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Abstract

We consider dynamical systems consisting of autonomous ordinary dif-
ferential equations. Uncertainties of involved parameters are modelled
by random variables. The random-dependent models are resolved by a
stochastic Galerkin method based on the expansions of the polynomial
chaos. We focus on the equilibria of the dynamical systems, which are
defined as solutions of a nonlinear system of algebraic equations. The
stochastic Galerkin method yields a larger coupled system. We prove the
convergence of the Galerkin scheme under certain assumptions. More-
over, the stability of the equilibria for the coupled system is analysed
with respect to the stability of the equilibria for the original dynamical
systems. We present numerical simulations of corresponding examples,
which confirm the convergence and stability properties.
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1 Introduction

Mathematical modelling often yields dynamical systems in form of ordinary dif-
ferential equations (ODEs) or differential algebraic equations (DAEs), see [3].
In case of autonomous dynamical systems, equilibria represent corresponding
stationary solutions, which are defined by a nonlinear system of algebraic equa-
tions. Transient solutions of the dynamical system remain in a neighbourhood of
an equilibrium provided that the equilibrium is stable. The dynamical systems
typically include technical parameters. Uncertainties of such parameters appear
due to measurement errors, modelling errors or other reasons. Consequently, the
time-dependent solutions as well as the equilibria of the dynamical system inherit
some uncertainty.

We consider autonomous systems of ODEs. Uncertainties of involved parame-
ters are modelled by the introduction of a finite number of random variables.
An uncertainty quantification requires to compute the statistics of the random-
dependent ODEs, which can be done by methods of Monte-Carlo type, for exam-
ple. Alternatively, we apply techniques based on the expansions of the polynomial
chaos. The corresponding coefficients can be determined by either a stochastic
collocation scheme or a stochastic Galerkin method, see [4, 18, 21].

We investigate the stochastic Galerkin method in case of autonomous ODEs
with random parameters. Techniques of the polynomial chaos have already been
applied successfully to ODEs, see [1, 2, 7, 8], and DAEs, see [10, 11, 12, 13].
However, the convergence of the stochastic Galerkin method for an increasing
polynomial degree has not been proved yet. We focus on the equilibria of the dy-
namical systems. Thus each equilibrium depends on the random parameters. The
stochastic Galerkin method yields a larger coupled system of algebraic equations
satisfied by an approximation of the random-dependent equilibria. We analyse
the convergence of the stochastic Galerkin method using the famous Theorem
of Newton-Kantorovich. Thereby, sufficient conditions for the convergence are
specified. The assumptions can be guaranteed in case of symmetric Jacobian
matrices combined with a sufficiently fast convergence of the polynomial chaos
expansions. Furthermore, we investigate the stability of the equilibria of the
larger coupled system from the stochastic Galerkin method with respect to the
stability of the equilibria of the original dynamical systems. Thereby, results of
Sonday et al. [15] concerning random-dependent Jacobian matrices are employed
within our particular problem.

The article is organised as follows. In Sect. 2, we apply the stochastic Galerkin
method to systems of ODEs with random parameters. The problem of the de-
termination of random-dependent equilibria is defined. In Sect. 3, the existence
and convergence of the approximations by the stochastic Galerkin method is in-
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vestigated. We analyse the stability of the corresponding equilibria in Sect. 4.
Finally, numerical simulation of two test examples are presented.

2 Problem definition

Random-dependent dynamical systems are introduced now, where the stochastic
Galerkin method is used for the determination of a numerical solution.

2.1 Dynamical systems with random parameters

We consider autonomous dynamical systems of the form

y′(t, p) = f(y(t, p), p), (1)

where the right-hand side f : Υ × Π → R
N (Υ ⊆ R

N , Π ⊆ R
Q) depends on

parameters p ∈ Π. Furthermore, we assume that f is continuous. Consequently,
the solution y of an initial value problem is smooth with respect to time and
continuous with respect to the parameters.

We assume that it exists a unique equilibrium ŷ(p) for each p ∈ Π, i.e., a station-
ary solution satisfying

f(ŷ(p), p) = 0 for each p ∈ Π. (2)

Let the function ŷ : Π → R
N be continuous.

For modelling uncertainties, we replace the parameters by independent random
variables on some probability space

p : Ω → Π, p = (p1(ω), . . . , pQ(ω))
⊤.

We apply traditional random distributions like Gaussian, uniform, beta or oth-
ers. Hence a probability density function ρ : Π → R is available. Assuming
measurable functions, we define the spaces

Lk(Π, ρ) :=

{
f : Π → R :

∫
Π

|f(p)|kρ(p) dp < ∞
}
.

Given a function f ∈ L1(Π, ρ), we denote the expected value by

⟨f(p)⟩ :=
∫
Π

f(p)ρ(p) dp. (3)
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This notation is employed also for vector-valued functions or matrix-valued func-
tions f : Π → R

N1×N2 in each component separately. For f, g ∈ L2(Π, ρ), the
bilinear form

⟨f(p)g(p)⟩ =
∫
Π

f(p)g(p)ρ(p) dp (4)

represents the inner product on the Hilbert space L2(Π, ρ). Let ∥ ·∥∗ be the norm
of this Hilbert space induced by the bilinear form (4).

