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Abstract

In this note we derive using the subequation method a new non-
standard finite difference scheme (NSFD) for a class of convection-
diffusion equations. Despite the fact that this scheme has nonlinear
denominator functions of the step sizes (even for linear PDEs), it has
a couple of favourable properties: it is explicit and due to its construc-
tion it reproduces important properties of the solution of the parabolic
PDE. This proposed method conserves the positivity of the solution
and hence it is perfectly suited for solving e.g. air pollution problems
or the Black–Scholes equation for the valuation of Asian options, since
it avoids negative values for the calculated prices. Finally, we illus-
trate the usefulness of this newly proposed method on a test example
from the literature.
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1 Introduction

In the process of modelling and simulation of physical phenomena,
it is desirable that numerical quantities reflect the original physical
behaviour, e.g. in electrical engineering where the charge transport in
semiconductor devices, is usually described by a convection-diffusion
equation. Thereby the charge transport is described in terms of charge
carrier densities, which – by their physical – meaning should be non-
negative. Similar reasoning holds for the simulation of the pollutant
density in air pollution problems [4]. Also, in financial applications,
e.g. the computation of the fair price of an option, one is interested in
numerical methods that guarantees the positivity of the solution.

Hence, it is of tremendous importance to construct these positiv-
ity preserving schemes [3, 7] that avoid unrealistic negative values for
the solution and, as a side-effect, are stable with respect to the maxi-
mum norm. One possibility are so-called nonstandard finite difference
(NSFD) methods. These methods are tailor made special schemes for
the numerical integration of differential equations in order to preserve
certain properties (positivity, asymptotic behaviour, etc.) of the ana-
lytic solution on the discrete level. The general basic rules to construct
NSFDs [11, 12] are the following:

• The orders of the discrete derivatives should be equal to the or-
ders of the corresponding derivatives appearing in the differential
equations.

• Discrete representations for derivatives must, in general, have
nontrivial denominator functions.

• Nonlinear terms should, in general, be replaced by nonlocal dis-
crete representations.

• Special conditions that hold for either the differential equation
and/or its solutions should also hold for the difference equation
model and/or its solutions.

In this work we will demonstrate how to construct a NSFD scheme
for a general convection-diffusion type PDE of the form

uτ + b ux = a uxx − c u, (1.1)

by using the subequation method. The idea is to start from an ex-
plicit upwind discretization, construct suitable denominator functions
and then develop a strategy for choosing the time step appropriately.
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Hereby we focus on the financial application, especially the Asian op-
tion pricing problem.

This work is organized as follows: first we introduce in §2 the
Black–Scholes equation, recall the standard transformation to a for-
ward-in-time heat equation and present the convection-diffusion equa-
tion of the form (1.1) that results from the pricing problem for Asian
options. In §3 we present the subequation method which is the basic
tool in deriving the NSFD scheme. Afterwards we analyze in §4 the
properties of the resulting numerical scheme by the modified equation
technique. Finally, we illustrate in §5 the accuracy and efficiency of
the new method with a numerical test example and compare it to
classical finite difference schemes.

2 The Black–Scholes Equation

The famous Black–Scholes equation is an effective model for option
pricing. It was named after the pioneers Black, Scholes and Merton
who suggested it 1973 [2, 10] and received in 1997 the Nobel Prize in
Economics for their discovery.Mathematically it is a final value prob-
lem for a backward-in-time second order parabolic equation. A concise
derivation of the Black–Scholes equation can be found in [17].

An option is a contract that admits the owner the right (not the
duty) to buy (‘call option’ ) or to sell (‘put option’ ) an asset (typically
a stock or a parcel of shares of a company) for a prespecified price
E (‘strike price’ ) by the date T to receive some payoffs. The basic
problem here is to specify a fair price to charge for permitting these
rights. A closely related question is how to hedge the risks that arises
when selling these options. ‘European’ options can only be exercised
at the expiration date T . For ‘American’ options exercise is permitted
at any time until the expiry date. A third type are the Asian options
that define a payoff dependending on the temporal average of the price
of the underlying. The notion European, American or Asian are not
meant geographically, they just declare the type of option.

In general, closed–form solutions do not exist (especially for Amer-
ican options) and the solution has to be computed numerically. The
standard approach for solving the Black–Scholes equation for pricing
options consists in transforming the original equation to a convection-
diffusion equation posed on a semi-unbounded domain [14, 17]. Often
finite differences are used to discretize this convection-diffusion equa-
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tion and artificial boundary conditions (ABCs) [5] are introduced in
order to confine the computational domain appropriately and retain
the accuracy and stability properties of the underlying scheme.

Next we present one standard example, the European put, and
later we turn to the Asian option pricing problem, that will lead us to
a convection-diffusion equation of the form (1.1).

2.1 The European Call Option

Here we focus on European Call options; the treatment of European
Put options is analogous. The value of a Call option is denoted by
V and depends on the current market price of the underlying asset,
S, (the letter ’S’ symbolizes stocks) and the remaining time t until
the option expires: V = V (S, t). The Black–Scholes equation is a
backward–in–time parabolic equation

∂V

∂t
+

σ2

2
S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > 0, 0 ≤ t < T, (2.1)

where σ denotes the annual volatility of the asset price, r the risk–free
interest rate and T is the expiry date (t = 0 means ’today’).

