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Abstract. In this paper we improve large-time absorbing boundary conditions (ABCs)
for first order hyperbolic systems. These boundary conditions combine the properties
of ABCs for transient solutions and the properties of transparent boundary conditions
for steady state problems. Initially they were defined up to an arbitrary matrix factor
and then we develop a general strategy to specify this matrix factor in an optimal way
with respect to the absorption of outgoing waves. Well-posedness of the resulting initial
boundary value problem is studied in detail, and convergence in time of the transient
solution to the steady state is established. Afterwards we consider a Lax-Wendroff-
type finite difference scheme to solve the resulting initial boundary value problem and
apply the GKS-stability theory to prove the stability of this scheme. Numerical examples
are presented, to discuss convergence to the correct steady state and to compare the
numerical solutions for different choices of the scaling matrix, illustrating the usefulness
of our approach.
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1. Introduction

For the computation of a numerical solution to a hyperbolic partial differential equation
on an unbounded domain, it is common practice to perform the calculation on a truncated
finite computational domain Ω. This issue raises the problem of choosing appropriate
boundary conditions for the resulting artificial boundary Γ. Ideally, these boundary condi-
tions should prevent any nonphysical reflection of outgoing waves and should be easy to
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implement. They should also present together with the governing equation a well-posed
truncated problem which is a necessary requirement for the corresponding numerical ap-
proximation to be stable. Examples of hyperbolic equations include the Euler equations of
gas dynamics, the shallow water equations, Maxwell’s equations, and equations of mag-
netohydrodynamics. For these hyperbolic problems the correct boundary condition is that
waves traveling across the boundary should not be reflected back. Boundary conditions
with this property are often referred to as non-reflecting, transparent, artificial or absorb-
ing boundary conditions (ABCs).

The theoretical basis for ABCs stems from a pioneering paper by Engquist and
Majda [24] which discusses both ideal ABCs and a general method for constructing ap-
proximate forms. In addition, Kreiss [52] analyzes the well-posedness of the initial bound-
ary value problems (IBVP) for hyperbolic systems. Many researchers have been active in
this area in the last years, the readers are referred to [19, 27, 39, 40, 64, 65] for further
details. However, their work has been mainly concerned with ABCs that are better suited
for a transient solution than for a steady solution, and most of these boundary conditions
may lead to steady solutions of poor accuracy.

In this paper, we are concerned with ABCs that lead to accurate steady solutions. In this
context, Bayliss and Turkel [14] derived non-reflecting conditions for the Euler equations
used for steady state calculations. These boundary conditions are obtained from expan-
sions of the solution at large distances. Accurate boundary conditions for the steady Euler
equations in a channel geometry were also studied by Giles [26].

We base our considerations on the paper of Engquist and Halpern [23]. They con-
structed a new class of boundary conditions that combine the properties of ABCs for tran-
sient solutions and the properties of transparent boundary conditions for steady state prob-
lems. These boundary conditions, which are called far field boundary conditions (FBCs),
can be used in both the transient regime and when the solution approaches the steady
state. In this sense, they can be applied when the evanescent and traveling waves are
present in the time-dependent calculation or when a time-dependent formulation is used
for computations until the steady state.

For hyperbolic systems, these FBCs are defined up to matrix factor in front of the steady
terms [23]. This poses the following computational problem (which is one of the main
subjects of this work): How to choose this factor in a way to accelerate the convergence to
the steady state, and to improve the accuracy of the transient solution.

Since the problem has wavelike solutions, these FBCs must model the radiation of en-
ergy out of the computational domain Ω. An incorrect specification of these boundary
conditions can cause spurious reflected waves to be generated at the artificial boundary
Γ. These waves represent energy propagating back into Ω. Since they are not part of
the desired solution, they can substantially reduce the accuracy of the computed solution.
On the other hand, if the time-dependent equations are only an intermediate step toward
computing the steady state, then a flow of energy into Ω can delay or destroy the conver-
gence to the steady state. Conversely, the correct specification of FBCs can accelerate the
convergence. Thus, an answer of the above question consists in minimizing the spurious
reflections.
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Our work consists of two parts: an analytic part and a numerical (discrete) part. In
the first analytic part we study briefly in Section 2.1 the procedure of constructing FBCs
for linear hyperbolic systems, and propose a general tool of scaling the included factors. In
Section 2.2 the well-posedness and regularity of the resulting IBVP are studied. A general
result of convergence in time to the steady state is established in Section 2.3.

In the numerical part of this article, in Section 3.1, we introduce a finite difference
scheme to solve the resulting IBVP. In Section 3.2, we apply the well known stability theory
due to Gustafsson, Kreiss, and Sundström (GKS-theory) [36] to prove the stability of the
proposed scheme. Two numerical examples are presented in Section 3.3. In the first
example, we discuss briefly a 2×2 model system and show the convergence of this system
with first order FBCs to the correct steady state. In the second example, we compare the
numerical approximations for different choices of the scaling matrices for a 3× 3 system.

2. Optimized Far Field Boundary Conditions for Hyperbolic Systems

2.1. Derivation of far field boundary conditions

We consider in this section the derivation of a hierarchy of FBCs, t x = 0 and x = 1, for
a strictly hyperbolic system of the form

ut +Λux + Cu= f (x), x ∈ IR, t > 0, (2.1)

with the initial function
u(x , 0) = u0(x), x ∈ IR. (2.2)

Here C and Λ are constant n×n matrices, u is a vector with n components. f (x) and u0(x)

are assumed to be C∞-smooth functions and have supports in (0,1). The eigenvalues of Λ
are distinct and different form zero, that is

Λ =

�

Λ+ 0
0 Λ−

�

, (2.3)

with Λ+ = diag(λ1, . . . ,λm), λ j > 0, Λ− = diag(λm+1, . . . ,λn), λ j < 0. We assume that

C1 =
C⊤ + C

2
≥ δI , δ > 0, (2.4)

which is a necessary condition to ensure the convergence of the whole space problem to
the steady state as t →∞. We will further assume that Λ−1C has distinct eigenvalues.

Notation . Any n× n-matrix X is partitioned as

X =

�

X++ X+−

X−+ X−−

�

,

where X++, X+−, X−+ are m×m, m× (n−m), (n−m)×m-matrices, respectively.
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Also, we set

X+ :=

�

I 0
0 0

�

X and X− :=

�

0 0
0 I

�

X .

Solutions of (2.1) are made up of n different modes, which propagate at different
speeds. A crucial step for developing boundary conditions for (2.1) is to determine the
direction of propagation of each mode, and distinguishing which modes are outgoing and
which are incoming at the boundary.

If we take a Laplace transform in t, with the dual variable s

ũ(x , s) =

∫ ∞

0

e−stu(x , t) d t, s ∈ C, Re s > 0,

the system (2.1) becomes

ũx +Λ
−1(sI + C)ũ= Λ−1 f̃ .

Define E(s) := Λ−1+ 1
s
Λ−1C , we may write

ũx + sE(s)ũ= Λ−1 f̃ . (2.5)

Next, we wish to separate ũ into “rightgoing” and “leftgoing” modes. Each of these modes
corresponds to an eigenvalue of E(s).

Definition 2.1. [16] The inertia of a matrix M is the ordered triple i(M) = (i+(M), i−(M),
i0(M)), where i+(M), i−(M), and i0(M) are the numbers of eigenvalues of M with, respec-

tively, positive, negative, and zero real part, all counting multiplicity.

Lemma 2.1. [16] Let G, H be n× n-matrices with H Hermitian and regular, suppose HG +

G∗H is a positive semi-definite and, i0(G) = 0. Then i(G) = i(H).

Lemma 2.2. For Re s > 0, E(s) has exactly m eigenvalues with positive real part and (n−m)

with negative real part; i.e., i(Λ) = i(E).

Proof. Apply Lemma 2.1 with H := Λ and G := Λ−1(sI + C) :

Λ(Λ−1(sI + C)) + (Λ−1(sI + C))∗Λ = 2 Re sI + 2C1 > δI > 0.

Also i0(Λ
−1(sI + C)) = 0; otherwise Λ−1(sI + C) will have a purely imaginary eigenvalue,

say iω, ω ∈ IR. Let φ denote its eigenvector. Then

iωφ = Λ−1(sI + C)φ ⇐⇒ (iωΛ− C)φ = sφ,

which is impossible since

0 < 2 Re s
�

�φ
�

�

2
=



sφ,φ
�

+



φ, sφ
�

=



(iωΛ− C)φ,φ
�

+



φ, (iωΛ− C)φ
�

= −
¬

φ, (C + C⊤)φ
¶

≤ −2δ
�

�φ
�

�

2
< 0.
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From Lemma 2.2 and [35], there exists η0 > 0 and a nonsingular transformation T (s)

such that for Re s > η0,

X EX−1 = D =

�

D+ 0
0 D−

�

, (2.6)

where D(s) is the matrix of eigenvalues of E(s), arranged so that D+(s) is an m×m positive
definite matrix, corresponding to rightgoing solutions, and D−(s) is an (n−m)× (n−m)

negative definite matrix, corresponding to leftgoing solutions. Here, we drop the explicit
s-dependence; henceforth all the matrices are functions of s unless otherwise noted.
With the characteristic variables ṽ := X ũ the system (2.5) can be written as

ṽx + sDṽ = XΛ−1 f̃ ,

and then partitioned into

d

d x

�

ṽ+

ṽ−

�

− s

�

D+ 0
0 D−

��

ṽ+

ṽ−

�

= XΛ−1 f̃ ,

where ṽ+ and ṽ− represent purely “rightgoing” and “leftgoing” modes respectively.
Now, we restrict the domain of x in (2.1) to (0,1). The exact nonreflecting bound-

ary conditions follow immediately. Since there are no incoming modes at a nonreflecting
boundary, at the left boundary x = 0 there should be no rightgoing modes, so the exact
non-reflecting boundary condition reads

ṽ+ = [X ũ]+ = 0, x = 0. (2.7a)

At the right boundary, there should be no leftgoing modes, so the exact non-reflecting
boundary condition is

ṽ− = [X ũ]− = 0, x = 1. (2.7b)

Two difficulties arise in implementing the above boundary conditions. First, since the
boundary condition is expressed in the Laplace transformed (x , s)-space, and the matrix
X (s) contains non-rational functions of s (e.g., square roots), when we transform back
to the physical (x , t)-space, the boundary conditions will be nonlocal in time. From a
computational perspective, we would prefer a local boundary condition, which may be
obtained by approximating non-rational elements of X by rational functions of s.