2.2 Stochastic Galerkin method

Given a solution y : [t0, t1] × Π → R
N of the ODEs (1), the corresponding

expansion of the generalised polynomial chaos (gPC) reads, cf. [21],

y(t, p) =
∞∑
i=0

vi(t)Φi(p), (5)

where (Φi(p))i∈N represents a complete system of multivariate basis polynomials
Φi : Π → R. We assume orthonormal polynomials, i.e., ⟨Φi(p)Φj(p)⟩ = δij with
the Kronecker-delta. The polynomials follow from the probability distribution of
the random parameters, see [17]. For example, the uniform distribution and the
Gaussian distribution imply the Legendre polynomials and the Hermite polyno-
mials, respectively. The coefficient functions vi : [t0, t1] → R

N represent inner
products (4) defined by

vi(t) = ⟨y(t, p)Φi(p)⟩ for each t. (6)

Each component of the gPC expansion (5) converges in the norm of the Hilbert
space L2(Π, ρ) point-wise for t provided that yj(t, p) ∈ L2(Π, ρ) holds for each
j = 1, . . . , N and each t ∈ [t0, t1]. Furthermore, Parseval’s equality shows that

∥yj(t, p)∥2∗ =
∞∑
i=0

vi,j(t)
2 for each t (7)

and each component.

The unknown coefficients can be determined numerically by either a stochastic
collocation using the probabilistic integrals (6) or the stochastic Galerkin method,
see [4, 19, 20]. Considering the ODEs (1), the stochastic Galerkin method yields
a larger coupled system of ODEs

ṽ′l(t) =

⟨
f

(
M−1∑
i=0

ṽiΦi(p), p

)
Φl(p)

⟩
for l = 0, 1, . . . ,M − 1 (8)
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satisfied by an approximation of the exact coefficients v0, . . . , vM−1.

Now we focus on the equilibria ŷ : Π → R
N defined by (2). Assuming finite

second moments again, it follows the convergence of the gPC expansion

ŷ(p) =
∞∑
i=0

v̂iΦi(p). (9)

Like in (6), the coefficients v̂i ∈ RN satisfy the equation v̂i = ⟨ŷ(p)Φi(p)⟩. For a
truncated series of (9), we apply the notation

ŷM(p) :=
M−1∑
i=0

v̂iΦi(p)

for some integerM ≥ 1. Using approximations ṽi, it follows a truncated series ỹM .

The equilibria of the system of ODEs (8) from the stochastic Galerkin method
are given by the nonlinear system of algebraic equations⟨

f

(
M−1∑
i=0

ṽiΦi(p), p

)
Φl(p)

⟩
= 0 for l = 0, 1, . . . ,M − 1. (10)

Thereby, the coefficients ṽi are an approximation of the exact coefficients v̂i
of ŷ(p). The system (10) coincides with the result from an application of the
stochastic Galerkin method to the nonlinear system (2).

We write the system (10) in the convenient form

F : ΘM → R
MN , ΘM ⊆ RMN , F (V ) = 0

for V = (v0, v1, . . . , vM−1) and F = (F0, F1, . . . , FM−1) with

Fl(V ) :=

⟨
f

(
M−1∑
i=0

viΦi(p), p

)
Φl(p)

⟩
. (11)

The domain of dependence of F is given by

ΘM :=

{
V ∈ RMN :

M−1∑
i=0

viΦi(p) ∈ Υ for all p ∈ Π

}
. (12)

If Υ is a convex set, then ΘM is also convex. If Υ is an open set, then ΘM is
open provided that Π is bounded.

In Sect. 3, we investigate if a unique solution Ṽ of F (V ) = 0 exists. Moreover,
we analyse if the convergence

lim
M→∞

∥∥ỹMj (p)− ŷj(p)
∥∥
∗ = 0 for j = 1, . . . , N
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is fulfilled in the norm of the Hilbert space L2(Π, ρ).

A critical property is related to the domain of dependence of the function f . The
functions ŷ(p) and ŷM(p) are both well-defined for each p ∈ Π and are continuous.
However, the limit of ŷM for increasing M is given in the sense of L2(Π, ρ). Hence
a property like ∥ỹM(p) − ŷ(p)∥∗ < ε does not impose a bound on the difference
ỹM(p) − ŷ(p) point-wise for each p. Although ŷ(p) ∈ Υ holds for all p ∈ Π, we
cannot guarantee this property for ỹM(p) in general. Thus we add this property
as a requirement. Nevertheless, no problems appear if Υ = RN holds.

2.3 Jacobian matrix in Galerkin method

For our analysis, we require the Jacobian matrix DF of the function F defined
by (11). We assume that f is continuously differentiable with respect to y and
thus the Jacobian matrix Df exists and is continuous. It holds

∂Fl

∂vk
=

⟨
Df

(
M−1∑
i=0

viΦi(p), p

)
Φl(p)Φk(p)

⟩
for l, k = 0, 1, . . . ,M − 1 (13)

provided that the differentiation and the probabilistic integration can be inter-
changed. If Π is compact, then this interchange is allowed due to the smoothness
of f . If Π is not compact, additional integrability conditions have to be satisfied
to guarantee the interchange. It follows that the Jacobian matrix Df , which
consists of the minors (13), is continuous with respect to the parameters as well
as the arguments v0, . . . , vM−1.