The final condition (‘payoff condition’) at the expiry t = T reads

V (S, T ) = (S −K)+, S ≥ 0, (2.2)

with the notation f+ = max(f, 0). Here K > 0 denotes the previously
agreed exercise price or ‘strike’, of the contract.

The ‘spatial’ or asset–price boundary conditions for European Call
options at S = 0, and S → ∞ are

V (0, t) = 0, 0 ≤ t ≤ T, (2.3a)

V (S, t) ∼ S −Ke−r(T−t) as S → ∞, 0 ≤ t ≤ T. (2.3b)

i.e. at S = 0 the option is worthless. Correspondingly, we have for a
European Put the terminal condition

V (S, T ) = (K − S)+, S ≥ 0, (2.4)

and the boundary conditions

V (0, t) = 0, as S → ∞, 0 ≤ t ≤ T, (2.5a)

V (S, t) = Ke−r(T−t) − S for S ≈ 0, 0 ≤ t ≤ T. (2.5b)
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The focus of this paper is the numerical solution of the problem,
which is achieved by initially analytically approaching the solution
for the European Call by transforming (2.1) with (2.2), (2.3) into a
forward-in-time parabolic problem. In the section thereafter both a
classical and a NSFD scheme will be specified and used to solve the
transformed problem.

2.2 The Transformation to the Heat Equation

Next we review how to transform (2.1) into a pure diffusion equation
(cf. [17, § 5.4]). It is convenient to apply a time reversal and transform
(2.1) to a forward–in–time equation by the change t = T − 2τ/σ2.
The new time variable τ stands for (up to the scaling by σ2/2) the
remaining life time of the option. We denote the new variables by:

Ṽ (S, τ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, r̃ =

2

σ2
r, T̃ =

σ2

2
T.

The resulting forward–in–time equation then reads:

∂Ṽ

∂τ
= S2 ∂

2Ṽ

∂S2
+ r̃S

∂Ṽ

∂S
− r̃ Ṽ , S > 0, 0 ≤ τ < T̃ , (2.6)

with the initial condition

Ṽ (S, 0) = (S −K)+, S ≥ 0, (2.7)

and the boundary conditions

lim
S→0

Ṽ (S, τ) = 0, 0 ≤ τ ≤ T̃ , (2.8)

Ṽ (S, τ) ∼ S −Ke−r(2τ/σ2) as S → ∞, 0 ≤ τ ≤ T̃ . (2.9)

The right hand side of (2.6) is a well–known Euler‘s differential equa-
tion and therefore it is standard practice (cf. [14]) to transform (2.6)
to the heat equation. To do so, we let α = −(r̃ − 1)/2, λ = −α2 − r̃,
and use the change of variables

S = Eex, Ṽ (S, τ) = E eαx+λτv(x, τ).

Then problem (2.6)–(2.9) is equivalent to the initial boundary value
problem for the heat equation:

∂v

∂τ
=

∂2v

∂x2
, x ∈ R, 0 ≤ τ < T̃ . (2.10)
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The equation (2.10) is supplied with the initial condition

v(x, 0) =
(
e

1

2
(r̃+1)x − e

1

2
(r̃−1)x

)+
, x ∈ R, (2.11)

with the asymptotic boundary conditions for 0 ≤ τ ≤ T̃ :

v(x, τ) = 0 for x → −∞, (2.12)

v(x, τ) = exp
( r̃ + 1

2
x+

r̃ + 1)2

4
τ
)

for x → ∞. (2.13)

The problem how to appropriately confine the spatial domain for
solving the whole space problem (2.10) posed on x ∈ R by (discrete)
artificial boundary conditions that preserve the stability, accuracy and
computational effort of the interior scheme, was discussed concisely
in [5]. Thus, in the sequel we will restrict ourselves to the task of
constructing a suitable interior NSFD method.

Next, we briefly sketch one application background for a convection
diffusion equation.

2.3 Asian Options

We consider a backward–in–time 2D parabolic PDE for V = V (S,A, t)

∂V

∂t
+

σ2

2
S2 ∂

2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0, (2.14)

on the domain S > 0, A > 0, 0 ≤ t < T , that is simililar to the
standard Black-Scholes equation (2.1). The new term in (2.14) is
f(S, t)∂V/∂A that destroys the Euler structure of the spatial operator
and makes the standard transformation of §2.2 impossible.

There exist a couple of approaches for reducing the PDE (2.14)
to one-dimensional convection diffusion problems, cf. [13]. Here, we
restrict ourselves to one strategy and briefly review from [14] the case
f(S, t) = S (arithmetic average case). Let us focus on a European
arithmetic average strike call with a payoff

V (S,A, T ) =
(
S − A

T

)+
= S

(
1− 1

TS

∫ T

0
Sθ dθ

)+
. (2.15)

We introduce the auxiliary variable

R =
1

S

∫ T

0
Sθ dθ, (2.16)
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and use the separation of variables (motivated by (2.15))

V (S,A, t) = S ·H(R, t) (2.17)

to obtain the 1D parabolic PDE

∂H

∂t
+

σ2

2
R2 ∂

2H

∂R2
+ (1− rR)

∂H

∂R
= 0, R > 0, t > 0, (2.18)

supplied with the boundary conditions

∂H

∂t
+

∂H

∂R
= 0, for R = 0,

H = 0, for R → ∞,
(2.19)

and the terminal payoff condition

H(R, T ) =
(
1− R

T

)+
. (2.20)

This final boundary value problem is solved numerically for H(R, t)
and by (2.17) we get the value for V . For the monitoring of the average
at discrete time points we refer the reader to [14, Section 6.2.4].