The second difficulty arises when approximations are introduced: then the resulting
IBVP may be ill-posed. The theory of well-posedness will be discussed in the next section.

For high temporal frequencies, i.e. s →∞, we have E(s)→ Λ−1 and hence X (s)→ I .
Following standard practice in [23] we shall hence make a high frequency expansion of X

for Re s > η0 :

X (s) = I +
1

s
X1+

1

s2 X2+O

�

1

|s|3

�

. (2.8)
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The zero order ABCs are then

ũ+ = 0, x = 0,

ũ− = 0, x = 1.

More accurate conditions are obtained by using higher order approximations. First and
second order ABCs are respectively

�

(I +
1

s
X1)ũ

�+

= 0, x = 0,

�

(I +
1

s
X1)ũ

�−

= 0, x = 1,

�

(I +
1

s
X1+

1

s2 X2)ũ

�+

= 0, x = 0,

�

(I +
1

s
X1+

1

s2 X2)ũ

�−

= 0, x = 1,

which is transformed to the physical space by the formal substitution s→ ∂

∂ t
.

Hence, the first and second order ABCs are respectively [24]

�

(
∂

∂ t
+ X1)u

�+

= 0, x = 0, (2.9a)

�

(
∂

∂ t
+ X1)u

�−

= 0, x = 1, (2.9b)

�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ X2)u

�+

= 0, x = 0, (2.10a)

�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ X2)u

�−

= 0, x = 1. (2.10b)

For large Re s > η0, the term 1
s
Λ−1C in E(s) is a small perturbation of Λ−1

With a high frequency expansion D is written as

D(s) = Λ−1+
1

s
D1+

1

s2 D2+O

�

1

|s|3

�

,

where D j(s), j = 1,2, . . . are diagonal. If we write (2.6) as X E = DX , then the O
�

|s|−1
�

-
equation reads

X1Λ
−1+Λ−1C = Λ−1X1+ D1.
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Solving for X1 and D1 gives

D1 = diag

�

c11

λ1
, . . . ,

cnn

λn

�

,

and

(X1) jk =







0, j = k,
λkc jk

λk −λ j

, j 6= k,

where c jk is the ( j, k)th entry of C . The second order expansion of (2.6) yields

X2Λ
−1+ X1Λ

−1C = Λ−1X2+ D1X1+ D2.

Solving for X2 and D2 yields

D2 = diag





∑

k 6=1

c1kck1

λk −λ1
, . . . ,

∑

k 6=n

cnkckn

λk −λn



 ,

and

(X2) jk =







0, j = k,
1

λ j −λk

�

c j jc jk

λ2
k

λk −λ j

−
∑

l 6= j c jl clk

λ jλk

λl −λ j

�

, j 6= k.

Let us now turn to the stationary problem corresponding to (2.1) :

ux +Λ
−1Cu= Λ−1 f (x), x ∈ IR, (2.11)

u(x)→ 0, x →±∞. (2.12)

The following lemma is similar to Lemma 2.2 but for the case s = 0.

Lemma 2.3. i(Λ) = i(Λ−1C).

Proof. Apply Lemma 2.1 with H := Λ and G := Λ−1C

Λ(Λ−1C) + (Λ−1C)⊤Λ = 2C1 > 0.

Assume that Λ−1C has the purely imaginary eigenvalue iω. Then

iωφ = Λ−1Cφ ⇐⇒ iωΛφ = Cφ.

But, on the other hand

0 =



iωΛφ,φ
�

+



φ, iωΛφ
�

=



Cφ,φ
�

+



φ, Cφ
�

=
¬

φ, (C + C⊤)φ
¶

≥ 2δ
�

�φ
�

�

2
> 0,
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and hence i0(Λ
−1C) = 0, which completes the proof.

Using Lemma 2.3 and that Λ−1C has distinct eigenvalues, we diagonalize the system
(2.11)

wx + Rw = SΛ−1 f (x), (2.13)

where w is given by w := Su,

SΛ−1CS−1 = R=

�

R+ 0
0 R−

�

, (2.14)

R+ = diag(r1, . . . , rm), Re r j > 0, R− = diag(rm+1, . . . , rn), Re r j < 0
The following boundary conditions for the steady problem on the bounded domain

(0,1) are satisfied by the steady solution on the unbounded domain

(Su)+ = 0, x = 0, (2.15a)

(Su)− = 0, x = 1. (2.15b)

This holds since the general solution of (2.13) outside the support of f reads

w(x) =

�

w+(0)e−R+x

w−(0)e−R−x

�

, x ≤ 0, w(x) =

�

w+(1)eR+(1−x)

w−(1)eR−(1−x)

�

, x ≥ 1,

where w = (w+, w−)⊤ is partitioned in the same way as u. For the decay condition (2.12)
to be valid, it is necessary that

w+(0) = w−(1) = 0.

(2.15) is unique up to a multiplication by regular matrices V+ and V−, respectively

(VSu)+ = 0, x = 0, (2.16a)

(VSu)− = 0, x = 1. (2.16b)

Engquist and Halpern [23] defined a family of first order FBCs from a combination of the
first order ABCs (2.9) and the transparent steady boundary conditions (2.16):

�

(
∂

∂ t
+ VS)u

�+

= 0, x = 0, (2.17a)

�

(
∂

∂ t
+ VS)u

�−

= 0, x = 1, (2.17b)

which is defined up to a matrix factor, V = diag(V+, V−), in front of S. Higher order
boundary conditions can formally be derived analogously

�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ VS)u

�+

= 0, x = 0, (2.18a)

�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ VS)u

�−

= 0, x = 1. (2.18b)
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The solution of the IVP (2.1)) on (0,1) with the boundary conditions (2.17) or (2.18), for
arbitrary regular V , converges for long time to the steady state, see [23] and Section 4.
But since spurious reflections pollute the computed solution, a good choice of V+ and V−

that annihilate the spurious reflections up to higher order can accelerate this convergence
for long time computations and gives higher accuracy for short time computations.
To clarify that, we transform the first order left boundary condition (2.17a) into Laplace
space, and use the notation

�

(I +
1

s
VS)ũ

�+

=

�

I+ +
1

s
V+S++ ,

1

s
V+S+−

�

ũ= 0. (2.19)

In terms of the characteristic variables, ũ= X−1 ṽ, where

X−1(s) = I −
1

s
X1−

1

s2 (X2− X 2
1) +O

�

1

|s|3

�

.

(2.19) then becomes

�

I+ +
1

s
V+S++ ,

1

s
V+S+−

�
�

I+ − 1
s
X++1 −1

s
X+−1

−1
s
X−+1 I−− 1

s
X−−1

�

ṽ +O

�

1

|s|2

�

=

�

I+ +
1

s
(V+S++ − X++1 )

�

ṽ+ +
1

s

�

V+S+− − X+−1

�

ṽ− +O

�

1

|s|2

�

= 0.

Neglecting O(|s|−2)-terms, we may solve for the incoming (rightgoing) modes in terms of
outgoing ones as long as

�

I++ 1
s
(V+S++ − X++1 )

�

is nonsingular (this holds true at least
for |s| large)

ṽ+(0) =−
�

sI+ + (V+S++ − X++1 )
�−1 �

V+S+− − X+−1

�

ṽ−(0) =: R+c ṽ−(0),

where R+c is the matrix of reflection coefficients.
Similarly the right boundary condition (2.17b) may be written in terms of the charac-

teristic variables as

�

1

s
V−S−+ , I− +

1

s
V−S−−

�
�

I+ − 1
s
X++1 −1

s
X+−1

−1
s
X−+1 I−− 1

s
X−−1

�

ṽ

=
1

s

�

V−S−+ − X−+1

�

ṽ+ +

�

I− +
1

s
(V−S−− − X−−1 )

�

ṽ− +O

�

1

|s|2

�

= 0.