We can write the complete Jacobian matrix in the form

DF (V ) =

⟨
S(p)⊗Df

(
M−1∑
i=0

viΦi(p), p

)⟩
(14)

using the Kronecker product and the symmetric matrix S := (ΦlΦk) ∈ RM×M .

3 Analysis of convergence

We investigate the convergence of the stochastic Galerkin method introduced in
Sect. 2.2.

6



3.1 Theorem of Newton-Kantorovich

We apply the famous Theorem of Newton-Kantorovich to show the convergence
of the stochastic Galerkin method under certain assumptions. The complete the-
orem and its proof can be found in [9], for example. The following theorem quotes
the statements of Newton-Kantorovich from [16] with respect to the existence of
a root only, whereas statements on a corresponding Newton iteration are omitted.
Thereby, an arbitrary vector norm ∥ · ∥ on RN is used.

Theorem 1 Let g : Ξ → R
N , Ξ ⊆ RN be continuously differentiable on a convex

subset Ξ0 ⊆ Ξ and

∥Dg(y)−Dg(z)∥ ≤ γ∥y − z∥ for all y, z ∈ Ξ0

with a constant γ > 0. For some y0 ∈ Ξ0 satisfying det(Dg(y0)) ̸= 0, assume
∥Dg(y0)−1g(y0)∥ ≤ α and ∥Dg(y0)−1∥ ≤ β. Consider the quantities

δ := αβγ, r1/2 :=
1∓

√
1− 2δ

δ
α

and sets Sr(y0) := {y ∈ RN : ∥y − y0∥ < r}. If δ ≤ 1
2
and Sr1(y0) ⊂ Ξ0, then a

root of g exists in Sr1(y0). Moreover, this root is unique in Ξ0 ∩ Sr2(y0).

We apply this theorem to the functions F : ΘM → R
MN defined by (11). The

assumptions of the theorem should be satisfied for sufficiently large M . Our
idea is to specify the unknown data V̂ of the exact equilibria ŷ(p) as starting
values in Theorem 1. In the following, we discuss the Lipschitz condition, the
residuals F (V̂ ) and the inverse of the Jacobian matrices DF (V̂ ). We consider the
Euclidean norm ∥ · ∥2, since it agrees to the L2-norm of the probability space due
to (7). Moreover, the Euclidean norm induces the spectral matrix norm, which
is employed for the stability analysis in Sect. 4.

3.2 Lipschitz-continuity of Jacobian matrix

We assume that the function f is globally Lipschitz-continuous, i.e.,

∥f(y, p)− f(z, p)∥2 ≤ γf · ∥y − z∥2 for all y, z ∈ Υ, p ∈ Π (15)

with a constant γf > 0.

For the Jacobian matrix Df , we assume the Lipschitz condition

∥Df(y, p)−Df(z, p)∥2 ≤ γ0∥y − z∥2 for all y, z ∈ Υ, p ∈ Π (16)
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with a constant γ0 > 0.

The Jacobian matrix DF of the coupled system (10) is given by the minors (13).
Since F depends on the choice of M , we assume Lipschitz conditions of the form

∥DF (V )−DF (W )∥2 ≤ γM∥V −W∥2 for all V,W ∈ ΘM , (17)

where the constants γM > 0 are chosen as small as possible.

Lemma 1 If the Jacobian matrices Df satisfy the Lipschitz condition (16), then
the Jacobian matrices DF fulfill the Lipschitz-continuity (17) with constants

γM ≤ γ0M
3
2N

(
max

i=0,1,...,M−1

√
⟨Φi(p)4⟩

)
for each integer M .

Proof:

Let

yM(p) :=
M−1∑
i=0

viΦi(p) and zM(p) :=
M−1∑
i=0

wiΦi(p).

Employing the notation (14), it holds

DF (V )−DF (W ) =
⟨
S(p)⊗

[
Df(yM(p), p)−Df(zM(p), p)

]⟩
.

Basic calculations and the Cauchy-Schwarz inequality yield the estimate

∥DF (V )−DF (W )∥2 ≤
√
MN∥DF (V )−DF (W )∥∞

≤ M
3
2N

1
2

√
max

i,j=0,1,...,M−1
⟨Φi(p)

2Φj(p)
2⟩
√
⟨∥Df(yM(p), p)−Df(zM(p), p)∥2∞⟩.

Using the Lipschitz-continuity (16) and Parseval’s equality (7), we obtain

⟨∥Df(yM(p), p)−Df(zM(p), p)∥2∞⟩ ≤ γ0
2N⟨∥yM(p)− zM(p)∥22⟩

= γ0
2N

M−1∑
i=0

N∑
j=1

(vi,j − wi,j)
2

= γ0
2N∥V −W∥22.

Furthermore, the Cauchy-Schwarz inequality implies

⟨Φi(p)
2Φj(p)

2⟩ ≤
√
⟨Φi(p)4⟩ ·

√
⟨Φj(p)4⟩ ≤ max

i=0,1,...,M−1
⟨Φi(p)

4⟩

for all 0 ≤ i, j ≤ M − 1. □

If the sequence (⟨Φi(p)
4⟩)i∈N grows just polynomially, then the coefficients γM are

bounded by some polynomial in M due to Lemma 1. This property is satisfied
for uniformly distributed random parameters, for example.
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3.3 Residual

We employ the Lipschitz condition (15) of the right-hand side f to impose a
bound on the residuals F .

