + γ2)b∆x
(45)

λ =
∆x

2a+ (1 + γ2)b∆x
, µ =

1

2a+ (1 + γ2)b∆x
. (46)

For both cases A and B one can show that

un
j ≥ un+1

j ≥ 0, (47)

i.e. bounded positive input gives bounded positive numerical solutions.
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4.4 Subequation Technique for the full PDE

We have the following six subequations of the full PDE (33):

uτ = −c u, an ODE (48a)

0 = a uxx − c u, an ODE (48b)

uτ + b ux = 0, a PDE (48c)

b ux = −c u, an ODE (48d)

b ux = a uxx, an ODE (48e)

uτ = a uxx, a PDE (48f)

The first five of (48) have exact schemes, cf. [4]. We will now give a novel
scheme that incorporates the exact schemes of the first four equations. The
resulting NSFD scheme for (33) is:

un+1
j − un

j

1−e−c∆τ

c

+ b





un
j − un

j−1

e
c∆x

b −1
c

b





= a





un
j+1 − 2un

j + un
j−1

4 sinh2[
√

c

a

∆x

2
]

c

a




− c un

j , (49)

with j ∈ Z, n ∈ N0.

In the sequel we will give some more insight to (49) and show that the three
denominator functions are given by the expressions

Φ1(∆τ, c) =
1− e−c∆τ

c
, (50a)

Φ2(∆x, a, c) =
4a

c
sinh2

[√
c

a

∆x

2

]
, (50b)

Φ3(∆x, b, c) =
e

c∆x

b − 1
c
b

, (50c)

as written above. Consequently, the NSFD scheme (49) takes the form

un+1
j − un

j

Φ1(∆τ, c)
+ b

un
j − un

j−1

Φ3(∆x, b, c)
= a

un
j+1 − 2un

j + un
j−1

Φ2(∆x, a, c)
− c un

j . (51)

Further, let

µ(∆τ,∆x, a, c) ≡ Φ1(∆τ, c)

Φ2(∆x, a, c)
,

λ(∆τ,∆x, b, c) ≡ Φ1(∆τ, c)

Φ3(∆x, b, c)
.

(52)

This allows us to rewrite the explicit scheme (51) as

un+1
j = aµun

j+1 + (bλ+ aµ)un
j−1+

(
1− bλ− 2aµ− cΦ1

)
un
j . (53)
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Now, for positivity we require that in (53) the coefficient

1− bλ− 2aµ− cΦ1 = e−c∆τ − 2aµ− bλ ≥ 0 (54)

must be positive. To ensure this, we set this coefficient equal to γ(2aµ + bλ)
and immediately obtain for the parameter γ

γ =
e−c∆τ

2aµ+ bλ
− 1. (55)

Hence, finally the NSFD scheme (53) reads

un+1
j = aµun

j+1 + γ
[
2aµ+ bλ

]
un
j+
[
bλ+ aµ

]
un
j−1, (56)

with

∆τ =
1

c
ln

{
1

1 + γ

1

2aµ+ bλ

}
, (57a)

with 2aµ =
1

2

1− e−c∆τ

sinh2
[√

c
a
∆x
2

] , (57b)

bλ =
1− e−c∆τ

e
c∆x

b − 1
. (57c)

Since the non-constant mesh ratios µ and λ depend on ∆τ and ∆x, we have
a functional relationship between them. An elementary calculation gives

∆τ =
1

c
ln



1 +

1

1 + γ

2
(
e

c∆x

b − 1
)
sinh2

[√
c
a
∆x
2

]

e
c∆x

b − 1 + 2 sinh2
[√

c
a
∆x
2

]



 , (58)

which is a nonlinear equation to determine the time step since γ depends on
∆τ , cf. (55).

We conclude this section by summarizing the resulting algorithm which should
be carried out to obtain the required numerical solution:

Algorithm 1

(1) Input parameters: a, b, c.
(2) Select a value for γ ≥ 0.
(3) Choose the spatial step size ∆x.
(4) Calculate the time step ∆τ from (58).
(5) Calculate the ratios µ and λ from (52) using (50).
(6) Using the initial and boundary-value data, apply the explicit finite differ-

ence scheme (56) to determine a numerical solution.
If c = 0, then use the scheme from Section 4.3 instead.
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Remark 1 Another way of deriving a (different) NSFD scheme for the full
PDE (33) is based on the classical separation of variables approach that leads
to the solution of two ODEs having well-known NSFD schemes, cf. [4,5]. How-
ever, here we prefer the subequation methods, since it involves directly PDEs.