Neglecting O(|s|−2)-terms and solving for the incoming (leftgoing) modes in terms of out-
going ones as long as

�

I− + 1
s
(V−S−− − X−−1 )

�

is nonsingular, gives

ṽ−(1) =−
�

sI− + (V−S−− − X−−1 )
�−1 �

V−S−+ − X−+1

�

ṽ+(1) =: R−c ṽ+(1),

where R−c is the matrix of reflection coefficients at the right boundary.
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For the pair of boundary conditions to be absorbing up to order O(|s|−2), the matrices
R+c and R−c must be identically zero, that is V+S+−−X+−1 and V−S−+−X−+1 must be zero.
So the optimal choices of V+ and V− are then given as solutions of

V+S+− = X+−1 , (2.20a)

V−S−+ = X−+1 . (2.20b)

If (S+−)−1 exists, then V+ = X+−1 (S+−)−1 and the first order FBC at x = 0 reads

u+t + X+−1 (S+−)−1S++u+ + X+−1 u− = 0, (2.21a)

which is different from the first order ABC (2.9a) only by the middle term.
Similarly if (S−+)−1 exists, then V− = X−+1 (S−+)−1 and the first order FBC at x = 1 is

u−t + X−+1 u+ + X−+1 (S−+)−1S−−u− = 0. (2.21b)

We shall denote these FBCs as
�

(
∂

∂ t
+ X̂1)u

�+

= 0, x = 0, (2.22a)

�

(
∂

∂ t
+ X̂1)u

�−

= 0, x = 1, (2.22b)

where

X̂1 =

�

X+−1 (S+−)−1S++ X+−1
X−+1 X−+1 (S−+)−1S−−

�

.

For the second order case, we write (2.18a) in terms of the characteristic variables:
�

I+ +
1

s
X++1 +

1

s2 V+S++ ,
1

s
X+−1 +

1

s2 V+S+−
�

ũ

=

�

I+ +
1

s
X++1 +

1

s2 V+S++ ,
1

s
X+−1 +

1

s2 V+S+−
�







I+ − 1
s
X++1 −

1
s2 [X2− X 2

1]
++ −1

s
X+−1 −

1
s2 [X2− X 2

1]
+−

−1
s
X−+1 −

1
s2 [X2− X 2

1]
−+ I− − 1

s
X−−1 −

1
s2 [X2− X 2

1]
−−






ṽ +O

�

1

|s|3

�

=

�

I+ +
1

s2 (V
+S++ − X++2 )

�

ṽ+ +
1

s2

�

V+S+− − X+−2

�

ṽ− +O

�

1

|s|3

�

.

The optimal choice of V+ is to annihilate the coefficient of the outgoing mode up to or-
der O(|s|−2). Similar computations at the right boundary condition give the analogous
equation for V−. Finally V+ and V− are chosen as solutions of

V+S+− = X+−2 , (2.23a)

V−S−+ = X−+2 . (2.23b)
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Again, if (S+−)−1 and (S−+)−1 exist, then the second order FBCs can be written as
�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ X̂2)u

�+

= 0, x = 0, (2.24a)

�

(
∂ 2

∂ t2 + X1
∂

∂ t
+ X̂2)u

�−

= 0, x = 1, (2.24b)

where

X̂2 =







X+−2 (S+−)−1S++ X+−2

X−+2 X−+2 (S−+)−1S−−






.

In the case S+− and/or S−+ are not invertible, generalized solutions of (2.20),(2.23) have
to be considered.

General cases: Considering the systems (2.20), let V ∗
+ and V ∗

− denote generalized
solutions of (2.20a) and (2.20b) respectively. Then we have two cases:

• m≥ n−m, then equation (2.20a) can be written as

(S+−)⊤(V+)⊤ = (X+−1 )⊤.

Let v
(i)
1 and b

(i)
1 be the i th columns of (V+)⊤ and (X+−1 )⊤, respectively. Then this

system is equivalent to the m underdetermined systems

(S+−)T v
(i)
1 = b

(i)
1 , i = 1, . . . , m.

the solution (v∗1)
(i) ∈ IRm (in the least-squares sense, that is minimizing the Euclidean

norm of residuals




(S+−)⊤v
(i)
1 − b

(i)
1







2
, i = 1, . . . , m ) is given by

(v∗1)
(i) = S+−((S+−)⊤S+−)−1 b

(i)
1 , i = 1, . . . , m.

The solution exists and is unique if S+− has full rank. If S+− does not have full rank,
then the solution is not unique, since in this case if (v∗1)

(i) is a solution then the vector
(v∗1)

(i) + z with z ∈ Ker(S+−), is a solution too. A further constraint is introduced to
enforce uniqueness of the solution. Typically, one requires that (v∗1)

(i) has minimal
Euclidean norm.
On the other side, Equation (2.20b) is equivalent to n−m overdetermined systems

(S−+)⊤v
(i)
2 = b

(i)
2 , i = 1, . . . , n−m,

where v
(i)
2 and b

(i)
2 are the i th columns of (V−)⊤ and (X−+1 )⊤ respectively. The gen-

eral solution is given by

(v∗2)
(i) = (S−+(S−+)⊤)−1S−+b

(i)
2 , i = 1, . . . , n−m.

• The case m< n−m, is similar but with n−m underdetermined and m overdetermined
systems.

This generalization applies to the case of (2.23).
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2.2. Well-posedness of the IBVP

In this section, following the book of Kreiss and Lorenz [53], we discuss the well-
posedness of the IVP

ut +Λ(x , t)ux + C(x , t)u= f (x , t), 0< x < 1, t ≥ 0, (2.25a)

u(x , 0) = u0(x), 0< x < 1, (2.25b)

together with boundary conditions of the form

�

(
∂

∂ t
+ B(t))u

�+

= 0, x = 0, (2.26a)

�

(
∂

∂ t
+ B(t))u

�−

= 0, x = 1. (2.26b)

B(t) is partitioned in the same way as in notation :

B(t) =







S0(t) K0(t)

S1(t) K1(t)






.

We assume that S0, S1, K0, and K1 are uniformly bounded for all t ≥ 0. Clearly the first
order ABCs (2.9), and the first order FBCs (2.22) are special cases of (2.26).
Λ(x , t), C(x , t) ∈ IRn×n and f (x , t),u0(x) ∈ IRn are assumed to be C∞-smooth functions

with respect to all variables. Moreover, f (x , t),u0(x) are assumed to vanish in a neighbor-
hood of the corners (x , t) = (0,0), (x , t) = (1,0). Using this compatibility assumption, we
write the boundary conditions (2.26) in the integral form:

u+(0, t) =−

∫ t

0

S0(τ)u
+(0,τ)dτ−

∫ t

0

K0(τ)u
−(0,τ)dτ, (2.27a)

u−(1, t) =−

∫ t

0

S1(τ)u
−(1,τ)dτ−

∫ t

0

K1(τ)u
+(1,τ)dτ. (2.27b)

Roughly speaking, the initial value problem (2.25) with boundary conditions (2.27) is
called well-posed if for all smooth compatible data u0 and f there is a unique smooth
solution u, and in every finite interval 0 ≤ t ≤ T the solution can be estimated in terms of
the data.

We define the outflow and inflow norms respectively by

‖u(t)‖2+ :=
∑

λ j(1,t)>0

λ j(1, t)|u j(1, t)|2−
∑

λ j(0,t)<0

λ j(0, t)|u j(0, t)|2,

and
‖u(t)‖2− :=

∑

λ j(0,t)>0

λ j(0, t)|u j(0, t)|2−
∑

λ j(1,t)<0

λ j(1, t)|u j(1, t)|2.
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Lemma 2.4. Assume that the boundary is not characteristic and that Λ(x , t),
Λx(x , t), C(x , t), B(t) are uniformly bounded for all 0 ≤ x ≤ 1 and 0 ≤ t ≤ T. Then, for

every finite time interval 0 ≤ t ≤ T there is a constant CT such that, if u solves the IBVP

(2.25),(2.27) for 0≤ t ≤ T, then

‖u(., t)‖22+

∫ t

0

�

‖u(τ)‖2−+ ‖u(τ)‖
2
+

�

dτ ≤ CT

�

‖u0‖
2
2+

∫ t

0

‖ f (.,τ)‖22dτ

�

,

CT is independent of f and u0.

Proof.

d

d t
‖u(., t)‖22 = (u,ut) + (ut ,u)

≤ −(u,Λux)− (Λux ,u) + c1

¦

‖u(., t)‖22+ ‖ f (., t)‖22
©

.

Integration by parts gives

(u,Λux) + (ux ,Λu) = 〈u,Λu〉 |
1

0
− (u,Λxu),

moreover,
〈u,Λu〉 |

1

0
= ‖u(t)‖2+−‖u(t)‖

2
−.