Lemma 2 Let f satisfy the global Lipschitz-continuity (15). For the gPC coeffi-
cients V̂ ∈ RMN of the exact equilibria ŷ(p), it holds

∥F (V̂ )∥2 ≤ γf
√
M
√⟨

∥ŷM(p)− ŷ(p)∥22
⟩

for each M .

Due to (2), it holds fj(ŷ(p), p) = 0 for each component j = 1, . . . , N . The
Lipschitz-continuity (15), the Cauchy-Schwarz inequality and the orthonormality
of the basis polynomials imply the estimate

∥Fl(V̂ )∥22 =
N∑
j=1

⟨fj(ŷM(p), p)Φl(p)⟩2

=
N∑
j=1

⟨
[
fj(ŷ

M(p), p)− fj(ŷ(p), p)
]
Φl(p)⟩2

≤
N∑
j=1

⟨[
fj(ŷ

M(p), p)− fj(ŷ(p), p)
]2⟩ · ⟨Φl(p)

2⟩

=
⟨∥∥f(ŷM(p), p)− f(ŷ(p), p)

∥∥2
2

⟩
≤ γ2

f

⟨∥∥ŷM(p)− ŷ(p)
∥∥2
2

⟩
.

It follows

∥F (V̂ )∥2 =

√√√√M−1∑
l=0

∥Fl(V̂ )∥22 ≤
√
Mγf

√⟨
∥ŷM(p)− ŷ(p)∥22

⟩
as stated above. □

A linear convergence of the gPC expansion of the equilibria ŷ is already sufficient
for the fundamental property

lim
M→∞

∥F (V̂ )∥2 = 0

by Lemma 2.
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3.4 Inverse of Jacobian matrix

The Jacobian matrices DF ∈ RMN×MN depend on V ∈ RMN . We define the
matrices J (M) ∈ RMN×MN by the minors

J
(M)
lk := ⟨Df (ŷ(p), p) Φl(p)Φk(p)⟩ for l, k = 0, 1, . . . ,M − 1 (18)

using the exact equilibria ŷ(p). Thus the random-dependent Jacobian matrix
Df(ŷ(p), p) is involved. We define two conditions corresponding to the spectrum
and the numerical range, which will also be used in Sect. 4.

Condition 1 It exists a constant ν ∈ R with ν ≤ 0 such that Re(λ) ≤ ν holds
for all eigenvalues λ ∈ C of Df(ŷ(p), p) and for all p ∈ Π.

Condition 2 It exists a constant ν ∈ R with ν ≤ 0 such that µ(Df(ŷ(p), p)) ≤ ν
holds for all p ∈ Π using the logarithmic matrix norm µ corresponding to the
spectral norm ∥ · ∥2.

For the definition and more details on the logarithmic matrix norm µ, see [6], for
example. Condition 2 is equivalent to the property

sup{Re(z∗Df(ŷ(p), p)z) : z ∈ CN , z∗z = 1} ≤ ν

for each p ∈ Π, which involves the numerical range of the Jacobian matrix.
Thus Condition 2 is sufficient for Condition 1, since the numerical range of a
matrix includes the spectrum. If the Jacobian matrices Df(ŷ(p), p) are normal
for each p ∈ Π, then the two conditions are equivalent.

Condition 2 gives information on the spectrum of the matrices J (M) in view of
results from [15].

Lemma 3 If the Jacobian matrices Df(ŷ(p), p) satisfy Condition 2 for some
ν < 0, then the matrices J (M) are regular for each M ≥ 1.

Proof:

Condition 2 guarantees Re(z∗Df(ŷ(p), p)z) ≤ ν for all z∗z = 1 and all p ∈ Π
with some ν < 0. The half-plane {η ∈ C : Re(η) ≤ ν} ⊂ C is closed and convex.
If λ ∈ C is an eigenvalue of J (M) for arbitrary M , then it follows Re(λ) ≤ ν by
Theorem 2 in [15]. Thus all eigenvalues of J (M) are non-zero. □

In case of normal matrices, we obtain a uniform bound on the spectral norm of
the inverse matrices.
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Lemma 4 Let the matrices Df(ŷ(p), p) be normal for all p ∈ Π and the matri-
ces J (M) be normal for all M ≥ 1. If Condition 1 or, equivalently, Condition 2
is satisfied for some ν < 0, then the matrices J (M) are regular and∥∥∥(J (M)

)−1
∥∥∥
2
≤ 1

|ν|
for all M ≥ 1. (19)

Proof:

Lemma 3 implies that all eigenvalues of J (M) are non-zero. A complex number λ
is an eigenvalue of J (M) if and only if 1

λ
is an eigenvalue of (J (M))−1. For a normal

matrix, the spectral norm ∥ · ∥2 is equal to the spectral radius. Since (J (M))−1 is
a normal matrix, it follows∥∥∥(J (M)

)−1
∥∥∥
2
= max

{∣∣∣∣1λ
∣∣∣∣ : λ eigenvalue of J (M)

}
≤ 1

|ν|

due to |λ| ≥ |Re(λ)| ≥ |ν| for all eigenvalues of J (M) uniformly in M . □

Note that the normality of the matrices Df(ŷ(p), p) does not imply the normality
of the matrices J (M) in general. Nevertheless, symmetric matrices Df(ŷ(p), p) for
all p yield symmetric matrices J (M) for each M .

