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On Laplace—Carleson embedding theorems

Birgit Jacob* Jonathan R. Partington® Sandra Pott!

Abstract

This paper gives embedding theorems for a very general class of weighted
Bergman spaces: the results include a number of classical Carleson em-
bedding theorems as special cases. Next, a study is made of Carleson
embeddings in the right half-plane induced by taking the Laplace trans-
form of functions defined on the positive half-line (these embeddings have
applications in control theory): particular attention is given to the case
of a sectorial measure or a measure supported on a strip, and complete
necessary and sufficient conditions for a bounded embedding are given in
many cases.

Keywords. Hardy space, weighted Bergman space, Laplace transform, Car-
leson measure
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1 Introduction and Notation

Let w denote a weight function on the imaginary axis iR, let p be a posi-
tive regular Borel measure on the right half plane C, and let 1 < p,q < oo.
Embeddings of the form

P

w

(iR) = LYCy, ), (1)

where a locally integrable function f on the imaginary axis ‘R is mapped to its
Poisson extension on the right half plane C, are known as Carleson embed-
dings, and have been much studied in the literature. In linear control, another,
related class of embeddings plays an important role, namely embeddings of the
form

HEW(0.00) = LChup), [ £f = [ et (o
0

given by the Laplace transform £. Here, H% ., denotes the Sobolev space of
index § and weight w: the case 8 = 0 corresponds to a weighted LP space. We
shall refer to such embeddings as Laplace-Carleson embeddings.
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In the easiest case, 5 = 0, w = 1 and p = ¢ = 2, the Laplace transform
maps H%Y]_(RJ,_) = L*(R,) isometrically up to a constant to H?(C_ ), which is
a closed subspace of L%(iR), and we only have to deal with the unweighted
classical Carleson embedding theorem for p = 2. This can be found in many
places, for example, [5, 12].

Theorem 1.1 (Carleson embedding theorem) Let i be a positive reqular
Borel measure on the right half plane C,. Then the following are equivalent:

1. The natural embedding
HP(Cy) = LP(Cy, )
is bounded for some (or equivalently, for all) 1 < p < oco.

2. There exists a constant C > 0 such that

| @) Pduta) < Clile for alt x e .

Cy

where ky(z) = %ZJ%X for A,z € C,.

w(Qr) < C|I| for all intervals I C iR,

where Qp denotes the Carleson square Q = {z = x4+ iy € C4 : iy €
1,0 <z < |I}.

In this case, i is called a Carleson measure.

A further relatively easy case is p = ¢ = 2 and w a power weight, w(t) = t¢
with o < 0. This case corresponds to the classical embedding theorem for
standard weighted Bergman spaces on the half plane by Duren, see e.g. [3].
For more general weights w, the Laplace—Carleson embedding corresponds to
a new embedding theorem for weighted Bergman spaces A2 on the half plane
with a translation-invariant measure v, which is the subject of Section 2.

In the case of general 1 < p,q < oo, p > 2, the Laplace—Carleson embeddings
are very subtle even in case that w = 1, due to the oscillatory part of the Laplace
transform integral kernel. A general characterization seems out of reach at the
moment, but with additional conditions on the support of the measure p, a full
characterization can sometimes be given. This is the content of Section 3.
Our results have applications in terms of interpolation in certain spaces of holo-
morphic functions and also admissibility and controllability in diagonal semi-
groups, which will be presented elsewhere.

The reproducing kernel functions for H?(C_,) are denoted by ky, A € C,, where

kx(s) = %s—l—% for s € C,, and satisfy f()\) = (g,ky) for f € H?(C,). Note

that |kx]? = s



2 Embedding theorems for weighted Bergman spaces
In this section, we will be interested in embeddings
AD(Cy) <= LP(Cy, ),

where AD(C, ) is a weighted Bergman space defined below and v is a translation-
invariant positive regular Borel measure on C,, that is, v = 7 ® A\, where A
denotes Lebesgue measure and 7 is a positive regular Borel measure on [0, 00).
This corresponds to the case of radial measures on the unit disc.