Since Λx is uniformly bounded, we have

d

d t
‖u(., t)‖22 ≤ ‖u(t)‖

2
−−‖u(t)‖

2
++ c2

¦

‖u(., t)‖22+ ‖ f (., t)‖22
©

. (2.28)

Choose
ρ1 := max

j=1,...,n

�

|λ j(1, t)|, |λ j(0, t)|
�

, 0≤ t ≤ T,

then
‖u(t)‖2− ≤ ρ1

�

|u+(0, t)|2+ |u−(1, t)|2
�

. (2.29)

The Cauchy-Schwarz inequality for the boundary condition (2.27a) yields

|u+(0, t)|2 ≤ 2

�

�

�

�

�

∫ t

0

S0(τ)u
+(0,τ)dτ

�

�

�

�

�

2

+ 2

�

�

�

�

�

∫ t

0

K0(τ)u
−(0,τ)dτ

�

�

�

�

�

2

≤ 2t

�

s2
0

∫ t

0

�

�u+(0,τ)
�

�

2
dτ+ k2

0

∫ t

0

�

�u−(0,τ)
�

�

2
dτ

�

,

where
�

�S0(t)
�

�≤ s0 and |K0(t)| ≤ k0 for 0≤ t ≤ T.
In a similar way, the boundary condition (2.27b) can be estimated as

�

�u−(1, t)
�

�

2
≤ 2t

�

s2
1

∫ t

0

�

�u−(1,τ)
�

�

2
dτ+ k2

1

∫ t

0

�

�u+(1,τ)
�

�

2
dτ

�

.
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With k̂ =max(k1, k0) and ŝ =max(s0, s1), (2.29) becomes

‖u(t)‖2− ≤ 2ρ1 t

�

ŝ2

∫ t

0

�
�

�u+(0,τ)
�

�

2
+
�

�u−(1,τ)
�

�

2
�

dτ

+k̂2

∫ t

0

�
�

�u−(0,τ)
�

�

2
+
�

�u+(1,τ)
�

�

2
�

dτ

�

. (2.30)

Consider

z(t) := ‖u(t)‖22+

∫ t

0

�

‖u(τ)‖2−+ ‖u(τ)‖
2
+

�

dτ.

Using (2.28), (2.30) yields

z′(t) ≤ 2‖u(t)‖2−+ c2

¦

‖u(., t)‖22+ ‖ f (., t)‖22
©

≤ 4ρ1ρ2 t

�

ŝ2

∫ t

0

‖u(τ)‖2−dτ+ k̂2

∫ t

0

‖u(τ)‖2+dτ

�

+ c2

¦

‖u(., t)‖22+ ‖ f (., t)‖22
©

≤ α

�

‖u(., t)‖22+

∫ t

0

‖u(τ)‖2−+ ‖u(τ)‖
2
+dτ

�

+ c2‖ f (., t)‖22,

where α := 4ρ1ρ2T (s2+ k2) + c2 > 0, and

ρ2 := max
j=1,...,n

�

|λ−1
j (1, t)|, |λ−1

j (0, t)|
�

, 0≤ t ≤ T.

ρ2 is used for the estimates:
|u+(1, t)|2+ |u−(0, t)|2 ≤ ρ2‖u(t)‖

2
+ and |u−(0, t)|2+ |u+(1, t)|2 ≤ ρ2‖u(t)‖

2
−.

The Gronwall inequality gives the result

z(t)≤ CT

�

‖u0‖
2
2+

∫ t

0

‖ f (.,τ)‖22dτ

�

,

where CT := (c2+ 1)eαT .

Remark 2.1. The last proof, as well as the proof of Theorem 7.6.4 [53], can be done under

weaker regularity assumptions, namely f ∈ L2((0, T ), L2((0,1); IRn)) and

u0 ∈ L2((0,1); IRn). First derived for the classical solution, the result for mild solutions then

follows from a density argument.

Theorem 2.1. Under the assumptions of Lemma 2.4 and u0 ∈ L2((0,1); IRn) and f ∈
L2((0, T ), L2((0,1); IRn)) the IBVP (2.25),(2.27) has a unique mild solution in

L2((0, T ), L2((0,1); IRn)).
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Proof. A fixed point method will be used to show the existence and uniqueness of the
solution. For g =

�

g+, g−
�

∈ L2((0, T ); IRn) solve the equation:

yt +Λ(x , t)yx + C(x , t)y = f (x , t), 0< x < 1, 0≤ t ≤ T, (2.31a)

y(x , 0) = u0(x), 0≤ x ≤ 1, (2.31b)

y+(0, t) = g+(t), (2.31c)

y−(1, t) = g−(t). (2.31d)

Theorem 7.6.4 [53] and Remark 2.1 guarantee the existence of unique solution
y ∈ C([0, T], L2((0,1); IRn)), and y(0, .), y(1, .) ∈ L2((0, T ); IRn). Define F g = ((F g)+, (F g)−)

as

(F g)+(t) :=−

∫ t

0

S0(τ)y
+(0,τ)dτ−

∫ t

0

K0(τ)y
−(0,τ)dτ, t ≥ 0,

(F g)−(t) :=−

∫ t

0

S1(τ)y
−(1,τ)dτ−

∫ t

0

K1(τ)y
+(1,τ)dτ, t ≥ 0.

The first to show is that F maps L2((0, T ); IRn) into itself:
The solution of (2.31)) can be estimated [53], for 0≤ t ≤ T as

‖y(., t)‖22+

∫ t

0

�

|y(0,τ)|2+ |y(1,τ)|2
�

dτ

≤ KT

�

‖u0‖
2
2+

∫ t

0

�

‖ f (.,τ)‖22 + |g(τ)|
2
�

dτ

�

. (2.32)

A similar computation as in the last proof shows that with α1 = k2
0 + s2

0 + s2
1 + k2

1

|F g(t)|2 ≤ 2α1 t

∫ t

0

�

|y(0,τ)|2+ |y(1,τ)|2
�

dτ.

Integration by parts, using (2.32) and that g ∈ L2((0, T ); IRn), gives

‖F g‖22 ≤ α1

 

T2

∫ T

0

�

|y(0, t)|2+ |y(1, t)|2
�

d t − t2
�

|y(0, t)|2+ |y(1, t)|2
�

!

≤ Constant.

The second to show is that F is contractive at least on a subinterval (0, T1) of (0, T ) :
Given two inflow data: g1, g2 ∈ L2((0, T ); IRn), the difference between the corresponding
outflow data can be estimated by (2.32), for 0≤ t ≤ T as

‖(y1− y2)(., t)‖22+

∫ t

0

�

|(y1− y2)(0,τ)|2+ |(y1− y2)(1,τ)|2
�

dτ

≤ KT

∫ t

0

|(g1− g2)(τ)|
2dτ (2.33)
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Now,

|F g+1 (t)− F g+2 (t)|
2 ≤ 2t(s2

0 + k2
0)

∫ t

0

|(y1− y2)(0,τ)|2dτ,

|F g−1 (t)− F g−2 (t)|
2 ≤ 2t(s2

1 + k2
1)

∫ t

0

|(y1− y2)(1,τ)|2dτ.

Using (2.33) we get

|F g1(t)− F g2(t)|
2 ≤ 2tα1

∫ t

0

�

|(y1− y2)(0,τ)|2+ |(y1− y2)(1,τ)|2
�

dτ.

Integration by parts gives

‖F g1− F g2‖
2
2 ≤ α1{T

2

∫ T

0

�

|(y1− y2)(0, t)|2+ |(y1− y2)(1, t)|2
�

d t

−t2
�

|(y1− y2)(0, t)|2+ |(y1− y2)(1, t)|2
�

}

≤ α1KT T2‖g1− g2‖
2
2.

F is contraction for T1 < 1/
p

α1KT . The contractivity of F depends only on α1KT (but not
on the initial condition or the inhomogeneity term). So we can apply the iteration first on a
subinterval (0, T1) of (0, T ), then (T1, 2T1) and so on. The local solution can be continued
in t to reach T .

This theorem shows that our problem is strongly well-posed in the sense of Kreiss [45].

2.3. Convergence to the steady state

We now consider the convergence of the IVP (2.1)-(2.2) with first order FBCs (2.17)
as t → ∞ to the solution of the corresponding steady problem. The non-singular matrix
V in (2.17) is used to accelerate the convergence to the steady state and it does not effect
the convergence itself. For convenience we take V+ and V− as identity matrices. Then, we
have

ut +Λux + Cu= f (x), 0< x < 1, t > 0, (2.34a)

u(x , 0) = u0(x), 0< x < 1, (2.34b)
�

(
∂

∂ t
+ S)u

�+

= 0, x = 0, (2.34c)

�

(
∂

∂ t
+ S)u

�−

= 0, x = 1. (2.34d)

The corresponding steady state problem reads

Λu∗x + Cu∗ = f (x), 0< x < 1, (2.35a)
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with transparent boundary conditions

�

Su∗
�+
= 0, x = 0, (2.35b)

�

Su∗
�−
= 0, x = 1. (2.35c)

Define:
q(x , t) := u(x , t)− u∗(x),

then q satisfies

qt +Λqx + Cq = 0, 0< x < 1, t ≥ 0, (2.36a)

q(x , 0) = u0(x)− u∗(x) =: q0(x), 0< x < 1, (2.36b)
�

(
∂

∂ t
+ S)q

�+

= 0, x = 0, (2.36c)

�

(
∂

∂ t
+ S)q

�−

= 0, x = 1. (2.36d)

By taking the Laplace transform (with dual variable s) of (2.36) we obtain the ordinary
differential equation

sq̃+Λq̃x + Cq̃ = q0(x), 0< x < 1, (2.37a)

sq̃++ (Sq̃)+ = q+0 (0), x = 0, (2.37b)

sq̃−+ (Sq̃)− = q−0 (1), x = 1. (2.37c)

The following lemma, which relates the asymptotic behavior of the original function with
the limit of the image function, will be used to prove Theorem 2.2, the main theorem of
this section.

Lemma 2.5. [21] Suppose that b(t) belongs to a Banach space with norm ‖.‖ and b̃(s) is its

Laplace transform. Then we have

lim
t→∞

b(t) = lim
s→0+

s b̃(s),

provided that limt→∞ b(t) exists.

Theorem 2.2. If the solution q(x , t) of (2.36) converges in L2(0,1) as t → ∞, then it

converges to zero in L2(0,1).