Finally, we require an estimate for the inverse matrices of DF corresponding to
the coupled system from the stochastic Galerkin method.

Lemma 5 Assume that the Lipschitz condition (16) holds with constant γ0. Let
V̂ ∈ RMN be the gPC coefficients corresponding to the equilibria ŷ(p). It follows∥∥∥DF (V̂ )− J (M)

∥∥∥
2
≤ γ0M

3
2N

(
max

i=0,1,...,M−1

√
⟨Φi(p)4⟩

)√
⟨∥ŷM(p)− ŷ(p)∥22⟩

for each M ≥ 1.

Proof:

Let ŷM(p) be the truncated gPC expansion of the equilibria ŷ(p) again. The
minors of the matrices yield

∂Fl

∂vk
(V̂ )− J

(M)
lk =

⟨[
Df
(
ŷM(p), p

)
−Df (ŷ(p), p)

]
Φl(p)Φk(p)

⟩
.

It follows using the notation (14)

DF (V̂ )− J (M) =
⟨
S(p)⊗

[
Df(yM(p), p)−Df(y(p), p)

]⟩
.
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By repeating the steps in the proof of Lemma 1, we obtain the desired estimate
in the spectral norm. □

For a sufficiently fast convergence of the gPC expansion of ŷ, it follows

lim
M→∞

∥∥∥DF (V̂ )− J (M)
∥∥∥
2
= 0. (20)

The Jacobian matrices DF inherit the regularity of the matrices J (M) for suf-
ficiently large M provided that a uniform bound (19) holds. This property
allows us to use the data V̂ as starting values in the Theorem of Newton-
Kantorovich. However, we require also some uniform bound on the corresponding
norms ∥(DF (V̂ ))−1∥2.

Lemma 6 Let the matrices J (M) be regular and∥∥∥(J (M)
)−1
∥∥∥
2
≤ C for all M ≥ 1

with a constant C > 0. If the convergence (20) is given in the norm ∥ · ∥2, then
the matrices DF (V̂ ) are regular for all M ≥ M ′ with some integer M ′ ≥ 1 and∥∥∥∥(DF (V̂ )

)−1
∥∥∥∥
2

≤ 2C for all M ≥ M ′.

Proof:

Due to (20), it exists anM ′ ≥ 1 such that ∥DF (V̂ )−J (M)∥2 ≤ 1
2C

for allM ≥ M ′.

We obtain ∥(J (M))−1(DF (V̂ )− J (M))∥2 ≤ 1
2
for all M ≥ M ′. It follows∥∥∥(DF (V̂ ))−1 − (J (M))−1

∥∥∥
2
≤ 2

∥∥(J (M))−1
∥∥2
2
·
∥∥∥DF (V̂ )− J (M)

∥∥∥
2

for M ≥ M ′. We achieve the statement via∥∥∥(DF (V̂ ))−1
∥∥∥
2
≤
∥∥∥(DF (V̂ ))−1 − (J (M))−1

∥∥∥
2
+
∥∥(J (M))−1

∥∥
2
,

since both terms on the right-hand side are bounded uniformly. □

3.5 Convergence of stochastic Galerkin method

Now we are able to prove a theorem on the convergence of the stochastic Galerkin
method. Let the continuity and smoothness of the involved functions hold as in-
troduced in the previous sections. Moreover, we impose the following properties.
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Assumptions:

• domain of dependence Υ of f is convex,

• equilibria ŷ(p) from (2) have finite second moments,

• truncated gPC expansions of equilibria satisfy ŷM(p) ∈ Υ for each p ∈ Π
and all M ≥ M ′.

• DF fulfills Lipschitz conditions (17) with constants γM for all M ≥ M ′.

Now we are able to show the main result.

Theorem 2 Let the above assumptions be satisfied. For V̂ ∈ RMN including the
first M coefficients of the gPC expansion of ŷ(p), assume det(DF (V̂ )) ̸= 0 for all
M ≥ M ′ and define

αM := ∥F (V̂ )∥2, βM := ∥DF (V̂ )−1∥2, δM := αMβ2
MγM .

If it holds
lim

M→∞
αMβM = 0 and lim

M→∞
δM = 0 (21)

as well as{
V ∈ RMN : ∥V − V̂ ∥2 ≤

1−
√
1− 2δM

βMγM

}
⊂ ΘM for all M ≥ M ′, (22)

then a locally unique solution Ṽ of the stochastic Galerkin method exists for each
M ≥ M ′ with some sufficiently large integer M ′. Furthermore, the stochastic
Galerkin method is convergent and the error is bounded by

∥Ṽ − V̂ ∥2 ≤ αMβM

asymptotically.

Proof:

The sets ΘM from (12) are convex for each M , since Υ is assumed to be convex.
The function F is smooth on ΘM for each M . Note that

∥DF (V̂ )−1F (V̂ )∥2 ≤ αMβM .

Due to the condition (21), it holds

αMβ2
MγM ≤ 1

2
for all M ≥ M ′

13



with some integer M ′ ≥ 1.