The investigation of such embeddings has a long history, starting with [2] for
the case of the standard weighted Bergman space on C with di(t) = tPdt for
B > —1, respectively the standard weights (1 — |z|)® on the disc. Oleinik [13]
observed already in 1974 that for measures p(t)dt, where the weight p decreases
very fast towards ¢ = 0, such as p(t) = e_l/tlﬂ, v > 0, it is not sufficient to
compare the weights of Carleson squares u(Q;) and v(Qr) (or equivalently, to
compare the measures of Euclidean balls D centered on the imaginary axis).
Instead, in the example above one has to consider the measures of Euclidean
balls away from the imaginary axis,

D.—D <27 M)

(14 Rez)Y
for z € C;. Roughly speaking, the faster the weight p(t) decreases for t — 0,
the smaller the radius of the ball D, in relation to the distance of z to the
imaginary axis, and the more detailed information on the measure p is required.
Recently, necessary and sufficient conditions have been found for the case even
faster deceasing weights p(t), such as double exponentials [14]. Our aim in this
section is somewhat different: we want to find a class of measures U as large
as possible, for which a characterisation in terms of Carleson squares, and in
terms of testing on powers of reproducing kernels k., z € C,, is possible. Also,
we do not want to put any continuity or smoothness conditions on the measure
v. Clearly, we need a growth condition on # in 0. This will be a (As)-condition
in 0.

2.1 Carleson measure on Zen spaces

Let 7 be a positive regular Borel measure on [0,00) satisfying the following
(Ag)-condition:

[0, 2t)
R :=sup — A
o0 (82)
Let v be the positive regular Borel measure on C;y = [0,00) x R given by

dv = dU ® d\, where A denotes Lebesgue measure. In this case, for 1 < p < oo,
we call

AP = {f : C4 — C analytic : sup/

e>0 JCy

|f(z+4e)|Pdv(z) < oo}



a Zen space on C. If 7({0}) > 0, then by standard Hardy space theory, f has
a well-defined boundary function f € LP(iR), and we can give meaning to the
expression fﬁ’ f(z)[Pdv(z). Therefore, we write

£l = ( /a|f<z>|pdv<z>)”p.

Clearly the space A2 is a Hilbert space.

Well-known examples of Zen spaces are Hardy space HP(Cy), where v is the
Dirac measure in 0, or the standard weighted Bergman spaces AL, where di(t) =
t®dt, o > —1. Some further examples constructed from Hardy spaces on shifted
half planes were given by Zen Harper in [8, 9]. Note that by the (Ay)-condition,
there exists N € N such that ki\’ e Ab for all X € C4 and all 1 < p < co. Here
is our Embedding Theorem for Zen spaces.

Theorem 2.1 Let 1 < p < oo, let AD be a Zen space on C,, with measure
v=0Q® A\ as above, and let pu be a positive regular Borel measure on C,. Then
the following are equivalent:

1. The embedding Al — LP(C,p) is well-defined and bounded for one, or
equivalently for all, 1 < p < oo.

2. For one, or equivalently for all, 1 < p < oo, and some sufficiently large
N €N, there exists a constant C, > 0 such that

/ (ka2 Pdu(z) < G, / [ (2)) ¥ Pdv(z) for each A € Cy. (2)
Ct Ct

3. There exists a constant C > 0 such that

w(Qr) < Cv(Qr) for each Carleson square Q. (3)

Proof: The implication (1) = (2) for fixed p is immediate.

For the implication (2) = (3), we use a standard argument using the decay of
reproducing kernels. Given an interval I in ¢R, and let A denote the centre of
the Carleson square Q7. Note that

1

‘(k)\(z))N’ = (27T)N(4Re /\)N

for z € Q.

Hence

L 036 P 2 @

It only remains to estimate f(c+ |(kx(2))V[Pdv(2) in terms of v(Qg). Let R be
the constant from the (As)-condition.