5 The Modified Equation Analysis

In this section we study the effects of the discretization on the dispersion and
dissipation by the modified equation technique [15,16]. The idea is to describe
the qualitative behaviour of the solutions to the finite difference approxima-
tion, i.e. mainly the dissipation and dispersion errors, by an analytic PDE with
mesh dependent coefficents for which the finite difference method (FDM) has
a higher order of consistency.

5.1 The Effect of the Spatial Discretization

5.1.1 The Centered-in-Space Scheme

We start with considering a standard spatial discretization of (33) using a
central difference quotient for the convection term:

∂τuj(τ) + b
uj+1(τ)− uj−1(τ)

2∆x

= a
uj+1(τ)− 2uj(τ) + uj−1(τ)

∆x2
− c uj(τ), (59)

j ∈ Z, τ ≥ 0, where uj(τ) ≈ u(j∆x, τ). Next, assume the existence of a
smooth solution u(x, τ) to the PDE with the values u(xj, τ) = uj(τ) at the
spatial grid points xj and expand the solution uj(τ) in Taylor series around
xj = j∆x to obtain the modified PDE

uτ + b ux + b
∆x2

6
uxxx = a uxx + a

∆x2

12
uxxxx − c u+O(∆x4), (60)

x ∈ R, τ ≥ 0. We insert an appropriate Fourier-type solution of the form:

u(x, τ) = exp {−(A+ c)τ} exp {ik(x− Bτ)} , (61)

that consist of an exponential modelling the dissipation (+ reaction) effects
and a second exponential that represents the convection, and solve for A and
B:

A = a
[
1− ∆x2

12
k2
]
k2, B = b

[
1− ∆x2

6
k2
]

(62)
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and one can easily study in (62) how the deviations in dissipation and convec-
tion speed depending on the spatial grid size ∆x and the wave number k. In
this case of centered differences the discretization leads to a reduction of the
effect of diffusion and convection.

5.1.2 The Upwind Scheme

Analogously, one gets for the upwind discretization

uτ + b ux + b
∆x2

6
uxxx

=
[
a+ b

∆x

2

]
uxx +

[
a
∆x2

12
+ b

∆x3

24

]
uxxxx − c u+O(∆x4), (63)

having a Fourier-type solution (61) with

A =
[
a+ b

∆x

2

][
1− ∆x2

12
k2
]
k2, B = b

[
1− ∆x2

6
k2
]
, (64)

i.e. the upwind discretization yields some additional artifical dissipation of
magnitude b∆x/2.

5.1.3 The NSFD Scheme

Next, we consider the time-continuous version of the NSFD scheme (51) with
the two denominator functions Φ2, Φ3, given in (50)

∂τuj(τ) + b
uj(τ)− uj−1(τ)

Φ3(∆x, b, c)

= a
uj+1(τ)− 2uj(τ) + uj−1(τ)

Φ2(∆x, a, c)
− c uj(τ), (65)

with the expansion

Φ2(∆x, a, c) = ∆x2 +
c

a

∆x4

12
+ O(∆x6).

Now, a tedious, but elementary calculation yields

uτ + b
[
1− c

b

∆x

2
+
(
c

b

)2∆x2

12
+
(
c

b

)2∆x3

24

]
ux

+ b
∆x2

6

[
1− c

b

∆x

2

]
uxxx

=
[
a
(
1− c

a

∆x2

12

)
+ b

∆x

2

(
1− c

b

∆x

2
+
(
c

b

)2∆x2

12

)]
uxx

+
[
a
∆x2

12
+ b

∆x3

24

]
uxxxx − c u+O(∆x4),

(66)
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cf. (63), having a Fourier-type solution (61) with

A =
[
a+ b

∆x

2

][
1− ∆x2

12
k2
]
k2 − c

∆x2

3

[
1− c

b

∆x

8

]
k2,

B = b
[
1− c

b

∆x

2
+
(
c

b

)2∆x2

12
+
(
c

b

)2∆x3

24

]

− b
∆x2

6

[
1− c

b

∆x

2

]
.