Let us recall that the cell Péclet number Pe (ratio of convection
and diffusion term, multiplied by a typical discretization scale) is an
indicator about the possible appearance of oscillations in the numerical
solution. For the classical Black-Scholes equation (2.1) this ratio is

Pe =
2r

σ2

∆S

S
, (2.21)

and for the Asian option case (2.18) this number reads

Pe =
2(1− rR)

σ2R

∆R

R
. (2.22)

The difficulty associated with (2.22) (in contrast to the Péclet number
(2.22)) is that a small volatility σ cannot be compensated by a small
interest rate r.

We turn to the main part of this work, the subequation method.

3 The Subequation Method

In this section we will explain step by step the subequation method
to obtain a NSFD for the convection-diffusion PDE. To start, let us
consider the pure heat equation for the unknown u = u(x, τ)

uτ = a uxx, x ∈ R, τ > 0. (3.1)
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Then, the standard (explicit) finite difference discretization reads

un+1
j − unj
∆τ

= a
unj+1 − 2unj + unj+1

(∆x)2
, j ∈ Z, n ∈ N0, (3.2)

i.e.
un+1
j = aµ (unj+1 + unj+1) + (1− 2aµ)unj , (3.3)

with the parabolic mesh ratio µ = ∆τ/(∆x)2 and the pointwise ap-
proximation unj ≈ u(xj , tn), where xj = j∆x, tn = n∆t, j ∈ Z,
n ∈ N0.

Now positivity requires

1− 2aµ ≥ 0. (3.4)

Here, positivity means that solutions of this finite difference scheme
obey a discrete maximum principle

max
j

|un+1
j | ≤ max

j
|unj |, n ∈ N0. (3.5)

A way to ensure this condition (3.4) is to use the ansatz

1− 2aµ = γaµ, γ ≥ 0, (3.6)

or

∆τ =
(∆x)2

(2 + γ) a
. (3.7)

We have found that γ = 2 gives good stability and smoothness behav-
ior for the solutions.

3.1 An illustrative Example

We want to outline the method of subequations for NSFD schemes
using as an illustrative example the equation

uτ + ux = u(1− u) x ∈ R, τ > 0. (3.8)

A subequation of (3.8) is an ordinary differential equation (ODE) or
partial differential equation (PDE) obtained by dropping one or more
terms appearing in the full equation (3.8). Thus, we have from (3.8)
the following three subequations

uτ = u(1− u), an ODE (3.9a)

ux = u(1− u), an ODE (3.9b)

uτ + ux = 0, a PDE (3.9c)
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All three subequations have known exact schemes, cf. [11, 12]. They
are respectively

un+1 − un

Φ1(∆τ)
= un − unun+1, Φ1(∆τ) = e∆τ − 1, (3.10a)

uj+1 − uj
Φ2(∆x)

= uj − ujuj+1, Φ2(∆x) = e∆x − 1, (3.10b)

un+1
j − unj
Ψ(∆τ)

+
unj − unj−1

Ψ(∆x)
= 0, ∆τ = ∆x. (3.10c)

Note that for uτ + ux = 0, we have a relationship between the step
sizes, i.e. ∆τ = ∆x. Further, any function Ψ(z) can be used as a
denominator function, as long as

Ψ(z) = z +O(z2). (3.11)

The issue is to combine the equations (3.10) into a scheme for
(3.8). For the above three subequations (3.10), the only way to do
this results in the scheme

un+1
j − unj
Φ(h)

+
unj − unj−1

Φ(h)
= unj−1 − unj−1u

n+1
j , (3.12)

where
Φ(h) = eh − 1, h = ∆τ = ∆x. (3.13)

In fact, equation (3.12) can be shown to be the exact NSFD scheme
for equation (3.8).

We briefly check this result. First we consider the space indepen-
dent equation (3.9a) and drop the j-dependence in (3.12) to obtain

un+1 − un

Φ(∆τ)
= un − unun+1, Φ(∆τ) = e∆τ − 1. (3.14)

For the time-independent equation (3.9b) we drop the n-dependence
in (3.12) to get after an index shift j → j + 1

uj+1 − uj
Φ(∆x)

= uj − ujuj+1, Φ(∆x) = e∆x − 1. (3.15)

Finally, dropping the terms on the right hand side of (3.12) gives

un+1
j − unj
Φ(h)

+
unj − unj−1

Φ(h)
= 0, Φ(h) = eh − 1, (3.16)

with h = ∆τ = ∆x.
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3.2 The Nonstandard Difference Scheme for

the Convection-Diffusion Equation

We consider a convection-diffusion PDE for the unknown u = u(x, τ)

uτ + b ux = a uxx − c u, x ∈ R, τ ≥ 0 (3.17)

In general, the diffusion coefficient a > 0 and the reaction rate c > 0,
but the convection speed b may have either sign. In this work we
assume for simplicity b > 0, but the other case where b < 0 can be
treated analogously.