For k € N, let 2T denote the interval with the same centre as I and the 2* fold
length. By the (As)-condition, v(Qqr;) < R*2*1(Q;). Note that

1 1
(2m)N (2k—1 Re N )N

(ka(2)V] < for z € Qo \Qor-17.
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Hence

1517,

o0

1 1 1 . 2kRk

P 1
< kzol/(qu) ((%)N (2FTRe /\)N> <v(Qr) (2m)PN (Re AP £ oF-TINp’

Choosing N sufficiently large, depending on R, we find that the sum on the
right converges to a constant Ky , depending on N and p. Hence

1
BN (Re e (@1 = /C [(ka(2)™ [Pdpa(2) < G /C ) [(ka(2) N [P (2)

1 1
(2m)PN (Re N2

= CpKyyp (@), (4)
and we obtain p(Qr) < Cnpv(Qr), with a constant Cy, depending only on N
and p (and hence on the (Ajy)-condition constant R).

(3) = (1):

Our strategy is to deduce the boundedness of the embedding from the classical
Carleson Embedding Theorem via a suitable decomposition.

Suppose for the moment that 7({0}) = 0 and that there exists a strictly in-
creasing sequence (ap)necz in Ry such that

1. There exists 1 > ¢ > 0 with
MZcforallnEZ; (5)
an+1
(2R)* 0 ([an—1,an)) = U[an, ans1)) > 2R ([an—1,an)). (6)

Write 8, = v([an, ant1)). Notice that by (6),

S sty < [ rra =3 [ f

| |f(t +iw)|Pdp(t)dw

neZ nez"” [an,an+1
<D Bullfl < QR D Bullflye
nez neZ n+

Thus both (3°,,c7 B"”f”%g +1)1/P and (3,7 /BanHTI’Jgn)l/p give us equivalent

expressions for the A-norm. In addition, notice that if i, v satisfy the Carleson-
type Condition (3), then also p, >, <7 Bnda, @ A, satisfy the condition with the
same constant C'. Therefore, we assume without loss of generality that

V= Z Bn(sana

neZ

where §,, denotes the Dirac measure at a,. For simplicity of notation we will
also assume that the constant C' in the condition (3) equals 1.

Our next step is a decomposition of p into > ., pin, where each p, satisfies
the Carleson-type condition (3) with respect to v, = 8,04, ® A.



Lemma 2.2 Let N € Z and suppose that i is supported on the closed half-
plane C,, . Then there exist positive reqular Borel measures fi,, n > N, such
that

1.
= pn (7)
n=N

ln 15 supported on the closed half-plane C,, ; (8)

3. There exists a constant C' > 0 such that for all intervals I C iR,

N
un(Qr) < C'vn(@r) (n>N), pun(@Q) <C" Y w(@r).  (9)

k=—o00

Moreover, uy is a Carleson measure for the shifted half plane C,,__,, with Car-
leson, constant

!/

C o4 N
Canor (1n) < —Bn (0> N), Cap_y(un) < — D7 B,

k=—oc
where ¢ is the constant appearing in the definition of the sequence (ay) above.

Proof of the lemma: First, we prove that u,, n > N, exist, satisfying
Conditions (7), (8) and (9). By replacing vy with (Zi\;_m Bn)0ay @ A, we can
assume without loss of generality that v is supported on C,,, .

We begin by constructing a family of Carleson rectangles, on which (9) can
be checked. Fix a dyadic grid Dy of half-open intervals in ¢{R with minimal
intervals of length ay, and denote these intervals on length apy as intervals
of generation 0. The remaining intervals in the family Dy will be parents,
grandparents, etc of the minimal intervals.

We can assume without loss that

1

c<1l——. 10
<1-— (10)
By (5), .
N+k
>
AN+k+1 2 T
for any k > 0. If
AN+k

> —,
AN+k4+1 = 1—o?

we choose an integer [ > 2 such that

11
1 <y (aN+k+1> < 1
l1—c ANtk (

and add [ — 1 intermediate points

-1
YAN+ks -+ ANtk



between an i and ayirr1. In this way, we create a strictly increasing sequence
(bj)j>0 such that by = ay, all terms of the sequence (a,),>n appear as terms
of the sequence (b;);>0, and

1 1 .
The family F of Carleson squares we want to consider is formed by rectangles
of the form (0,b;11) x I, where I € Dy, j > 0, for which the eccentricity is
bounded above and below by