(67)

Compared to (64) we observe that both the dissipation and convection coeffi-
cients in the Fourier solution are reduced by correction terms that depend on
the reaction rate c, especially the ratio of reaction to convection c/b.

The effect of the time discretization can be analyzed analogously.

Remark 2 (Financial Interpretation) If the PDE (33) is considered in a
financial context, then the above analysis shows that the centered difference
discretization leads to a lower volatility and a lower drift. Both perturbations
are proportional to the square of the spatial frequency (wave number) k, i.e.
non-smooth pay-offs (3) stimulates these distortions, since high spatial fre-
quencies are induced.

5.2 Analysis of the Fully Discrete Scheme

5.2.1 The Upwind Scheme

To begin, we start with explaining the method using the upwind scheme, cf.
(36). We use Taylor series around the point (xj, tn) and insert it into the
difference scheme to obtain

(
∂u

∂τ

)n

j

+
∆τ

2

(
∂2u

∂τ 2

)n

j

+
∆τ 2

6

(
∂3u

∂τ 3

)n

j

+O(∆τ 3)

+ b

(
∂u

∂x

)n

j

− b
∆x

2

(
∂2u

∂x2

)n

j

+ b
∆x2

6

(
∂3u

∂x3

)n

j

= a

(
∂2u

∂x2

)n

j

+ a
∆x2

12

(
∂4u

∂x4

)n

j

− c
(
u
)n
j
+O(∆x3).

(68)

This modified equation consists of the original PDE plus the terms stemming
from the truncation error of the scheme.

The next (tedious) step is to replace all time derivatives with order higher
than one in (68) by spatial derivatives. To do so, we differentiate (68) with
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respect to τ

(
∂2u

∂τ 2

)n

j

+
∆τ

2

(
∂3u

∂τ 3

)n

j

+O(∆τ 2)

+ b

(
∂2u

∂x∂τ

)n

j

− b
∆x

2

(
∂3u

∂x2∂τ

)n

j

+ b
∆x2

6

(
∂4u

∂x3∂τ

)n

j

= a

(
∂3u

∂x2∂τ

)n

j

+ a
∆x2

12

(
∂5u

∂x4∂τ

)n

j

− c

(
∂u

∂τ

)n

j

+O(∆x3),

(69)

and differentiate (68) with respect to x and multiply by b

b

(
∂u2

∂x∂τ

)n

j

+ b
∆τ

2

(
∂3u

∂x∂τ 2

)n

j

+O(∆τ 2)

+ b2
(
∂2u

∂x2

)n

j

− b2
∆x

2

(
∂3u

∂x3

)n

j

+ b2
∆x2

6

(
∂4u

∂x4

)n

j

= ab

(
∂3u

∂x3

)n

j

+ ab
∆x2

12

(
∂5u

∂x5

)n

j

− bc

(
∂u

∂x

)n

j

+O(∆x3).

(70)

Now subtracting (70) from (69) and replacing the first time derivative by (68)
gives


1− c

∆τ

2



(
∂2u

∂τ 2

)n

j

= 2bc

(
∂u

∂x

)n

j

+ (b2 − ac)

(
∂2u

∂x2

)n

j

− ab

(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+ a

(
∂3u

∂x2∂τ

)n

j

+
∆τ

2


b
(

∂3u

∂x∂τ 2

)n

j

−
(
∂3u

∂τ 3

)n

j


+O(∆τ 2)

+ b
∆x

2



(

∂3u

∂x2∂τ

)n

j

− b

(
∂3u

∂x3

)n

j

− c

(
∂2u

∂x2

)n

j


+O(∆x2).

(71)

The next step is to replace any term in (71) involving a time derivative, i.e.

(
∂3u

∂x2∂τ

)n

j

,

(
∂3u

∂x∂τ 2

)n

j

,

(
∂3u

∂τ 3

)n

j

.