In the preceeding subsection 3.1 we used three subequations to
construct a NSFD scheme for the original PDE (3.8). For the PDE
(3.17) there are six subequations, but, in general we cannot use all of
them. The NSFD scheme for the general convection-diffusion equation
(3.17) proposed here used the following four subequations

uτ = −c u, an ODE (3.18a)

0 = a uxx − c u, an ODE (3.18b)

uτ = b ux, a PDE (3.18c)

0 = b ux − c u, a ODE (3.18d)

All four subequations have known exact schemes, cf. [11].

3.3 The case without Reaction Rate

Let us first consider the special case without reaction rate, i.e. we
consider (3.17) with c = 0:

uτ + b ux = a uxx, x ∈ R, τ ≥ 0. (3.19)

The explicit (upwind) scheme for (3.17) is:

un+1
j − unj
∆τ

+ b
unj − unj−1

∆x
= a

unj+1 − 2unj + unj−1

∆x2
, j ∈ Z. (3.20)

n ∈ N0. Now define the parabolic and hyperbolic mesh ratios as

µ =
∆τ

∆x2
, λ =

∆τ

∆x
, with ∆τ = ∆τ(a, b, γ1,2), (3.21)

then (3.20) becomes

un+1
j = aµunj+1 + (bλ+ aµ)unj−1 + (1− bλ− 2aµ)unj . (3.22)
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Now, positivity requires 1 − bλ − 2aµ ≥ 0. To proceed, we introduce
two parameters γ1 ≥ 0, γ2 ≥ 0. The following two cases are allowed

Case A

1− bλ− 2aµ = γ1aµ (3.23)

Then we have the scheme

un+1
j = aµunj+1 + (bλ+ aµ)unj−1 + γ1aµu

n
j . (3.24)

with

∆τ =
∆x2

(2 + γ1)a+ b∆x
(3.25)

λ =
∆x

(2 + γ1)a+ b∆x
, µ =

1

(2 + γ1)a+ b∆x
. (3.26)

Case B

1− bλ− 2aµ = γ2bλ (3.27)

Then we have the scheme

un+1
j = aµunj+1 + (bλ+ aµ)unj−1 + γ2bλu

n
j . (3.28)

with

∆τ =
∆x2

2a+ (1 + γ2)b∆x
(3.29)

λ =
∆x

2a+ (1 + γ2)b∆x
, µ =

1

2a+ (1 + γ2)b∆x
. (3.30)

For both cases A and B one can show that

unj ≥ un+1
j ≥ 0, (3.31)

i.e. bounded positive input gives bounded positive numerical solutions.

3.4 Subequation Technique for the full PDE

We have the following six subequations of the full PDE (3.17):

uτ = −c u, an ODE (3.32a)

0 = a uxx − c u, an ODE (3.32b)

uτ + b ux = 0, a PDE (3.32c)

b ux = −c u, an ODE (3.32d)

b ux = a uxx, an ODE (3.32e)

uτ = a uxx, a PDE (3.32f)
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The first five of (3.32) have exact schemes, cf. [11]. We will now give
a novel scheme that incorporates the exact schemes of the first four
equations. The resulting NSFD scheme for (3.17) is:

un+1
j − unj
1−e−c∆τ

c

+ b




unj − unj−1

e
c∆x

b −1
c

b





= a




unj+1 − 2unj + unj−1

4 sinh2[
√

c

a

∆x

2
]

c

a





− c unj ,

(3.33)
with j ∈ Z, n ∈ N0.

In the sequel we will give some more insight to (3.33) and define
the three denominator functions

Φ1(∆τ, c) =
1− e−c∆τ

c
, (3.34a)

Φ2(∆x, a, c) =
4a

c
sinh2

[√ c

a

∆x

2

]
, (3.34b)

Φ3(∆x, b, c) =
e

c∆x

b − 1
c
b

, (3.34c)

and write the NSFD scheme (3.33) in the form

un+1
j − unj
Φ1(∆τ, c)

+ b
unj − unj−1

Φ3(∆x, b, c)
= a

unj+1 − 2unj + unj−1

Φ2(∆x, a, c)
− c unj . (3.35)

Furthermore, let

µ(∆τ,∆x, a, c) ≡ Φ1(∆τ, c)

Φ2(∆x, a, c)
,

λ(∆τ,∆x, b, c) ≡ Φ1(∆τ, c)

Φ3(∆x, b, c)
,

(3.36)

and we rewrite the explicit scheme (3.35) as

un+1
j = aµunj+1 + (bλ+ aµ)unj−1+

(
1− bλ− 2aµ− cΦ1

)
unj . (3.37)

Now, for positivity we require that in (3.37) the coefficient

1− bλ− 2aµ− cΦ1 = e−c∆τ − 2aµ− bλ ≥ 0 (3.38)

must be positive. To ensure this, we set this coefficient equal to
γ(2aµ+ bλ) and immediately obtain for the parameter γ

γ =
e−c∆τ

2aµ+ bλ
− 1. (3.39)
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Hence, finally the NSFD scheme (3.37) reads

un+1
j = aµunj+1 + γ

[
2aµ+ bλ

]
unj+

[
bλ+ aµ

]
unj−1, (3.40)

with

∆τ =
1

c
ln

{
1

1 + γ

1

2aµ+ bλ

}
, (3.41a)

with 2aµ =
1

2

1− e−c∆τ

sinh2
[√

c
a
∆x
2

] , (3.41b)

bλ =
1− e−c∆τ

e
c∆x

b − 1
. (3.41c)

Since the non-constant mesh ratios µ and λ depend on ∆τ and ∆x,
we have a functional relationship between them. An elementary cal-
culation gives now

∆τ =
1

c
ln

{
1 +

1

1 + γ

2
(
e

c∆x

b − 1
)
sinh2

[√
c
a
∆x
2

]

e
c∆x

b − 1 + 2 sinh2
[√

c
a
∆x
2

]

}
, (3.42)

which is a nonlinear equation to determine the time step since γ de-
pends on ∆τ , cf. (3.39).