We apply Theorem 1 of Newton-Kantorovich with the starting values y0 := V̂
and the constants α := αMβM , β := βM and γ := γM . It follows the existence of
a solution Ṽ in the neighbourhood (22) of the data V̂ . In particular, it holds

∥Ṽ − V̂ ∥2 ≤
1−

√
1− 2αMβ2

MγM
βMγM

.
= αMβM

asymptotically for large M , which can be verified by a Taylor expansion of the
square root. Thus the convergence of the method is shown under those assump-
tions. □

In general, we do not expect the constants βM or γM to converge to zero. An
optimal case appears if these constants are uniformly bounded. In contrast, the
constants αM of the residuals converge to zero due to Lemma 2 provided that f
fulfills the Lipschitz condition (15).

We also obtain the convergence of the stochastic Galerkin technique with respect
to the mean square error of its approximation.

Corollary 1 Let the assumptions of Theorem 2 be satisfied. Then the approxima-
tions ỹM(p) of the stochastic Galerkin method converge in the norm of L2(Π, ρ),
i.e.,

lim
M→∞

∥ŷj(p)− ỹMj (p)∥∗ = 0

for each j = 1, . . . , N .

Proof:

The mean square error of the approximation can be estimated by

∥ŷj(p)− ỹMj (p)∥∗ ≤ ∥ŷj(p)− ŷMj (p)∥∗ + ∥ŷMj (p)− ỹMj (p)∥∗

in each component j = 1, . . . , N . The first term tends to zero, since the gPC
expansion of the exact equilibria converges in L2(Π, ρ). We estimate for the
second term

∥ŷMj (p)− ỹMj (p)∥∗ ≤ ∥V̂ − Ṽ ∥2
due to Parseval’s equality (7). Thus the convergence of the coefficients as given
by Theorem 2 implies that the second term also tends to zero. □

14



4 Analysis of Stability

In this section, we assume just the existence of a solution of the coupled sys-
tem (10) of the stochastic Galerkin method. Note that a solution of the nonlinear
system (10) represents an equilibrium of the system of ODEs (8) and vice versa.
We analyse the stability of the equilibria of the ODEs (8) with respect to the
stability of the equilibria of the original ODEs (1).

The stability of the equilibria ŷ(p) is determined by the eigenvalues of the Jaco-
bian matrix Df(ŷ(p), p). An equilibrium is stable if and only if the real part of
each eigenvalue is non-positive. An equilibrium is asymptotically stable if and
only if the real part of each eigenvalue is negative.

4.1 Criterion from numerical range

We use Condition 1 and Condition 2 from Sect. 3.4 again, which correspond to
the spectrum and the numerical range, respectively. Condition 1 for ν = 0 is
equivalent to the stability of each equilibrium of the original system of ODEs (1).
Condition 1 for ν < 0 is sufficient for the asymptotical stability of each equilib-
rium. For compact domains Π, Condition 1 for some ν < 0 is also necessary.

We consider Condition 2 corresponding to the numerical range of the Jacobian
matrices, which is sufficient but not necessary for Condition 1. It follows a positive
result for the stability of the equilibria.

Theorem 3 If Condition 2 holds with ν ≤ 0, then the equilibria of the system of
ODEs (8) from the stochastic Galerkin method are stable. If Condition 2 holds
with ν < 0, then the equilibria of (8) are asymptotically stable.

Proof:

The statement follows as in the proof of Lemma 3. Condition 2 allows for the
conclusion that each eigenvalue η ∈ C of the Jacobian matrix for an equilibrium
of (8) satisfies Re(η) ≤ ν by Theorem 2 in [15]. Thus the cases ν ≤ 0 and ν < 0
imply stability and asymptotical stability, respectively. □

We note a restriction on the regularity of the matrices. If the equilibria of the
original system (1) are stable, then the Jacobian matrix DF of the coupled sys-
tem (10) can be singular even if the Jacobian matrices Df are regular for all p ∈ Π.
A corresponding example can be constructed as in Sect. 3.2 of [13] using a prob-
ability distribution of p such that the eigenvalues are located on the imaginary
axis only.
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4.2 Criterion from spectrum

Now we discuss the weaker Condition 1 corresponding to the spectrum of the
Jacobian matrices. Condition 1 for ν ≤ 0 is sufficient for the stability of the
equilibria of the coupled system (8) in case of N = 1, since the Jacobian matrix
becomes just a scalar. However, Condition 1 is not sufficient for the stability
of the equilibria of (8) in case of N ≥ 2 even if ν < 0 holds. We construct a
corresponding counterexample already in the linear case for N = 2. Let

y′(t, p) = A(p)y(t, p) with A(p) =

(
−41 40p
30
p

−31

)
assuming p ̸= 0. The eigenvalues of A(p) are λ1 = −1 and λ2 = −71 independent
of p. Note that the matrix is non-normal for p2 ̸= 3

4
. If p ∈ [1, 3] is uniformly

distributed, then the larger matrix B := (⟨A(p)Φi(p)Φj(p)⟩) ∈ R2M×2M exhibits
a real positive eigenvalue η > 0.3 for each M = 1, . . . , 20, for example. Thereby,
the eigenvalues are computed numerically.

Likewise, we achieve linear counterexamples in each case, where a matrix B
exhibits an eigenvalue η with Re(η) > ν for a constant ν < 0 in Condition 1. If
Re(η) < 0 appears, then a constant shift of the spectra can be used to achieve a
positive real part.