For example, the first term can be expressed by differentiating (70) with re-
spect to x:

(
∂3u

∂x2∂τ

)n

j

= a

(
∂4u

∂x4

)n

j

− b

(
∂3u

∂x3

)n

j

− c

(
∂2u

∂x2

)n

j

− ∆τ

2

(
∂4u

∂x2∂τ 2

)n

j

+ b
∆x

2

(
∂4u

∂x4

)n

j

+O(∆τ 2) + O(∆x2),

(72)
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and inserting it into (71) yields up to first order the result

(
∂2u

∂τ 2

)n

j

= a2
(
∂4u

∂x4

)n

j

+ 2bc

(
∂u

∂x

)n

j

+ (b2 − 2ac)

(
∂2u

∂x2

)n

j

− 2ab

(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+O(∆τ) + O(∆x).

(73)

A final substitution into (68) gives the modified equation

(
∂u

∂τ

)n

j

=
[
a+ (2ac− b2)

∆τ

2
+ b

∆x

2

](
∂2u

∂x2

)n

j

− b
[
1 + c∆τ

](
∂u

∂x

)n

j

− c
[
1 + c

∆τ

2

](
u
)n
j
+O(∆x2)

+ ab∆τ

(
∂3u

∂x3

)n

j

− a2
∆τ

2

(
∂4u

∂x4

)n

j

+O(∆τ 2),

(74)

that allows us to study how numerical diffusion and numerical dispersion is
introduced by the upwind scheme. To investigate higher order effects, higher
order time derivatives in (71) must be eliminated.

5.2.2 The NSFD Scheme

Secondly, if we consider the NSFD scheme (51) we obtain instead of (68) the
equation


1 + c

∆τ

2
+ c2

∆τ 2

12



(
∂u

∂τ

)n

j

+
∆τ

2


1 + c

∆τ

2



(
∂2u

∂τ 2

)n

j

+
∆τ 2

6

(
∂3u

∂τ 3

)n

j

+O(∆τ 3)

+ b
[
1− c

b

∆x

2
+
(
c

b

)2∆x2

12
+
(
c

b

)2∆x3

24

](
∂u

∂x

)n

j

+ b
∆x2

6

[
1− c

b

∆x

2

](
∂3u

∂x3

)n

j

=
[
a
(
1− c

a

∆x2

12

)
+ b

∆x

2

(
1− c

b

∆x

2
+
(
c

b

)2∆x2

12

)](
∂2u

∂x2

)n

j

+
[
a
∆x2

12
+ b

∆x3

24

](
∂4u

∂x4

)n

j

− c
(
u
)n
j
+O(∆x4),

(75)

where the time derivatives with order higher than one can be eliminated fol-
lowing exactly the same strategy as before, i.e. we replace all time derivatives
with order higher than one in (75) by spatial derivatives. First, we differentiate
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(75) with respect to the time τ


1 + c

∆τ

2



(
∂2u

∂τ 2

)n

j

+
∆τ

2

(
∂3u

∂τ 3

)n

j

+O(∆τ 2)

+ b
[
1− c

b

∆x

2

](
∂2u

∂x∂τ

)n

j

=
[
a+ b

∆x

2

](
∂3u

∂x2∂τ

)n

j

− c

(
∂u

∂τ

)n

j

+O(∆x2).

(76)

To eliminate the mixed derivative we and differentiate (75) with respect to x
and multiply by the perturbed convection speed

b̃ = b
1− c

b
∆x
2

1 + c∆τ
2

,

yielding

b
[
1− c

b

∆x

2

](
∂2u

∂x∂τ

)n

j

+ b̃
∆τ

2

(
∂3u

∂x∂τ 2

)n

j

+O(∆τ 2)

+ b̃b
[
1− c

b

∆x

2

](
∂2u

∂x2

)n

j

= b̃
[
a+ b

∆x

2

](
∂3u

∂x3

)n

j

− b̃c

(
∂u

∂x

)n

j

+O(∆x2).