1 _bn

%< < V2. (12)
Such a rectangle is denoted by Q7 ;. Note that by (11) and (10), for each I € Dy
there exits j > 0 with (12), and for each j > 0 there exists exactly one size of
intervals I in Dy such that (12) holds. Note that different Carleson squares
in this family F can have the same base I € Dy. It is easy to see that any
Carleson square @ over an interval in ¢{R can be covered by a bounded number
of elements in F, with comparable base length. Therefore, up to a possible
change of constant, it is sufficient to check the Carleson-type conditions (3) and
(9) on the elements of F.
The family F gives rise to a family 7 of right halves of the Carleson rectangles
in F, which we will call tiles, and which will form a decomposition of the
closed half plane C,,, into disjoint sets. These are rectangles of the form 77 ; =
[bj,bj11) x I, where Qr ; € F, see Figure 1.
We say that an interval I € Dy belongs to generation j, if it is the base for
a Carleson square Q7 ; € F. Thus each I € Dy belongs to at least one, and
possibly more than one, generation.
The idea of the construction below is to define puy as the “largest possible part”
of u which can be dominated by vy, in terms of Condition (9). Recall that by
the Carleson-type Condition (3) we are given, we have in particular

(Tr0) = 1(Qr0) < v(Qro) = vn(Qr1p)

for all intervals I of generation 0 in Dpy. For such intervals, we define the
remaining part of vy by

0 ~ vn(Qr0) — (Tt )
VN‘{aN}XI = un(Qr.0) VN’{aN}xP

This defines a measure v on {ay} x iR.

In the second step, we define a measure v on {ax} x iR by letting

V?\/(QI’,I)_N(TI’J) : 0 , ,
V]1\7|{aN}><I’ - { (@1 1) VN|{QN}XI/ if VN(Q[ ’1) > (T ’1)’

0 if VR (Qra) < u(Tr ),




an |
anN 1 T,O
an | | ] T
anN T T’O
an T T.72 T.73
an T Tvo
i
+ [
i T 4
T
1 T,
T
T | T.72 T,3
an=bobi by b by bs

Figure 1: The tiles 17 ;

for intervals I' € Dy of generation 1. In the next and all following steps, having
already defined the measure v on {ay} x iR for some j > 0, we let

J+1 —
VN ‘{aN}XJ -

ng(QJ,j-Q—l)_.U'(TJ,j+1)
v (Qrj+1)

0
0

UN|{an}xJ

if v (Qui1) > m(Trj),
it v (Quj+1) < w(Trj1), v (Qujr1) >0,
lf V.Jj\[’{aN}XJ = 07

(13)

Jj+1 o

for intervals of generation j + 1 in Dy, thereby defining the measure v/~ on
{an} x iR. Depending on which case in (13) appears, we say that (J,j + 1) is
of type 1, 2 or 3, respectively. We are finally ready to define the measure uy.

We start by letting

MN|T1,0 = M|T1,o



for intervals I € Dy of generation 0. For T7 ;41 € T, j > 0, let

'“N’TI,J'H =

Tr 4 if v (Qrj41) > (T1 1),

J . .
Qr,j .
Vﬁ((:r,,]jﬁ;)”‘TI,Hl if v (Qrj+1) < (T j41), v (Qrj+1) > 0,

; J —
0 if vyt =0

Since the tiles in 7 form a decomposition of C,,,, this defines a measure py on
Cap -
By construction, we have for each Qr; € F, (I,j) of type 2 or type 3:

un(Qr;) = vn({an} x I).
If (I,7) is of type 1, then

pN(Qr;) <vn({an} x I).

Hence ppy satisfies Condition 3 in Theorem 2.1 with respect to vy. Let us now
look at the Carleson condition for pu — uy.

If (I,7)is of type 1, then un (17 ;) = (Tt ;) by construction, and (u—pun)(17,;) =
0. Therefore, by decomposing the Carleson square ()7 ; into

Qrj=Tr;U U Qr -1

I'cl,Qp ;_,€F

and iterating if necessary, we see that we have to check Condition 3 only for
Carleson squares Qr ; with (I, j) of type 2 or type 3. But in this case,

un(Qrj) = vn({an} x I)

and thus by the original Condition 3 in Theorem 2.1 for 4 and v, u— uy satisfies
Condition 3 with respect to v — vy, again with constant 1 on Carleson squares
in F.