We conclude this section by summarizing the resulting algorithm

Algorithm.

1. Input parameters: a, b, c.

2. Select a value for γ ≥ 0.

3. Choose the spatial step size ∆x.

4. Calculate the time step ∆τ from (3.42).

5. Calculate the ratios µ and λ from (3.36) using (3.34).

6. Using the initial and boundary-value data, use the explicit finite
difference scheme (3.40) to determine a numerical solution; if
c = 0, then use the scheme from Section 3.3 instead.

Remark. Another way of deriving a (different) NSFD scheme for the
full PDE (3.17) is based on the classical separation of variables ap-
proach that leads to the solution of two ODEs having well-known
NSFD schemes, cf. [11, 12]. However, here we prefer the subequation
methods, since it involves PDEs.
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4 The Modified Equation Analysis

In this section we want to study the effects of the discretization to the
dispersion and dissipation by the modified equation technique [9, 16].
The idea is to describe the qualitative behaviour of the solutions to
the finite difference approximation, i.e. mainly the dissipation and
dispersion errors, by an analytic PDE with mesh dependent coefficents
for which the finite difference method (FDM) has a higher order of
consistency.

4.1 The Effect of the Spatial Discretization

4.1.1 The Centered-in-Space Scheme

We start with considering a standard spatial discretization of (3.17)
using a central difference quotient for the convection term:

∂τuj(τ) + b
uj+1(τ)− uj−1(τ)

2∆x

= a
uj+1(τ)− 2uj(τ) + uj−1(τ)

∆x2
− c uj(τ), (4.1)

j ∈ Z, τ ≥ 0, where uj(τ) ≈ u(j∆x, τ). Next, assume the existence of
a smooth solution u(x, τ) to the PDE with the values u(xj , τ) = uj(τ)
at the spatial grid points xj and expand the solution uj(τ) in Taylor
series around xj = j∆x to obtain the modified PDE

uτ + b ux + b
∆x2

6
uxxx = a uxx + a

∆x2

12
uxxxx − c u+O(∆x4), (4.2)

x ∈ R, τ ≥ 0. We insert an appropriate Fourier-type solution of the
form:

u(x, τ) = exp {−(A+ c)τ} exp {ik(x−Bτ)} , (4.3)

that consist of an exponential modelling the dissipation (+ reaction)
effects and a second exponential that represents the convection, and
solve for A and B:

A = a
[
1− ∆x2

12
k2
]
k2, B = b

[
1− ∆x2

6
k2
]

(4.4)

and one can easily study in (4.4) how the deviations in dissipation and
convection speed depending on the spatial grid size ∆x and the wave
number k. In this case of centered differences the discretization leads
to a reduction of the diffusion and convection.
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4.1.2 The Upwind Scheme

Analogously, one gets for the upwind discretization

uτ + b ux + b
∆x2

6
uxxx

=
[
a+ b

∆x

2

]
uxx +

[
a
∆x2

12
+ b

∆x3

24

]
uxxxx − c u+O(∆x4), (4.5)

having a Fourier-type solution (4.3) with

A =
[
a+ b

∆x

2

][
1− ∆x2

12
k2
]
k2, B = b

[
1− ∆x2

6
k2
]
, (4.6)

i.e. the upwind discretization yields some additional artifical dissipa-
tion of magnitude b∆x/2.

4.1.3 The NSFD Scheme

Next, we consider the time-continuous version of the NSFD scheme
(3.35) with the two denominator functions Φ2, Φ3, given in (3.34)

∂τuj(τ) + b
uj(τ)− uj−1(τ)

Φ3(∆x, b, c)

= a
uj+1(τ)− 2uj(τ) + uj−1(τ)

Φ2(∆x, a, c)
− c uj(τ), (4.7)

with the expansion

Φ2(∆x, a, c) = ∆x2 +
c

a

∆x4

12
+ O(∆x6).

Now, a tedious, but elementary calculation yields

uτ + b
[
1− c

b

∆x

2
+
(c
b

)2∆x2

12
+
(c
b

)2∆x3

24

]
ux

+ b
∆x2

6

[
1− c

b

∆x

2

]
uxxx

=
[
a
(
1− c

a

∆x2

12

)
+ b

∆x

2

(
1− c

b

∆x

2
+
(c
b

)2∆x2

12

)]
uxx

+
[
a
∆x2

12
+ b

∆x3

24

]
uxxxx − c u+O(∆x4),

(4.8)
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cf. (4.5), having a Fourier-type solution (4.3) with

A =
[
a+ b

∆x

2

][
1− ∆x2

12
k2
]
k2 − c

∆x2

3

[
1− c

b

∆x

8

]
k2,

B = b
[
1− c

b

∆x

2
+
(c
b

)2∆x2

12
+

(c
b

)2∆x3

24

]

− b
∆x2

6

[
1− c

b

∆x

2

]
.