(77)

Next, subtracting (77) from (76) gives


1 + c

∆τ

2



(
∂2u

∂τ 2

)n

j

= −∆τ

2

(
∂3u

∂τ 3

)n

j

+ b̃
∆τ

2

(
∂3u

∂x∂τ 2

)n

j

+O(∆τ 2)

+ b̃b
[
1− c

b

∆x

2

](
∂2u

∂x2

)n

j

+
[
a+ b

∆x

2

](
∂3u

∂x2∂τ

)n

j

− c

(
∂u

∂τ

)n

j

− b̃
[
a+ b

∆x

2

](
∂3u

∂x3

)n

j

+ b̃c

(
∂u

∂x

)n

j

+O(∆x2),
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multiplying by 1+ c∆τ/2 and replacing the first time derivative by (75) gives

[
1 + c

∆τ

2

]2(∂2u

∂τ 2

)n

j

=



(
b− c

∆x

2

)2

− c
(
a+ b

∆x

2

)

(
∂2u

∂x2

)n

j

− ∆τ

2


1 + c

∆τ

2



(
∂3u

∂τ 3

)n

j

+
∆τ

2

(
b− c

∆x

2

)(
∂3u

∂x∂τ 2

)n

j

+
[
a+ b

∆x

2

][
1 + c

∆τ

2

](
∂3u

∂x2∂τ

)n

j

+O(∆τ 2)

−
[
a+ b

∆x

2

](
b− c

∆x

2

)(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j

+ 2c
[
b− c

∆x

2

](
∂u

∂x

)n

j

+O(∆x2).

(78)

Now we replace the mixed term (78)

[
1 + c

∆τ

2

](
∂3u

∂x2∂τ

)n

j

by differentiating (75) two times with respect to x. This procedure yields up
to first order

[
1 + c

∆τ

2

]2(∂2u

∂τ 2

)n

j

=



(
b− c

∆x

2

)2

− c
(
a+ b

∆x

2

)

(
∂2u

∂x2

)n

j

− ∆τ

2


1 + c

∆τ

2



(
∂3u

∂τ 3

)n

j

+
∆τ

2

(
b− c

∆x

2

)(
∂3u

∂x∂τ 2

)n

j

+
[
a+ b

∆x

2

]2(∂4u

∂x4

)n

j

+
∆τ

2

[
a+ b

∆x

2

](
∂4u

∂x2∂τ 2

)n

j

− 2
[
a+ b

∆x

2

](
b− c

∆x

2

)(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+O(∆τ 2)

+ 2c
[
b− c

∆x

2

](
∂u

∂x

)n

j

+O(∆x2).

(79)

Finally we substitute (79) in (75), multiplied by 1 + c∆τ/2, and obtain the
modified equation for the NSFD scheme

(
∂u

∂τ

)n

j

=

[
a+

b

2

∆x−∆τ

1 + c∆t

](
∂2u

∂x2

)n

j

− b

[
1− c

2b

∆x

1 + c∆t

](
∂u

∂x

)n

j

− c
(
u
)n
j
+ ab

∆τ

1 + c∆t

(
∂3u

∂x3

)n

j

− a2
∆τ

2(1 + c∆t)

(
∂4u

∂x4

)n

j

+O(∆τ 2) + O(∆x2),

(80)
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with ∆τ implicitly given by the nonlinear equation (58).

Next, one can compare the two modified equations of the upwind scheme (74)
and of the NSFD scheme (80) to study the different qualitative behavior by
observing the numerical diffusion and dispersion errors. E.g. it can be realized
that the NSFD method reproduces better the effect of the reaction rate c.

Remark 3 Alternatively, following the work of Junk and Yang [17], one can
use asymptotic methods, such as (discrete) multiscale expansions to analyse
the properties of the finite difference methods, e.g. an upwind discretization is
investigated in [17, Section 2.4].

6 Numerical Results

In this section we compare the results of our new proposed NSFD scheme with
the two classical explicit finite difference methods presented earlier. However,
for the numerical tests, we consider the case c = 0, i.e.

uτ + b ux = a uxx, (81)

with a > 0 and positive convection b ≥ 0, which was considered in §4.3. For
the comparison we use two classical explicit schemes: the centered-in-space
discretization

un+1
j = un

j −
bλ

2
(un

j+1 − un
j−1) + aµ(un

j+1 − 2un
j + un

j−1), (82)

i.e.
un+1
j = aµ[1 + Pe]un

j−1 + [1− 2aµ]un
j + aµ[1− Pe]µun

j+1, (83)

with the cell Péclet number

Pe :=
bλ

2aµ
=

b∆x

2a
. (84)