Finally, again by Condition (3) in Theorem 2.1 for u and v, we see that for all
tiles 77 ; contained in the strip {z € C: ay < Rez < any1}, un|r,, = pl1y ;-
Therefore, p — py is supported on the closed half-plane C,,_ ,. We can now
make an induction step by applying the same procedure to the measures pu— iy,
v — vy with respect to the half-plane C to construct py41, etc. We thus
obtain a decomposition

aAN+1

= z Hn
n=N

satisfying the Conditions (7), (8) and (9) in the lemma.

It remains to be shown that for each n > N, u, is a Carleson measure with
respect to the shifted half-plane C,,_,, with the appropriate estimate of the
Carleson constant. Let @ be a Carleson square in C,, , over the interval I.
Recall that by (9), there exists C’ > 0 with pn(Q) < C'vp(Q) for each Carleson
square Q in C and that (ap — an_1) > can.



If the sidelength |I] of @ is less than a, — a,—1, then @ has empty intersection
with the support of un, and p,(Q) = 0. If |I| > a, — ap—1, then @ can be
covered by a Carleson square Q in C, with sidelength at most % |I|. Thus

ﬂn(Q) < Nn(@) < C/Vn(Q) < Clzﬁnu’a

and we obtain the desired result. The result for uy is shown in the same way.
|

Now let f € AJ. Note that by the (Ag)-condition, each of the norms || f| 5z ,
denoting the norms on the Hardy spaces HP(C,,) of the shifted half planes
C,,, is finite. Restricting u to some closed half-plane C,,, and using the
decomposition in Lemma 2.2, we obtain

/_r (2) Pdp(z)

- Z / 2)Pdpa(2)

< Cp? Z 571”]0”};15”_1
o0
/ ;)
- T2 ol
C :
<

(2R)30p7 1 ()

Here, we use that for any f € AL, the map
T / (r 4 dt)[Pdt
is non-increasing. Using that
[ 1r@rane = s [ 1sepa),

we obtain the desired estimate.

Now we can finish the proof of the theorem by showing that a sequence of
positive numbers (ay,,)nez with the required properties (5), (6) exists, and that
we can also treat the case v({0}) > 0. Let R be the (As) constant of the
measure 7, and let F' be the function given by,

F:[0,00) = R, F(r)=0([0,r)).

F is left continuous, and also right continuous up to countably many jumps.
By the (As)-condition,
F(2t) < RF(1).

10



so in particular, a jump of F' at ¢ may be no more than (R — 1)F(t).
If 7({0}) = 0, then let for n € Z

an = sup{r > 0: F(r) < (2R)*"},

provided that the supremum is finite. If the supremum is infinite, we stop the
sequence at the corresponding n.
By the right continuity of F, a, > 0 for all n € Z, and by the condition on

jumps of F,
1
(2R)*" > F(ay,) > E(2R)2”

and therefore

50, ans1)) . (2R)??
S0, > ReRE >R

Hence apy1 > 2a, and

Gp4+1 — An >

N | =

Anp+1

Furthermore,
(2R)2n(4R - 1) < D([ana an+1)) = F(an-i-l) - F(an) < (2R)2n+27
hence

ﬂ([aman—l—l)) 3
2R S S lanan)) < G

If 7({0}) # 0, then let ag = 0, By = 7({0}), and let
an = sup{r > 0: F(r) < (2R)*™*Y5({0})} for n € N.
We see in the same way as before that properties (5), (6) hold, if we replace

v([ag,a1)) by 7((ag,a1)). We write 81 = v((ag,a1)) and B, = v([an—1,a,)) for
n > 2. Then

Boll f g +>_ Bullfllfyp < /c [F()Pdv(z) < Boll FIlyp +D_ Bull £l
n=1 ) + n=1

and the same construction as before applies. If the sequence (a,) is finite to
the right, an analogous argument can be made. [ |

The following proposition is elementary and appears for special cases in [8, 9].
Partial results are also given in [1, 4].