(4.9)

Compared to (4.6) we observe that both the dissipation and convection
coefficients in the Fourier solution are reduced by correction terms
that depend on the reaction rate c, especially the ratio of reaction to
convection c/b.

The effect of the time discretization is analyzed analogously.

Remark (Financial Interpretation). If the PDE (3.17) is considered
in a financial context, e.g. for the pricing of Asian options, than the
above analysis shows that the centered difference discretization leads
to a lower volatility and a lower drift. Both perturbations are pro-
portional to the square of the spatial frequency (wave number) k, i.e.
non-smooth pay-offs (2.2) will stimulates these distortions, since high
spatial frequencies are induced.

4.2 Analysis of the Fully Discrete Scheme

4.2.1 The Upwind Scheme

First we start with explaining the method using the upwind scheme,
cf. (3.20). We use Taylor series around the point (xj , tn) and insert it
into the difference scheme

(
∂u

∂τ

)n

j

+
∆τ

2

(
∂2u

∂τ2

)n

j

+
∆τ2

6

(
∂3u

∂τ3

)n

j

+O(∆τ3)

+ b

(
∂u

∂x

)n

j

− b
∆x

2

(
∂2u

∂x2

)n

j

+ b
∆x2

6

(
∂3u

∂x3

)n

j

= a

(
∂2u

∂x2

)n

j

+ a
∆x2

12

(
∂4u

∂x4

)n

j

− c
(
u
)n
j
+O(∆x3),

(4.10)

This modified equation consists of the original PDE plus the terms
stemming from the truncation error of the scheme.

The next (tedious) step is to replace all time derivatives with or-
der higher than one in (4.10) by spatial derivatives. To do so, we
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differentiate (4.10) with respect to τ

(
∂2u

∂τ2

)n

j

+
∆τ

2

(
∂3u

∂τ3

)n

j

+O(∆τ2)

+ b

(
∂2u

∂x∂τ

)n

j

− b
∆x

2

(
∂3u

∂x2∂τ

)n

j

+ b
∆x2

6

(
∂4u

∂x3∂τ

)n

j

= a

(
∂3u

∂x2∂τ

)n

j

+ a
∆x2

12

(
∂5u

∂x4∂τ

)n

j

− c

(
∂u

∂τ

)n

j

+O(∆x3),

(4.11)

and differentiate (4.10) with respect to x and multiply by b

b

(
∂u2

∂x∂τ

)n

j

+ b
∆τ

2

(
∂3u

∂x∂τ2

)n

j

+O(∆τ2)

+ b2
(
∂2u

∂x2

)n

j

− b2
∆x

2

(
∂3u

∂x3

)n

j

+ b2
∆x2

6

(
∂4u

∂x4

)n

j

= ab

(
∂3u

∂x3

)n

j

+ ab
∆x2

12

(
∂5u

∂x5

)n

j

− bc

(
∂u

∂x

)n

j

+O(∆x3).

(4.12)

Now subtracting (4.12) from (4.11) and replacing the first time deriva-
tive by (4.10) gives

[
1− c

∆τ

2

](
∂2u

∂τ2

)n

j

= 2bc

(
∂u

∂x

)n

j

+ (b2 − ac)

(
∂2u

∂x2

)n

j

− ab

(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+ a

(
∂3u

∂x2∂τ

)n

j

+
∆τ

2

[
b

(
∂3u

∂x∂τ2

)n

j

−
(
∂3u

∂τ3

)n

j

]
+O(∆τ2)

+ b
∆x

2

[(
∂3u

∂x2∂τ

)n

j

− b

(
∂3u

∂x3

)n

j

− c

(
∂2u

∂x2

)n

j

]
+O(∆x2).

(4.13)

The next step is to substitute any term in (4.13) involving a time
derivative, i.e.

(
∂3u

∂x2∂τ

)n

j

,

(
∂3u

∂x∂τ2

)n

j

,

(
∂3u

∂τ3

)n

j

,

E.g. the first term can be expressed by differentiating (4.12) with
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respect to x:

(
∂3u

∂x2∂τ

)n

j

= a

(
∂4u

∂x4

)n

j

− b

(
∂3u

∂x3

)n

j

− c

(
∂2u

∂x2

)n

j

− ∆τ

2

(
∂4u

∂x2∂τ2

)n

j

+ b
∆x

2

(
∂4u

∂x4

)n

j

+O(∆τ2) + O(∆x2)

(4.14)

and inserting into (4.13) yields up to first order

(
∂2u

∂τ2

)n

j

= a2
(
∂4u

∂x4

)n

j

+ 2bc

(
∂u

∂x

)n

j

+ (b2 − 2ac)

(
∂2u

∂x2

)n

j

− 2ab

(
∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+O(∆τ) + O(∆x)

(4.15)

and finally substituted in (4.10) gives the modified equation

(
∂u

∂τ

)n

j

=
[
a+ (2ac− b2)

∆τ

2
+ b

∆x

2

](∂2u

∂x2

)n

j

− b
[
1 + c∆τ

](∂u

∂x

)n

j

− c
[
1 + c

∆τ

2

](
u
)n
j
+O(∆x2)