Proof. To make use of the previous Lemma we need to show that q̃(x , s) defined in
(2.37) is a natural extension of the Laplace transform near s = 0. That is, q̃(x , s) is an
analytic function of s in the neighborhood of 0. Suppose that

Z := H1((0,1); IRn)× IRn, Y := L2((0,1); IRn)× IRn.
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Define the operator L as

L : Y ⊃ Z ⊃ H1(0,1)n =: D(L) ∋ q̃ 7−→







(Λ∂x + C)q̃

(Sq̃)+(0)
(Sq̃)−(1)






∈ Y.

Accordingly, (2.37) can be written as

(L+ sI)







q̃

q̃+(0)
q̃−(1)






=







q0(x)

q+0 (0)
q−0 (1)






, q̃+(0) ∈ IRm, q̃−(1) ∈ IRn−m. (2.38)

Focusing on the operator L, we notice that it has some useful properties:
First, L is invertible. Consider

q1 =







f (x)

α+

α−






∈ Y, α+ ∈ IRm, α− ∈ IRn−m,

and search for q̃ ∈ D(L), such that

Λq̃x + Cq̃ = f (x), 0< x < 1,

(Sq̃)+(0) = α+,

(Sq̃)−(1) = α−.

This inhomogeneous boundary value problem is equivalent to

w̆x + Rw̆ = h(x), 0< x < 1,

w̆+(0) = 0, w̆−(1) = 0, (2.39)

where w̆ = Sq̃−

�

α+

α−

�

, h(x) = SΛ−1 f (x)− (I + R)

�

α+

α−

�

, and S is defined as in (2.14).

The last equation (2.39) has the unique solution

w̆+(x) =

∫ x

0

e−R+(x−y)h+(y)d y, 0< x < 1,

w̆−(x) = −

∫ 1

x

e−R−(y−x)h−(y)d y, 0< x < 1.

Second, L−1 is a bounded operator from Y to D(L). Multiplying (2.37a) by q̃ and integrat-
ing

(Λq̃x , q̃) + (q̃,Λq̃x) + (Cq̃, q̃) + (q̃, Cq̃) = 2( f , q̃). (2.40)

Integration by parts gives

(q̃,Λq̃x) + (q̃x ,Λq̃) =



q̃,Λq̃
�

|
1

0
,
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using the properties of C

(Cq̃, q̃) + (q̃, Cq̃) = (q̃, (C + C⊤)q̃)≥ 2δ‖q̃‖22 > 0, δ > 0,

and that

2( f , q̃)≤
2

δ
‖ f ‖22+

δ

2
‖q̃‖22.

Thus, (2.40) gives




q̃,Λq̃
�

|
1

0
+

3δ

2
‖q̃‖22 ≤

2

δ
‖ f ‖22. (2.41)

Choose
λM := max

j=1,...,n

¦

|λ j |
©

,

then




q̃,Λq̃
�

|
1

0
=

m
∑

j=1

λ j(|q̃ j(1)|
2− |q̃ j(0)|

2) +

n
∑

j=m+1

λ j(|q̃ j(1)|
2− |q̃ j(0)|

2)

≥ −
m
∑

j=1

λ j |q̃ j(0)|
2+

n
∑

j=m+1

λ j |q̃ j(1)|
2

≥ −nλM (|α
+|2+ |α−|2).

Substituting the result in (2.41), we get

‖q̃‖22 ≤ C(‖ f ‖22+ |α
+|2+ |α−|2). (2.42)

But
q̃x = −Λ

−1Cq̃+Λ−1 f ,

then
‖q̃x‖

2
2 ≤ C1(‖q̃‖

2
2+ ‖ f ‖

2
2). (2.43)

Using (2.42) and (2.43) we get

‖q̃‖2
D(L)
≤ C(‖ f ‖22+ |α

+|2+ |α−|2) = C‖q1‖Y . (2.44)

Now, define L−1
p := P ◦ L−1 : Y 7−→ Y, where P : Z 7−→ Y is the identity compact operator.

Since L−1 : Y 7−→ D(L) is bounded, then L−1
p is compact.

Choose s small enough such that
|s|< ‖L−1

p ‖
−1, (2.45)

then (I + sL−1
p ) is an invertible operator from Y to Y . Moreover, the resolvent function

(I + sL−1
p )
−1 is an analytic function of s with norm that satisfies

‖(
I

s
+ L−1

p )
−1‖Y ≤

1
1
s
−‖L−1

p ‖Y
,
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and so in particular

‖(
I

s
+ L−1

p )
−1‖Y → 0 as s→ 0. (2.46)

Consider the first line of equation (2.38)

(L+ sI)q̃ = q0, (2.47)

and let s be as in (2.45). We apply L−1
p to both sides of (2.47), then

(I + sL−1
p )q̃ = L−1

p q0.

Since (I + sL−1
p ) is invertible, we obtain

q̃ = (I + sL−1
p )
−1 L−1

p q0,

which is analytic in s and bounded. The multiplication of the last equation by s yields

sq̃ = (
I

s
+ L−1

p )
−1 L−1

p q0.

Using (2.46) and that L−1
p is bounded, gives that ‖sq̃(x , s)‖2→ 0 as s→ 0.

From Lemma 2.5 we obtain the result.

3. Numerical Approximation

Consider the first order hyperbolic system in characteristic form

ut +Λux + Cu= f (x , t), (3.1a)

in the stripe 0 < x < 1, t > 0. Here, Λ and C are constant n × n matrices and Λ is
partitioned as in (2.3). The solution of (3.1a) is uniquely determined if we prescribe initial
values for t = 0:

u(x , 0) = u0(x), 0≤ x ≤ 1, (3.1b)

and boundary conditions at x = 0,1:

u+t + (Su)+ = 0, x = 0, (3.1c)

u−t + (Su)− = 0, x = 1. (3.1d)

Here, S is defined as in (2.14). While (3.1c)–(3.1d) represent general FBCs. Furthermore,
the support of f and u0 are assumed to be in (0,1).

We want to solve the above problem by a finite difference approximation. For that rea-
son, we introduce a mesh size h :=∆x , a time step k :=∆t, and discretize the (x , t)−stripe
[0,1]× IR+0 using the mesh points

x j = jh, j = 0,1,2, . . . , J t l = lk, l = 0,1,2, . . .
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We assume that r := k/h is constant and use the notation ul
j
∈ IRn to approximate the exact

solution u at (x j , t l). According to the partition of u, we set

ul
j =

 

�

u+
�l

j
�

u−
�l

j

!

,
�

u+
�l

j
∈ IRm,

�

u−
�l

j
∈ IRn−m.

in the rest of this part, the derived ABCs are discretized adequately and we show that the
resulting difference scheme for the IBVP in 1D is stable in the sense of Gustafsson, Kreiss
and Sundström [36]. As well as results from numerical experiments are presented.

3.1. Numerical scheme

Lax-Wendroff scheme (LW-scheme) based on the expansion

u(x , t + k) = u(x , t) + kut(x , t) +
k2

2
ut t(x , t) +O(k3), (3.2)

where ut t can be determined using (3.1a) as follows

ut t = (−Λux − Cu+ f )t

= −Λut x − Cut + ft

= Λ(Λux + Cu− f )x + C(Λux + Cu− f ) + ft

= Λ2ux x + (ΛC + CΛ)ux + C2u+ ft −Λ fx − C f .

Substituting the above equation into (3.2) yields

u(x , t + k) = u(x , t)− k(Λux(x , t) + Cu(x , t)− f (x , t))

+
k2

2
(Λ2ux x(x , t) + (ΛC + CΛ)ux(x , t) + C2u(x , t)

+ ft(x , t)−Λ fx(x , t)− C f (x , t)) +O(k3).

The LW-scheme uses centered differences to approximate the spatial derivatives of u. Fur-
thermore, the derivatives of f will be appropriately discertized. The resulting scheme will
be then

ul+1
j
= ul

j −
1

2
rΛ(ul

j+1− ul
j−1)− kCul

j +
1

2
(rΛ)2(ul

j+1− 2ul
j + ul

j−1)

+
1

4
rk(ΛC + CΛ)(ul

j+1− ul
j−1) +

1

2
(kC)2ul

j +
1

2
k( f l+1

j
+ f l

j )

−
1

4
rkΛ( f l

j+1− f l
j−1)−

1

2
k2C f l

j , l = 0,1, . . . , j = 1, . . . , J − 1.

(3.3a)

To solve (3.3a) uniquely, we provide initial values

u0
j = u0(x j), j = 0,1,2, . . . , J , (3.3b)
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and specify at each time level t l = lk, l = 1,2, . . . , boundary values ul+1
0 ,ul+1

J . These
boundary values split into two groups: The first group, which we refer to as inflow bound-
ary conditions is

�

u+
�l+1

0
,
�

u−
�l+1

J
.

The second group is
�

u−
�l+1

0
,
�

u+
�l+1

J
,

which we refer to as the outflow boundary conditions.
The inflow values are determined by the discretization of the boundary conditions (3.1c)–
(3.1d), while the outflow values are obtained by introducing numerical boundary condi-
tions. In this work we will consider two types of numerical boundary conditions, the first
type is upwinding in which u at the boundaries satisfy the homogeneous version of the
system (3.1a), and the second type is first order extrapolation.