Nevertheless, we obtain a sufficient criterion in the case of normal matrices.

Theorem 4 Let the matrices Df(ŷ(p), p) be normal for each p ∈ Π. If Condi-
tion 1 holds with ν ≤ 0, then the equilibria of the system of ODEs (8) from the
stochastic Galerkin method are stable. If Condition 1 holds with ν < 0, then the
equilibria of (8) are asymptotically stable.

The proof of Theorem 4 follows directly from the equivalence of Condition 1 and
Condition 2 in case of normal Jacobian matrices corresponding to the right-hand
sides of the ODEs (1). In contrast to Lemma 4, we do not need the normality of
the Jacobian matrices of the larger system of ODEs (8) in Theorem 4.

5 Illustrative Examples

We investigate the equilibria for some test examples either theoretically or using
numerical simulations.
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5.1 Stationary solutions of heat equation

We consider the heat equation in one space dimension

∂u

∂t
= λ(p)

∂2u

∂x2
+ s(x, p) (23)

for x ∈ [0, 1] assuming homogeneous Dirichlet boundary conditions. The heat
conduction λ > 0 and the source term s are allowed to depend on random pa-
rameters p. We apply a method of lines to solve (23), see [5]. Thereby, the
spatial derivative is replaced by a symmetric difference formula of second order
with equidistant step size h = 1

N+1
. It follows the linear system of ODEs

y′(t) = λ(p)ANy(t) + w(p) (24)

for the approximations yj(t)
.
= u(jh, t) including wj(p) := s(jh, p) with j =

1, . . . , N . The tridiagonal matrices AN depend on the step size h. Nevertheless,
the matrices AN are symmetric and negative definite for all N .

Stationary solutions of the partial differential equation (23) are identified by the
property ∂u

∂t
≡ 0. Likewise, the equilibria of the approximative ODEs (24) read

ŷ(p) = − 1

λ(p)
A−1

N w(p) (25)

assuming λ(p) > 0 for all p. Thus the equilibria inherit the smoothness of the
functions λ and s with respect to the parameters. Although the systems of
ODEs (24) are linear, the dependence of the equilibria (25) on the parameters is
nonlinear in general.

The stochastic Galerkin method yields a linear system

M−1∑
i=0

⟨λ(p)Φi(p)Φl(p)⟩AN ṽi = ⟨w(p)Φl(p)⟩ for l = 0, 1, . . . ,M − 1

satisfied by the approximations ṽ0, . . . , ṽM−1. This larger linear system involves
the matrix

B := LM ⊗ AN with LM := (⟨λ(p)Φi(p)Φl(p)⟩) ∈ RM×M .

Thus LM and B are also symmetric. Assuming λ(p) > 0 for all p again, the
symmetric matrices LM are positive definite. It follows that B is always negative
definite. Hence the equilibria of the ODE system (24) as well as the equilibria of
the coupled system from the stochastic Galerkin method are always stable due
to the symmetry by Theorem 4.
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Figure 1: Source term s(x) (left) and a corresponding stationary solution u(t, x) ≡
û(x) (right) for heat equation with constant heat conduction λ = 0.1.

We arrange the deterministic source term

s(x) :=

{
1− 16x2 for 1

4
≤ x ≤ 3

4
,

0 otherwise,

see Figure 1 (left). Although the source term has a compact support, corre-
sponding stationary solutions are non-zero outside the boundaries, see Figure 1
(right).

Now we replace the heat conductance by a uniformly distributed random variable
λ(p) = p ∈ [0.1, 0.2]. Consequently, the polynomial chaos applies the Legendre
polynomials. Since the equilibria (25) are analytic functions with respect to the
heat conductance, the convergence of the exact gPC expansion is exponentially
fast, see [21]. Thus the assumptions guaranteeing the convergence of the stochas-
tic Galerkin method by Theorem 2 are satisfied.

We use N = 100 and M = 4 now. Fig. 2 illustrates the resulting approximations
of the expected values and the variances for the random equilibria. The other
coefficient functions of the gPC are depicted in Fig. 3. Furthermore, we com-
pute the mean square errors of the approximations from the stochastic Galerkin
method with respect to the exact random equilibria (25), i.e., the error in the
L2-norm. Fig. 4 shows the errors for different polynomial degrees M − 1, where
the maximum error of the components j = 1, . . . , 100 is computed for each M .
It follows that the stochastic Galerkin method inherits the exponential rate of
convergence from the exact gPC expansion.

Now we investigate the spectra of the involved matrices for different numbers N
of the spatial discretisation as well as different polynomial degrees given by M .
Since each matrix is symmetric, all eigenvalues are real. Fig. 5 illustrates the
smallest and largest eigenvalues for different polynomial degrees and fixed grid
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Figure 2: Expected values (left) and variances (right) of random equilibria for
heat equation.
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Figure 4: Mean square errors of the approximations from the stochastic Galerkin
method applied to heat equation (semi-logarithmic scale).
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stochastic Galerkin method for varying N and M = 4 (squares), M = 8 (dia-
monds) as well as deterministic matrices ⟨λ⟩AN (circles).
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N = 100. We observe that these bounds of the spectrum approach constant values
for increasing M . The results are in agreement to the theoretical investigations of
Sect. 4. Alternatively, the smallest and largest eigenvalues in case of M = 4 and
M = 8 are shown for different N in Fig. 6. For comparison, the corresponding
values are depicted for the deterministic matrices ⟨λ⟩AN . We recognise that the
order of magnitude of the eigenvalues is similar in each case. Thus the stochastic
Galerkin method also inherits the quantitative stability properties of the original
systems.