Proposition 2.3 Let A2 be a Zen space, and let w : (0,00) — R be given by
o
w(t) = 27 / ey (t>0),
0

Then the Laplace transform defines an isometric map L : L2/(0,00) — A2,

11



Note that the existence of the integral is guaranteed by the (As)-condition.

Proof: Let f € L2(0,00). Then

w

sup /C L (2 + o) Pdu(z)

e>0

= sup [ ILHE+ 7+ i)

e>0

o0
= sup [ IFE gy otr)

e>0

= sup [ 2 g g dolr)

e>0J0
= sup/ |f(t)|227r/ e 20Tt g (r)dt
e>0J0 0

> 2
= [ IroPutr
0
by isometry of the Fourier transform and the dominated convergence theorem.
|

Here is a Laplace—Carleson Embedding Theorem, which is an immediate con-
sequence.

Theorem 2.4 Let A2 be a Zen space, v = i @ d), and let w : (0,00) — R be
given by

w(t) = 27 / e p(r) (£ 0). (14)
0
Then the following are equivalent:

1. The Laplace transform L given by Lf(z) = fooo e~ f(t)dt defines a bounded
linear map
L: L?H(O,OO) - LQ(C-HM)'

2. For a sufficiently large N € N, there exists a constant C > 0 such that

A

3. There exists a constant C > 0 such that

2
(ctN—le—At)(z)‘ du(z) < C [tN"Le=M 2w (t)dt for each A € C..
Cy

w(Qr) < Cv(Qr) for each Carleson square Q.

Proof: Noticing that £(tV~1e™*) is a scalar multiple of (ky)Y, this follows
immediately from Theorem 2.1. [ ]

12



2.2 Hankel operators on Zen spaces

The boundedness of Hankel operators on Zen spaces can be deduced from a
Carleson measure condition on the symbol, in analogy to the classical proof of
the Fefferman—Stein duality theorem via Carleson measures (see e.g. [5], page
239). We will require some adaptations of classical calculations for the case of
the disk to the case of the half-plane, and start by introducing the required
notation.

Let ky(z) denote the normalized kernel and let

~ 1 Re A

_ 2 _ —
) = a0 = (t — Im )2 + Re A2

denote the Poisson kernel for the right half plane C, .

Theorem 2.5 Let A2 be a Zen space, dv = dv @ d\ and let N € N with
I Wdl)(?‘) < o0. Letb: Cy — C be analytic, b € H*(C). If the measure

Rez
¥/()|? Re 2 /0 (Re z — r)di(r)dA(2)

is a v-Carleson measure on Cy, then the Zen Hankel operator
J— _
A, = AL fe Qubf
defines a bounded linear operator. Here, QQ,, denotes the orthogonal projection

Q. : L*(Cy,dv) — A2.

Proof: For the proof, we follow the lines of the proof of Fefferman’s Duality
Theorem in [5]. Suppose that |b'(z)|? [fReZ Re(z —r)dv(r)]dA(z) is a v-Carleson
measure and let f,g € A2. Then

(Qubf.g)a; = /0 ) / B+ D+ )g(r +t)dtdi(r)
— /000 /(C V(z+1)(f(r+)g(r + ) (2) Re 2dA(2)dis(r),

where we use the Littlewood—Paley identity

/ / |f (r + t)[dtdi(r / [c f'(z +7)*Re 2dA(z)di(r)

13



and its polarization. Now

/OOO /(C+ V(z+7)f(r+2)g (r + z) Re 2dA(z)di(r)

< </0°°/C+ Blo 4 P+ ) Re sdA()d5 ()2
(/Ooo /C+ g’ (2 + r)|? Re 2d A(z)di (r)) /2

= ([ @RISR et (A
(/Ooo /C+ g’ (2 + r)|* Re zd A(2)di (1)) "/

S N flazligllaz,
and the second term [;° fcc+ W (z+7)f'(r+2)g(r+2) Re 2dA(2)dp(r) is estimated
accordingly. Hence the Hankel operator is bounded. ]

3 LP— L7 embeddings

As mentioned above, there is no known full characterization of boundedness of
Laplace—Carleson embeddings

LP(0,00) — LYCy,p), frLf= /OO eV f(t)dt.
0

However, characterizations are possible in case p < 2, p’ < ¢ and in some cases
with additional information on the support on the measure. We list some results
for natural spectral inclusion conditions which appear naturally in operator
semigroups. In the cases we consider here, the oscillatory part of the Laplace
transform can be discounted, and a full characterization of boundedness can be
achieved.