Secondly, we consider the upwind differencing of the convection term

un+1
j = un

j − bλ(un
j − un

j−1) + aµ(un
j+1 − 2un

j + un
j−1), (85)

i.e.
un+1
j = [aµ+ bλ]un

j−1 + [1− 2aµ− bλ]un
j + aµun

j+1, (86)

Remark 4 We note that the upwind scheme (85) can be written as a centered-
in-space scheme with added artificial viscosity aPeuxx :

un+1
j − un

j

∆τ
+ b

un
j+1 − un

j−1

2∆x
= a(1 + Pe)

un
j+1 − 2un

j + un
j−1

∆x2
. (87)
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A von Neumann analysis [10] yields the stability criterion for (82)

aµ ≤ 1

2
,

b2

a
∆t ≤ 2 (88)

and for the upwind scheme (85)

aµ ≤
(
2 +

∣∣∣∣
b∆x

a

∣∣∣∣
)
−1

, (89)

that is valid for both signs of b.

Furthermore, one can easily observe that we need in (83) Pe ≤ 1 and in (86)
2aµ + bλ ≤ 1 for the positivity of the difference scheme. These conditions
must be fulfilled such that a discrete maximum principle holds preventing
oscillations in the numerical solution.

Example 5 ([18, p. 159]) We choose for the coefficients a = 0.1, convection
speed b = 10, and the spatial step sizes ∆x = 1/20 and ∆x = 1/30 ∆t is given
by fixing µ = 1 , i.e. the cell Péclet number (84) has the value Pe := 50∆x.
As initial data we use the tent function between -0.5 and 0.5, i.e.

u(x, 0) =




2x+ 1, −0.5 < x < 0

−2x+ 1, 0 ≤ x < 0.5,

which serves as a model for a non-smooth payoff-function like (3) that stim-
ulates high spatial frequency parts in the solution. For Péclet numbers greater
than one it is expected that none of the two standard schemes yield reasonable
results, cf. [18].

Fig. 1. Forward in time centered in space.
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Fig. 2. Forward in time upwind in space.

Fig. 3. Nonstandard FD scheme.
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In the three figures we plot for each of the three schemes the initial function
and the solution at the final time t = 0.8 for the spatial step sizes ∆x = 1/30
(blue solid line) and ∆x = 1/20 (red dashed line). The FTCS scheme yields for
∆x = 1/20 an oscillatory solution and for the finer grid the solution is smooth
but the values are significantly larger than the exact solution. The upwind
and the NSFD scheme show similar results: they eliminate the oscillations,
but the solution at t = 0.8 is significantly smaller than the exact solution
(with a maximum value ≈ 0.44). However, we recall that the NSFD scheme
always preserves the positivity of the solution.

7 Conclusion and Outlook

In this paper we have presented a novel nonstandard finite difference (NSFD)
method for the solution of a general convection-diffusion PDE that can be
used for the linear Black-Scholes equation for pricing standard options.

Although being explicit, this new NSFD scheme has the advantage of pre-
serving the positivity of the solution, which is important in many applications
in physics, finance etc.. As a byproduct, this NSFD scheme obeys a discrete
maximum principle ans thus is stable with respect to the maximum norm.
Additional, the time step restriction of the new NSFD scheme is usually much
less restrictive than for standard explicit finite difference schemes.

Our next first goal will be to modify the NSFD scheme to handle more general
convection-diffusion equations with non-constant coefficients. Future work will
focus on the construction of NSFD schemes for spatially two dimensional PDEs
and for nonlinear Black–Scholes equations [19,20] especially for equations with
a nonlinear convective term, cf. [21].

Also, we will derive a NSFD scheme for the original Black-Scholes equation
(2) based on an exponentially fitted or finite volume formulation, cf. [22], since
often a standard transformation is not possible.

Finally, it is our goal to bypass any time step restrictions that are typical for
explicit finite difference schemes. One possible way of doing this is to adapt
the ideas of Funaro and Pontrelli [23] for constructing implicit schemes for the
hyperbolic transport equation to our parabolic problems.
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