+ ab∆τ

(
∂3u

∂x3

)n

j

− a2
∆τ

2

(
∂4u

∂x4

)n

j

+O(∆τ2),

(4.16)

that allows us to study how numerical diffusion and numerical disper-
sion is introduced by the upwind scheme. To investigate higher order
effects, higher order time derivatives in (4.13) must be eliminated.
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4.2.2 The NSFD Scheme

Secondly, if we consider the NSFD scheme (3.35) we obtain instead of
(4.10) the equation

[
1 + c

∆τ

2
+ c2

∆τ2

12

](
∂u

∂τ

)n

j

+
∆τ

2

[
1 + c

∆τ

2

](
∂2u

∂τ2

)n

j

+
∆τ2

6

(
∂3u

∂τ3

)n

j

+O(∆τ3)

+ b
[
1− c

b

∆x

2
+
(c
b

)2∆x2

12
+
(c
b

)2∆x3

24

](∂u

∂x

)n

j

+ b
∆x2

6

[
1− c

b

∆x

2

](∂3u

∂x3

)n

j

=
[
a
(
1− c

a

∆x2

12

)
+ b

∆x

2

(
1− c

b

∆x

2
+
(c
b

)2∆x2

12

)](∂2u

∂x2

)n

j

+
[
a
∆x2

12
+ b

∆x3

24

](∂4u

∂x4

)n

j

− c
(
u
)n
j
+O(∆x4),

(4.17)

where the time derivatives with order higher than one can be elim-
inated following exactly the same strategy as before, i.e. we replace
all time derivatives with order higher than one in (4.17) by spatial
derivatives. First, we differentiate (4.17) with respect to the time τ

[
1 + c

∆τ

2

](
∂2u

∂τ2

)n

j

+
∆τ

2

(
∂3u

∂τ3

)n

j

+O(∆τ2)

+ b
[
1− c

b

∆x

2

]( ∂2u

∂x∂τ

)n

j

=
[
a+ b

∆x

2

]( ∂3u

∂x2∂τ

)n

j

− c

(
∂u

∂τ

)n

j

+O(∆x2).

(4.18)

To eliminate the mixed derivative we and differentiate (4.17) with
respect to x and multiply by the perturbed convection speed

b̃ = b
1− c

b
∆x
2

1 + c∆τ
2

,
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yielding

b
[
1− c

b

∆x

2

]( ∂2u

∂x∂τ

)n

j

+ b̃
∆τ

2

(
∂3u

∂x∂τ2

)n

j

+O(∆τ2)

+ b̃b
[
1− c

b

∆x

2

](∂2u

∂x2

)n

j

= b̃
[
a+ b

∆x

2

](∂3u

∂x3

)n

j

− b̃c

(
∂u

∂x

)n

j

+O(∆x2).

(4.19)

Next, subtracting (4.19) from (4.18) gives

[
1 + c

∆τ

2

](
∂2u

∂τ2

)n

j

= −∆τ

2

(
∂3u

∂τ3

)n

j

+ b̃
∆τ

2

(
∂3u

∂x∂τ2

)n

j

+O(∆τ2)

+ b̃b
[
1− c

b

∆x

2

](∂2u

∂x2

)n

j

+
[
a+ b

∆x

2

]( ∂3u

∂x2∂τ

)n

j

− c

(
∂u

∂τ

)n

j

− b̃
[
a+ b

∆x

2

](∂3u

∂x3

)n

j

+ b̃c

(
∂u

∂x

)n

j

+O(∆x2),

multiplying by 1 + c∆τ/2 and replacing the first time derivative by
(4.17) leads to

[
1 + c

∆τ

2

]2(∂2u

∂τ2

)n

j

=

[(
b− c

∆x

2

)2
− c

(
a+ b

∆x

2

)](∂2u

∂x2

)n

j

− ∆τ

2

[
1 + c

∆τ

2

](
∂3u

∂τ3

)n

j

+
∆τ

2

(
b− c

∆x

2

)( ∂3u

∂x∂τ2

)n

j

+
[
a+ b

∆x

2

][
1 + c

∆τ

2

]( ∂3u

∂x2∂τ

)n

j

+O(∆τ2)

−
[
a+ b

∆x

2

](
b− c

∆x

2

)(∂3u

∂x3

)n

j

+ c2
(
u
)n
j

+ 2c
[
b− c

∆x

2

](∂u

∂x

)n

j

+O(∆x2).

(4.20)

Now we replace the mixed term (4.20)

[
1 + c

∆τ

2

]( ∂3u

∂x2∂τ

)n

j
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by differentiating (4.17) two times with respect to x. This procedure
yields up to first order

[
1 + c

∆τ

2

]2(∂2u

∂τ2

)n

j

=

[(
b− c

∆x

2

)2
− c

(
a+ b

∆x

2

)](∂2u

∂x2

)n

j

− ∆τ

2

[
1 + c

∆τ

2

](
∂3u

∂τ3

)n

j

+
∆τ

2

(
b− c

∆x

2

)( ∂3u

∂x∂τ2

)n

j

+
[
a+ b

∆x

2

]2(∂4u

∂x4

)n

j

+
∆τ

2

[
a+ b

∆x

2

]( ∂4u

∂x2∂τ2

)n

j

− 2
[
a+ b

∆x

2

](
b− c

∆x

2

)(∂3u

∂x3

)n

j

+ c2
(
u
)n
j
+O(∆τ2)

+ 2c
[
b− c

∆x

2

](∂u

∂x

)n

j

+O(∆x2).