Definition 3.1. The general horizontal extrapolation of order q for the outflow data u− at

x = 0 is
�

E+ − I
�q+1 �

u−
�l+1

0
= 0, q = 0,1, . . . ,

and that of u+ at x = 1

�

I − E−1
+

�q+1 �
u+
�l+1

J
= 0, q = 0,1, . . . ,

where E+u j := u j+1.

Using the boundary condition (3.1c), we write

Dt
+

�

u+
�l

0
+
�

(Su)+
�l

0
= 0,

which gives
�

u+
�l+1

0
=
�

u+
�l

0
− k
�

(Su)+
�l

0
. (3.4)

Since f is compactly supported in (0,1), the outflow part of (3.1a) at x = 0 satisfies

u−t +Λ
−u−x + (Cu)− = 0,

which is discretized as

Dt
+

�

u−
�l

0
+Λ−Dx

+

�

u−
�l

0
+
�

(Cu)−
�l

0
= 0.

Hence
�

u−
�l+1

0
=
�

I + rΛ−
��

u−
�l

0
− k
�

(Cu)−
�l

0
− rΛ−

�

u−
�l

1
. (3.5a)

An alternative numerical boundary condition is the first order extrapolation

�

u−
�l+1

0
= 2
�

u−
�l+1

1
−
�

u−
�l+1

2
. (3.5b)

The discretization of the right boundary conditions is treated in a similar manner.
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3.2. Stability of the finite difference scheme

In solving linear hyperbolic partial differential equations numerically by means of fi-
nite difference approximations, a principal difficulty both theoretically and in practice is
the question of stability. For the “Cauchy problem” on the unbounded domain (−∞,∞), a
fairly complete stability theory based on the Fourier analysis has been worked out during
the last few decades by von Neumann, Lax, Kreiss, and others [57,59,62]. For the “initial
boundary value problem” on a domain such as [0,∞) or [0,1], however, Fourier analysis
cannot be applied in a straightforward way, and progress has been slower and technically
more complex. Important contributions in this area were made by S. Osher [56] and by
H.-O. Kreis [51], and are based on various kinds of normal mode analysis that extend the
Fourier methods. A comprehensive theory of this type was presented in an influential paper
by Gustafsson, Kreiss, and Sundström (briefly: GKS) [36]. The complicated algebraic con-
ditions of the GKS-theory were simplified in following work of Goldberg and Tadmor [37].
In this section we apply the GKS-theory to show the stability of the difference approxi-
mation (3.3)-(3.5a)(or (3.5b)) and the corresponding right boundary discretization. We
intend to provide both sufficient and necessary conditions for the stability of this discrete
IBVP. It appears that the IBVP does not have the standard form presented in the GKS-theory
and thus, this stability theory is not directly applicable.

The discrete IBVP under consideration is given with two boundaries. According to the
Theorem 3.1 below, which is valid for any of the GKS stability definitions, it is sufficient to
consider the problem on the positive plane x ≥ 0, i.e., on the index range j ≥ 0.

Theorem 3.1. [ [36], Thm. 5.4] Consider the difference approximation for t ≥ 0 and

0 ≤ x ≤ 1 and assume that the corresponding left and right quarter-plane problems (which

we get by removing one boundary to infinity) are stable, then the original problem is also

stable.

The idea behind the theorem is that the basic difference scheme (3.3) and each of the
boundary conditions separated into the two quarter plane problems that are relatively nice
to handle. Therefore, we will consider only the stability of the right quarter plane problem,
while the left quarter one is analogue.

To fit our approximation into the form discussed in [36], we write (3.3) as

ul+1
j
=Qul

j + kbl
j , (3.6a)

u0
j = u0(x j), j = 0,1,2, . . . , (3.6b)

where

Q =

1
∑

σ=−1

ΛσEσ+ , E+u j = u j+1,
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Λ0 = I − kC − (rΛ)2+
1

2
(kC)2 ,

Λ±1 =∓
1

2
rΛ+

1

2
(rΛ)2±

1

4
rk (ΛC + CΛ) ,

bl
j =

1

2

�

f l+1
j
+ f l

j

�

−
1

4
rΛ
�

f l
j+1− f l

j−1

�

−
1

2
kC f l

j .

The boundary values are written as

ul+1
0 = B0,0ul

0+ B1,0ul
1+ B1,1ul+1

1 + B2,1ul+1
2 , (3.7)

where the above matrices are determined by the numerical boundary conditions under
consideration. For the upwinding case (3.4)-(3.5a), we have

B0,0 =

�

I+ 0
0 I + rΛ−

�

− k

�

S++ S+−

C−+ C−−

�

,

B1,0 =







0 0

0 −rΛ−






, B1,1 = B2,1 = 0. (3.8a)

However, if extrapolation (3.4)-(3.5b) is used, then (3.7) is given by

B0,0 =

�

I+ 0
0 0

�

− k

�

S++ S+−

0 0

�

,

B1,1 =

�

0 0
0 −2I−

�

, B2,1 =

�

0 0
0 −I−

�

, B1,0 = 0. (3.8b)

There are different ways to define stability of finite difference schemes. GKS [36] discussed
some possible definitions of which we choose the one that allows us to make use of the
available results.
Let l2(x) denote the space of all grid functions u j = u(x j), x j = jh, j = 0,1, . . . , with
∑∞

j=0

�

�u j

�

�

2
<∞ and define the scalar product and norm by

(u, v)h =

∞
∑

j=0

hu∗j v j , ‖u‖2h = (u,u)h.

We define l2(t) and l2(x , t) in the corresponding way and denote by

(u, v)k =

∞
∑

l=0

ku∗(t l)v(t l), ‖u‖2k = (u,u)k,

(u, v)h,k =

∞
∑

j=0

∞
∑

l=0

hku∗j (t l)v j(t l), ‖u‖2h,k = (u,u)h,k,

the corresponding norms and scalar products.
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Definition 3.2. [ [36], Def. 3.3] Assume that the initial function is zero. The difference

scheme (3.6)-(3.8a)(or(3.8b)) is stable, if there exist constants c0 > 0,α0 ≥ 0 such that, for

all t = t l = lk, all α > α0, and all h, an estimate

�

α−α0

αk+ 1

�



e−αtu0





2
k
+

�

α−α0

αk+ 1

�2


e−αtu




2
h,k ≤ c0





e−α(t+k)b







2

h,k

holds.

While here the vector bl
j

of the basic scheme (3.6a) is a general combination of f and

its derivatives, in [36] we have bl
j
= f l

j
. However, Goldberg et al. [37] showed that this

generalization does not affect the results of [36] and they raised the question of stability
in the sense of Definition 3.2.

The definition of stability for the difference scheme for the left quarter plane problem
is the same, except that the norm is taken over the grid on (−∞, 1] and u0 is replaced by
uJ .

In the following, we shall reduce the above stability question to that of the princi-
pal part of the scalar outflow approximations, i.e., the part obtained by eliminating the
terms of order k, k2, and all inhomogeneity vectors. This result is based on Theorem 4.3
of [36], which provides a necessary and sufficient determinantal stability criterion given
entirely in terms of the principal part of the approximations. The mere existence of such
a criterion implies that for the stability purposes we may consider a basic scheme of (3.6)-
(3.8a)(or(3.8b)) of the form

ul+1
j
= Q̃ul

j , Q̃ =

1
∑

σ=−1

Λ̃σEσ+ , E+u j = u j+1, (3.9)

where

Λ̃0 = I − (rΛ)2 ,

Λ̃±1 =∓
1

2
rΛ+

1

2
(rΛ)2 ,

and the boundary conditions
�

u+
�l+1

0
=
�

u+
�l

0
, (3.10)

�

u−
�l+1

0
=
�

I + rΛ−
��

u−
�l

0
− rΛ−

�

u−
�l

1
, (3.11a)

�

u−
�l+1

0
= 2
�

u−
�l+1

1
−
�

u−
�l+1

2
. (3.11b)

The scheme (3.9) is now consistent with

ut +Λux = 0.
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We split the basic scheme and the boundary values into inflow and outflow parts respec-
tively

�

u−
�l+1

j
=

�

u−
�l

j
−

rΛ−

2

�
�

u−
�l

j+1
−
�

u−
�l

j−1

�

+

�

rΛ−
�2

2

�
�

u−
�l

j+1
− 2
�

u−
�l

j
+
�

u−
�l

j−1

�

,+k
�

d−
�l

j
, (3.12)

�

u−
�l+1

0
=
�

I + rΛ−
��

u−
�l

0
− rΛ−

�

u−
�l

1
, (3.13a)

�

u−
�l+1

0
= 2
�

u−
�l+1

1
−
�

u−
�l+1

2
, (3.13b)

and

�

u+
�l+1

j
=

�

u+
�l

j
−

rΛ+

2

�
�

u+
�l

j+1
−
�

u+
�l

j−1

�

+

�

rΛ+
�2

2

�
�

u+
�l

j+1
− 2
�

u+
�l

j
+
�

u+
�l

j−1

�

,+k
�

d−
�l

j
, (3.14)

�

u+
�l+1

0
=
�

u+
�l

0
. (3.15)

Obviously, (3.6)-(3.8a)(or (3.8b)) is stable if and only if both parts are stable. Before we
proceed, we include the following assumptions that are necessary for the result contained
in this section.

Assumption 3.1. 1. The associated initial value scheme is stable.