5.2 Duffing oscillator

The Duffing oscillator represents a frequently used example in stability analysis,
see [14]. We apply the Duffing oscillator in the form

y′1(t) = y2(t)

y′2(t) = y1(t)− p1y1(t)
3 − p2y2(t)

(26)

with parameters p1 for the nonlinear term and p2 for the damping constant.
Assuming p1 > 0, it follows exactly three equilibria

(0, 0), ( 1√
p1
, 0), (− 1√

p1
, 0)

which are all independent of p2. The equilibrium (0, 0) is unstable. Fig. 7 depicts
two solutions of initial value problems of the Duffing oscillator (26) using the
parameters p1 = p2 = 1. We observe that the solutions tend to the two stable
equilibria in the form of damped oscillations.

For the equilibria (±1/
√
p1, 0), the corresponding Jacobian matrix

Df(ŷ(p), p) = Ĵ(p2) :=

(
0 1
−2 −p2

)
is independent of p1 now. It follows that the equilibria are asymptotically stable
for p2 > 0, stable for p2 = 0 and unstable for p2 < 0. Consequently, Condition 1
is satisfied for non-negative ranges of p2, whereas Condition 2 is violated in case
of p2 = 1, for example, due to the logarithmic matrix norm µ(Ĵ(1)) = 1

2
[−1+

√
2].

We consider beta-distributed random variables now. The corresponding proba-
bility density function reads

ρ(p) := C(α, β)(1− p)α(1 + p)β for p ∈ [−1, 1] (27)

with constants α, β ≥ 0 and a constant C(α, β) > 0 for standardisation. We
choose the two random parameters in (26) with independent beta distributions
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Figure 7: Solutions of initial value problems of Duffing oscillator (y1: solid line,
y2: dashed line).

via pi := 1+ θip̃i using constants θi > 0, where p̃i is a random variable with den-
sity (27). The corresponding polynomial chaos induces the Jacobi polynomials.

We investigate the equilibrium (1/
√
p1, 0) now. We select α = β = 1 in (27) for

both random parameters and θ1 = θ2 = 1
2
. Since the second component of the

equilibrium is zero, the results are presented just for the first component. The
stochastic Galerkin method resolves the right-hand side of (26). We include all
polynomials up to degree five, which implies M = 21 basis functions. Fig. 8
(left) shows the absolute values of the computed gPC coefficients. Coefficients
corresponding to polynomials with dependence on p1 only yield a significant con-
tribution, whereas the other coefficients are reproduced correctly to zero except
for roundoff errors. The mean square error of the stochastic Galerkin method is
demonstrated for different polynomial degrees by Fig. 8 (right). Again we observe
an exponential convergence due to the high smoothness of the equilibria.

Finally, we discuss the eigenvalues of the Jacobian matrix for the equilibria
(1/

√
p1, 0) in the stochastic Galerkin method. Assuming θ1 = θ2 = 1

2
, Condi-

tion 1 holds due to p2 > 0 for all realisations of the random parameter, whereas
Condition 2 is violated. Fig. 9 (left) depicts the eigenvalues of the larger Jaco-
bian matrix for M = 21. We recognise that asymptotical stability is given for the
equilibria of the coupled system. This simulation demonstrates that Condition 2
is sufficient but not necessary for the stability of the equilibria of the system from
the stochastic Galerkin method.

Alternatively, we consider the case of θ1 =
1
2
and θ2 =

3
2
. Now even Condition 1

is violated, since negative realisations p2 < 0 appear. Although the probability
of a negative value of p2 is relatively small, the stability is lost in the stochastic
Galerkin method as can be seen in Fig. 9 (right).
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Figure 8: Absolute values of gPC coefficients for simulation with all polynomi-
als up to degree 5 (left) and mean square error of approximations for different
polynomial degrees (right) for component y1 (both in semi-logarithmic scale).
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Figure 9: Eigenvalues of Jacobian matrix in stochastic Galerkin method using
all polynomials up to degree 5 for p2 ∈ [1

2
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] (right)

corresponding to Duffing oscillator.
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6 Conclusions

The expansions of the polynomial chaos have been applied to equilibria of au-
tonomous systems of ordinary differential equations including random parame-
ters. The stochastic Galerkin method yielded an approximation of the random-
dependent equilibria by a larger coupled system. We proved the convergence
of the stochastic Galerkin technique under certain assumptions, which allow for
the application of the Theorem of Newton-Kantorovich. The assumptions are
satisfied in case of symmetric Jacobian matrices together with a sufficiently fast
convergence of the polynomial chaos expansions, for example. Furthermore, the
equilibria of the coupled system inherit the stability of the equilibria correspond-
ing to the original systems provided that a specific condition holds for the nu-
merical ranges of the underlying Jacobian matrices. We presented numerical
simulations of illustrative examples, which demonstrate the convergence and the
stability properties. The concept of our proof of convergence may be useful also
for conclusions on convergence of the stochastic Galerkin method in other fields
of application.
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