(4.21)

Finally we substitute (4.21) in (4.17), multiplied by 1 + c∆τ/2, and
obtain the modified equation for the NSFD scheme

(
∂u

∂τ

)n

j

=

[
a+

b

2

∆x−∆τ

1 + c∆t

](
∂2u

∂x2

)n

j

− b

[
1− c

2b

∆x

1 + c∆t

](
∂u

∂x

)n

j

− c
(
u
)n
j
+ ab

∆τ

1 + c∆t

(
∂3u

∂x3

)n

j

− a2
∆τ

2(1 + c∆t)

(
∂4u

∂x4

)n

j

+O(∆τ2) + O(∆x2),

(4.22)

with ∆τ implicitly given by the nonlinear equation (3.42).
Next, one can compare the two modified equations of the upwind

scheme (4.16) and of the NSFD scheme (4.22) to study the different
qualitative behavior by observing the numerical diffusion and disper-
sion errors. E.g. it can be realized that the NSFD method reproduces
better the effect of the reaction rate c.

Remark. Alternatively, following the work of Junk and Yang [8], one
can use asymptotic methods, such as (discrete) multiscale expansions
to analyse the properties of the finite difference methods, e.g. an up-
wind discretization is investigated in [8, Section 2.4].
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5 Numerical Results

In this section we compare the results of our new proposed NSFD
scheme with the two classical explicit finite difference methods pre-
sented earlier. For a numerical test we consider the case c = 0, i.e.

uτ + b ux = a uxx, (5.1)

with a > 0 and positive convection b ≥ 0, which was considered in
§3.3. For the comparison we use two classical explicit schemes: the
centered-in-space discretization

un+1
j = unj − bλ

2
(unj+1 − unj−1) + aµ(unj+1 − 2unj + unj−1), (5.2)

i.e.

un+1
j = aµ[1 + Pe]unj−1 + [1− 2aµ]unj + aµ[1− Pe]µunj+1, (5.3)

with the cell Péclet number

Pe :=
bλ

2aµ
=

b∆x

2a
. (5.4)

Secondly, we consider the upwind differencing of the convection term

un+1
j = unj − bλ(unj − unj−1) + aµ(unj+1 − 2unj + unj−1), (5.5)

i.e.

un+1
j = [aµ+ bλ]unj−1 + [1− 2aµ− bλ]unj + aµunj+1, (5.6)

Remark. We note that the upwind scheme (5.5) can be written as a
centered-in-space scheme with added artificial viscosity aPeuxx :

un+1
j − unj
∆τ

+ b
unj+1 − unj−1

2∆x
= a(1 + Pe)

unj+1 − 2unj + unj−1

∆x2
. (5.7)

A von Neumann analysis [14] yields the stability criterion for (5.2)

aµ ≤ 1

2
,

b2

a
∆t ≤ 2 (5.8)

and for the upwind scheme (5.5)

aµ ≤
(
2 +

∣∣∣
b∆x

a

∣∣∣
)
−1

, (5.9)
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that is valid for both signs of b.
Furthermore, one can easily observe that we need in (5.3) Pe ≤ 1

and in (5.6) 2aµ + bλ ≤ 1 for the positivity of the difference scheme.
These conditions must be fulfilled such that a discrete maximum prin-
ciple holds preventing oscillations in the numerical solution.

Example 5.1 ([15, p. 159]). We choose for the coefficients a = 0.1,
convection speed b = 10, and the spatial step sizes ∆x = 1/20 and
∆x = 1/30 ∆t is given by fixing µ = 1 , i.e. the cell Péclet num-
ber (5.4) has the value Pe := 50∆x. As initial data we use the tent
function between -0.5 and 0.5, i.e.

u(x, 0) =

{
2x+ 1, −0.5 < x < 0

−2x+ 1, 0 ≤ x < 0.5,

which serves as a model for a non-smooth payoff-function like (2.2)
that stimulates high spatial frequency parts in the solution. For Péclet
numbers greater than one it is expected that none of the two standard
schemes yield reasonable results, cf. [15].

Figure 1: Forward in time centered in space.
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Figure 2: Forward in time upwind in space.

Figure 3: Nonstandard FD scheme.
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In the three figures we plot for each of the three schemes the initial
function and the solution at the final time t = 0.8 for the spatial step
sizes ∆x = 1/30 (blue solid line) and ∆x = 1/20 (red dashed line).
The FTCS scheme yields for ∆x = 1/20 an oscillatory solution and for
the finer grid the solution is smooth but the values are significantly
larger than the exact solution. The upwind and the NSFD scheme
show similar results: they eliminate the oscillations, but the solution
at t = 0.8 is significantly smaller than the exact solution (with a
maximum value ≈ 0.44). However, we recall that the NSFD scheme
additionally preserves the positivity of the solution.

Conclusion and Outlook

In this paper we have presented a novel nonstandard finite difference
(NSFD) method for the solution of a general convection-diffusion PDE
that can be used for the linear Black-Scholes equation for pricing Asian
options.

Future work will focus on the construction of NSFD schemes for
spatially twodimensional PDEs and for nonlinear Black–Scholes equa-
tions [1, 6] especially for equations with a nonlinear convective term,
cf. [18]. Also, we will derive a NSFD scheme for the original Black-
Scholes equation based on a finite volume formulation, since often a
standard transformation is not possible.
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