2. The difference scheme is either dissipative or nondissipative.

A necessary condition for the stability of the initial value scheme is to satisfy the CFL.
For the LW-scheme, this gives

max
ν=1,...,n

�

�λν r
�

�≤ 1, (3.16)

Definition 3.3. [62] The difference scheme (3.9) is dissipative of order 2s if there exists

c > 0 such that the eigenvalues µν(ξ) of the amplification matrix of Q̃ satisfies the following

estimate
�

�µν(θ )
�

�

2
≤ 1− c |θ |2s , |θ | ≤ π.

This condition is equivalent to (see [59])

�

�µν(θ )
�

�

2
≤ 1− ć sin2s(θ/2), ć > 0.

The amplification matrix of Q̃ reads λν denotes the eigenvalue of Λ, has the form

I − irΛ sinθ − (rΛ)2(1− cosθ ),
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with eigenvalues

µν(θ ) = 1− irλν sinθ − 2r2λ2
ν sin2(θ/2), ν = 1, . . . , n.

This gives
�

�µν(θ )
�

�

2
= [1− 2(rλν)

2 sin2(θ/2)]2+ (rλν)
2 sin2 θ

= 1− 2(rλν)
2[4 sin2(θ/2) + 4(rλν)

2 sin4(θ/2) + sin2 θ]

= 1− 4(rλν)
2[1− (rλν)

2] sin4(θ/2), ν = 1, . . . , n. (3.17)

Thus, the difference scheme (3.9) is dissipative of order 4 if r is chosen to satisfy

0<
�

�λν r
�

�≤ 1, ν = 1, . . . , n.

Since Λ is regular, Assumption 3.1 is fulfilled if the CFL-condition (3.16) is satisfied.
We split the outflow approximation (3.12)-(3.13a)(or (3.13b)) into n− m scalar compo-
nents, each of the form

v l+1
j

= v l
j −
κ

2
(v l

j+1− v l
j−1) +

κ2

2
(v l

j+1− 2v l
j + v l

j−1)

=
1

2
(κ2+ κ)v l

j−1+ (1− κ
2)v l

j +
1

2
(κ2− κ)v l

j+1 (3.18)

where κ := rλν , for fixed λν ∈ Λ
−, and

v l+1
0 = v l

0− κ(v
l
1− v l

0). (3.19a)

or
v l+1

0 = 2v l+1
1 − 2v l+1

2 . (3.19b)

The scheme (3.6)-(3.8a)(or (3.8b)) is stable if and only if (3.12)-(3.13a)(or (3.13b)) and
(3.14)-(3.15) are stable, and the latter are stable if and only if their scalar components
are. Lemma 2.3 of [37] shows that the scalar components of the inflow approximation
(3.14)-(3.15) are stable (for 0< κ≤ 1). So we conclude the main result of this section

Lemma 3.1. The approximation (3.6)-(3.8a)(or (3.8b)) is stable if and only if the scalar

outflow components (3.18)-(3.19a)(or (3.19b)) are stable.

To discuss the stability of (3.18)-(3.19a)(or (3.19b)) we use the discrete Laplace trans-
form, which is one of the few approaches available for analyzing the stability of difference
schemes for initial boundary value problems. This approach is used to transform out the
temporal differences (time derivatives) and consider the scheme in transform space as a
difference scheme in j.

Definition 3.4. The discrete Laplace transform of u =
¦

ul
©

is the function ũ := L
�¦

ul
©�

defined by

ũ(z) :=
∞
∑

l=0

e−zlul

where z ∈ C, Re z > 0 and Im z ∈ [−π,π]. the function ũ(z), z ∈ Z, is called the Z-

transformation of the sequence {un} , where n ∈ N0.
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We take the discrete Laplace transform of equation (3.18)-(3.19a)(or (3.19b)) and
obtain the resolvent equation

zṽ j =
1

2
(κ2+ κ)ṽ j−1+ (1− κ

2)ṽ j +
1

2
(κ2− κ)ṽ j+1, (3.20)

and the transformed boundary conditions

zṽ0 = ṽ0− κ(ṽ1− ṽ0), (3.21a)

z(ṽ0− 2ṽ1+ ṽ2) = 0. (3.21b)

Definition 3.5. The complex number z, |z|> 1, is an eigenvalue of equations (3.20)-(3.21a)(or

( 3.21b)) if

1. there exists a vector ṽ = [ṽ0 ṽ1 . . . ]T such that (z, ṽ) satisfies equations (3.20)-

(3.21a)(or ( 3.21b)), and

2. ‖ṽ‖h <∞.

Definition 3.6. The complex number z is a generalized eigenvalue of equations (3.20)-

(3.21a)(or ( 3.21b)) if

1. there exists a vector ṽ = [ṽ0 ṽ1 . . . ]T such that (z, ṽ) satisfies equations (3.20)-

(3.21a)(or ( 3.21b)),

2. |z|= 1, and

3. ṽk satisfies

ṽk(z) = lim
ω→z,|ω|>1

ṽk(ω),

where (ω, ṽ(ω)) is a solution to equation (3.20).

The result from [35] is given in the following proposition.

Proposition 3.1. The difference scheme (3.18)-(3.19a)(or (3.19b)) is stable if and only if

the eigenvalue problem (3.20)-(3.21a)(or (3.21b)) has no eigenvalues and no generalized

eigenvalues.

Theorem 3.2. The approximation (3.18) in combination with one of the boundary conditions

(3.19a) or (3.19b) is stable for −1≤ κ < 0.

To prove this theorem we apply Proposition 3.1 and the first part of the following
lemma, which describes the root of the characteristic equation of (3.20)

zk = k+
κ

2
(k2− 1) +

κ2

2
(k− 1)2. (3.22)

Lemma 3.2. [51] There exists a δ > 0, such that for the roots k1, k2 of (3.22) the following

estimates hold
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1. If κ < 0, then

|k1| ≤ 1−δ, f or |z| ≥ 1,

|k2| > 1, f or |z| ≥ 1, z 6= 1,

k2 = 1, f or z = 1.

2. If κ > 0, then

|k1| < 1, f or |z| ≥ 1, z 6= 1,

k1 = 1, f or z = 1,

|k2| ≥ 1+δ, f or |z| ≥ 1.

Proof. [of Theorem 3.2] To solve the difference equation (3.20)-(3.21b) for |z|> 1, we
note that the general solution of (3.20) belonging to l2(x) has the form ṽ j = k

j

1ϕ1, where
k1 is the (smaller) root of the characteristic equation (3.22). We insert this solution into
the condition (3.21b) and obtain ϕ1(k1 − 1)2 = 0. But, according to the previous lemma,
|k1− 1| ≥ δ. Hence, equations (3.20)-(3.21b) have no eigenvalues.
To determine whether z = 1 is a generalized eigenvalue of (3.20)-(3.21b), we substitute
z = 1 into equation (3.22) and obtain

k =
κ2± |κ|

κ2− κ
=







1 =: k2

κ2+ κ

κ2− κ
=: k1.

For this scheme, k1 is not relevant, since |k1| =

�

�

�

�

�

κ2+ κ

κ2− κ

�

�

�

�

�

< 1 ( for −1 ≤ κ < 0), and hence

k1 will not satisfy equation (3.21b).
We notice that for |z| > 1, k2 will satisfy |k2| > 1. This is the case because k1 is clearly
inside the circle |z| = 1, so k2 must be outside that circle. Since |z| = 1 is associated with
k2, the solution at |z| = 1, does not satisfy condition 3 of Definition 3.6. Thus, z = 1 is not
a generalized eigenvalue, and the difference scheme (3.18)-(3.19b) is stable.
We emphasize that we have already assumed that the difference scheme is stable as an
initial value problem scheme. Hence, the stability proved here will be conditional stability
with condition −1≤ κ < 0.
Considering the case (3.19a), we substitute ṽ j = k

j

1ϕ1, |k1| ≤ 1− δ, into boundary condi-
tion (3.19a)

ϕ1(z − 1+ κk1− κ) = 0.
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For −1≤ κ < 0 (the stability condition for the Cauchy problem) and |z| ≥ 1, we have

�

�z − 1+ κk1− κ
�

� >

�

�

�

�

1+ k1
κ

z − 1− κ

�

�

�

�

≥ 1− k1

�

�

�

�

κ

1+ κ− z

�

�

�

�

≥ 1+ (δ− 1)

�

�

�

�

κ

1+ κ− z

�

�

�

�

≥ δ.

It follows that (3.20)-(3.21a) has no eigenvalues.
Analogously to the computations used in the first part, we show that z = 1 is not a gener-
alized eigenvalue of (3.20)-(3.21a) .

3.3. Numerical tests

In the following numerical experiments we compare the performance of the ABCs and
the FBCs, as well as the numerical approximation with FBCs for different scaling matrices.

3.3.1. Example 1

We consider the linear hyperbolic system
�

u

v

�

t

+

�

1 0
0 −1

��

u

v

�

x

+

�

1 1
3
4

1

��

u

v

�

=

�

f (x)

g(x)

�

, x ∈ IR, (3.23a)

u(x , 0) = u0(x), v(x , 0) = v0(x), (3.23b)

where u0, v0, f and g have compact support in (0,1).
The corresponding steady equation on IR is given by

�

u

v

�

x

+

�

1 1
−3

4
−1

��

u

v

�

=

�

f

−g

�

, x ∈ IR, (3.24a)

with the decay conditions
u, v→ 0, x →±∞. (3.24b)

The zero and first order ABCs for the restriction to the interval 0≤ x ≤ 1 are, respectively

u= 0, x = 0, (3.25a)

v = 0, x = 1, (3.25b)

and

ut + v/2= 0, x = 0, (3.26a)

vt + 3u/8= 0, x = 1. (3.26b)
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The matrix

S =

�

a 2a/3
b 2b

�

, 0 6= a, b ∈ IR,

transforms the steady state problem (3.24a) to the diagonal form. Diagonalize Λ−1C

SΛ−1CS−1 =

�

1/2 0
0 −1/2

�

. (3.27)

For the decay condition to be valid we need

u+ 2v/3= 0, x = 0, (3.28a)

u+ 2v = 0, x = 1. (3.28b)

The first order FBCs combine ABCs (3.26) and the steady boundary conditions (3.28), in
analogue to (2.17),

ut + a(u+ 2v/3) = 0, x = 0, (3.29a)

vt + b(u+ 2v) = 0, x = 1. (3.29b)

The finite difference scheme introduced in the first section is used in the following numer-
ical tests.

(i) Consider (3.23) with zero initial condition, f = 0, and

g(x) =

(

cos2(π(x − 0.5)/0.9), x ∈ (0.05,0.95),

0, else,

together with each of the boundary conditions 3.26 and (3.29). The convergence as
t →∞ of the solution of the resulting IBVP to the solution of the steady unbounded
problem has been tested numerically (h= 0.0005, r = k/h= 0.9). The steady state
solution (3.24) is given in Figure 1 and the convergence to this solution is described
in Figures 2 and 3.
Figure 2 shows, with different choices of a and b, that the solution of (3.23) with
the new boundary conditions (3.29) converges in (0,1) to the solution of the steady
unbounded problem. Figure 3 shows that this is not true for the first order boundary
conditions (3.26).

(ii) Using equation (2.20), the optimal choices of a and b are

a =
λ2c12

λ2−λ1

1

s12
=

3

4
, b =

λ1c21

λ1−λ2

1

s21
=

3

8
,

and the FBCs (3.29a) become

ut +
3

4
(u+ 2v/3) = 0, x = 0, (3.30a)

vt +
3

8
(u+ 2v) = 0, x = 1. (3.30b)
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Figure 1: Steady state solution of (3.24).
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Figure 2: L2(0, 1)−error between the solution with boundary ondition (3.29) and the steady state
solution.

In this test we show that this choice, among other arbitrary choices, improve the ap-
proximation for short time computations. The convergence to steady state is tested,
for arbitrary non-zero constants a and b, in part (i). Therefore, for short time com-
parison, it is reasonable to consider f (x) = g(x) = 0.

Since an asymptotic approximation is used to localize the exact nonlocal boundary
conditions, we consider a highly-oscillatory initial data (2.7).

u(x , 0) = v(x , 0) =

(

cos2(2π(x − 0.5)) sin(2πpx), x ∈ (0.25,0.75),

0, else,
(3.31)

The cases p = 10,20 are plotted in Figure 4.
The error between the whole space exact solution and the solution with the boundary
condition (3.29) for different values of a and b has been tested. The absolute errors
of the inflow data (u at x = 0 and v at x = 1) and the L2(0,1)-error are considered.
The step size is rather small (h = 0.0005) in order to estimate the errors due to the
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Figure 3: L2(0, 1)−error between the solution with boundary ondition (3.26) and the steady state
solution.
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Figure 4: Initial values (3.31). Left: p = 10. Right: p = 20.

boundary conditions and not the discretization errors. In case p = 10, Figures 5-6
clearly show that our choices of a and b give the minimum error. The same result
holds for the case p = 20.

(iii) In this example, we test the dependence of the boundary condition on the initial
frequency. We consider the system (3.23), boundary conditions (3.30), and the initial
data (3.31). In the case p = 10, Figure 7 compares the absolute error of inflow
data for different refinements of the space step size h. Figures 8-9 show the same
comparison but for the case p = 20.
Tables 1-2 list the maximal absolute errors at the inflow data, the tables show that
as h is getting smaller the error is reduced slower. As a result the last row of the
two tables are good approximations of the errors due to the boundary conditions
(3.30). The maximal absolute error for the case p = 10 of u at x = 0 and v at
x = 1 are 2.5702 · 10−5 and 1.9215 · 10−5, respectively. In the case of p = 20, they
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Figure 6: Comparison of the error between the exat solution v and the solution with boundary onditions
(3.29) for di�erent value of b. (b = 3/8 is the theoretial predition for optimal value)

are reduced to 5.5009 · 10−6 and 4.1164 · 10−6, respectively. This gives numerical
evidence that with highly oscillating initial data the errors become smaller, which
agrees with the approximation of the nonlocal exact boundary condition (2.7) with
asymptotic expansion.

h u at x = 0, (·10−5) v at x = 1, (·10−5)

0.001 2.5997 1.9439
0.0005 2.5713 1.9227
0.00025 2.5702 1.9215

Table 1: Maximal absolute error, p = 10.
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Figure 7: Comparison of errors between the exat solution and the solution with the boundary onditions
(3.30) for di�erent h, p = 10.
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Figure 8: Comparison of errors between the exat solution and the solution with the boundary onditions
(3.30) for di�erent h, p = 20.

h u at x = 0, (·10−6) v at x = 1, (·10−6)

0.001 11.079 8.2997
0.0005 6.0525 4.5299
0.00025 5.5394 4.1452
0.0001 5.5009 4.1164

Table 2: Maximal absolute error, p = 20.

3.3.2. Example 2

Consider (3.1a) in IR with

u=







u1

u2

u3






, Λ =







1 0 0
0 0.2 0
0 0 −0.8






, C =







0.2 0 1
0 0.4 2
−1 −2 1






, (3.32)
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Figure 9: Comparison of errors between the exat solution and the solution with the boundary onditions
(3.30) for h= 0.0001 and p = 20.

and f (x , t) = ( f1(x), f1(x), f1(x))
T , where

f1(x) =

(

10 exp(−100(2x − 1)2), x ∈ (0.25,0.75),

0, else.
(3.33)

The initial function is given by (cf. Figure 10)

u0(x) =

(

cos(π(x − 0.5)/0.9), x ∈ (0.05,0.95),

0, else.
(3.34)

In the first part of this example we compare the performance of the FBCs and ABCs for
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Figure 10: Left: Initial ondition (3.34). Right: Foring funtion (3.33).

long time computations. The first order ABCs for the restriction to the interval 0 ≤ x ≤ 1
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are

u1,t + 0.444u3,t = 0, x = 0, (3.35a)

u2,t + 1.6u3,t = 0, x = 0, (3.35b)

u3,t − 0.5556u1,t − 0.4u2,t = 0, x = 1, (3.35c)

while the first order FBCs read

u+t + V+(S++u+ + S+−u−) = 0, x = 0, (3.36a)

u−t + V−(S−+u+ + S−−u−) = 0, x = 1. (3.36b)

The matrix S, which diagonalizes Λ−1C , is given by

S =







−0.2287 −0.6791 −1.0083
1.0522 −0.0952 0.0656
−0.2690 −0.4004 1.1275







The scaling matrices

V+ =

�

a b

c d

�

, V− = e

are chosen as a general solution of V+S+− = X+−1 and V−S−+ = X−+1 , respectively. Fol-
lowing the procedure presented in Section 1.2, we take

V ∗
+
=

�

−0.4389 0.0285
−1.5801 0.1028

�

, V ∗
−
= 1.3306.

The step sizes are chosen small in order to see the errors due to different boundary con-
ditions and not the discretization errors (h = 0.0005, k = 0.0004). It is clear that the
CFL-condition, max j=1,2,3 |rλ j |< 1, is satisfied.

The steady state solution is given in Figure 11-Right and the convergence to this so-
lution as t → ∞ in (0,1) is described in Figure 12. In Figures 13-15 the solutions with
FBCs for different choices of the scaling matrices are compared to the exact solution over
(−∞,∞). The plots show that the FBCs with the proposed optimal choices of V+, V−

give the best approximate solutions in the transient phase to the exact solution in the un-
bounded domain.
Tables 3-5 list the maximal absolute errors at the inflow data (u1,u2 at x = 0 and u3 at
x = 1). As well as the L2(0,1)−error between exact solution and the solution with the
boundary condition (3.29) for different values of a, b, c, d, and e.
The numerical results give quantitative evidence that the FBCs are useful for both short
and long times.
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a, b abs. error at x = 0 L2(0,1)−error
−0.2, 0 0.0804 0.0548
−0.8, 0.2 0.0829 0.0506

a∗, b∗ 0.0318 0.0293
Table 3: Maximum errors due to the �rst order FBCs of u1 for di�erent hoies of a and b, see also
Figure 13.

c, d abs. error at x = 0 L2(0,1)−error
−1, 0 0.2208 0.0664
−2.5, 0.5 0.1312 0.0430

c∗, d∗ 0.1233 0.0408
Table 4: Maximum errors of u2 due to the �rst order FBCs for di�erent hoies of c and d, see also
Figure 14.

e abs. error at x = 1 L2(0,1)−error
1 0.1080 0.0421

2.5 0.0943 0.0468
e∗ 0.0875 0.0344

Table 5: Maximum errors due to the �rst order FBCs of u3 for di�erent hoies of e, see also Figure 15.
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Figure 11: Left: Exat solution. Right: Steady state solution.
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