First, let us make the following simple observation.

Proposition 3.1 Let pu be a positive regular Borel measure on Cy, let 1 <
p,q < 0o and suppose that the Laplace—Carleson embedding

L: Lp(07 OO) - Lq(C+,M), f = ﬁf’

is well-defined and bounded. Then there exists a constant Cp,, > 0 such that
for all intervals I C iR,

w@Qn) < Cpalll ifp>1,  p(Qr) < Cpq ifp=1. (15)
Proof: Let Q; be a Carleson square with centre A\;. Note that

% Y 1 1
[(Le=> )”%q(c%u) > /Qz [(Le™ M) |dp > WM(QI) w(Qr),

- 24|Ia
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and
1 2

pRelr m
for 1 <p,q < co. Hence there exists a constant C), , > 0 such that

—A
lle™I5 =

Q1) < CpglT|¥?" if p > 1 and p(Qr) < Cp g if p = 1.

This concludes the proof. [ ]

The proposition immediately yields the following theorem:

Theorem 3.2 Let p be a positive reqular Borel measure supported in the right
half-plane C,, and let 1 < p’ < q < oo, p < 2. Then the following are
equivalent:

1. The Laplace—Carleson embedding
EILp(0,00) _>Lq(((:+aﬂ)a f'_>£f
is well-defined and bounded.

2. There exists a constant C > 0 such that

w(Qr) < C!I!q/p/ for all intervals I C iR (16)

3. There ezists a constant C' > 0 such that |Le™ |2 < Clle™*||r for all
A (C_l,_.

Proof: Obviously (1) = (3), and (3) = (2) by the Proposition.

This leaves (2) = (1), which is also easy: By the Hausdorff-Young inequality,
the map £ : LP(0,00) — LP (iR) is bounded. By Duren’s theorem, the Poisson
extension LP (iR) — L%(C,) is bounded, given the Carleson condition (15).
The composition of both gives the boundedness of the Laplace transform L :
LP(0,00) — LI(Cy4, ). This concludes the proof. [

The case p > 2 is much more complicated. We give two special cases here, that
of the measure p being supported in a strip and that of p being supported in a
sector.

3.1 Sectorial measures

If the measure u is supported on a sector S(f) = {z € C : |argz| < 6} for
some 0 < 6 < 7, then the oscillatory part of the Laplace transform can be
discounted, and a full characterization of boundedness can be achieved (see
also [7], Theorem 3.2 for an alternative characterization by means of a different
measure).

Theorem 3.3 Let i be a positive reqular Borel measure supported in a sector

SO)CcCy,0<0<7T, andlet ¢ >p > 1. Then the following are equivalent:

15



1. The Laplace—Carleson embedding
EILP(O,OO) _>Lq(((:+aﬂ)a f'_>£f
is well-defined and bounded.

2. There exists a constant C > 0 such that u(Qr) < C|I|9?" for all intervals
i I C iR which are symmetric about 0.

3. There exists a constant C > 0 such that ||Le™*|[pa < Clle™||r for all
z € R+.

4. There exists a constant C > 0 such that HEe_'QnHLz < Clle="||r for all
n € N.

Proof: (2) = (1) For n € N, let
T,={z+iyecC, 2" <oz <2 2"l <y <only

That is, T}, is the right half of the Carleson square @, over the interval I,, =
{y €R,|y| <27 '}. The T}, are obviously pairwise disjoint.
Without loss of generality we assume 0 < 6 < arctan( %), in which case S(0) C

U;:,O:—oo Tn
Now let z € T}, for some n € Z. Then we obtain, for f € LP(0, c0),

ILf(2)] S/ﬂ \e‘“\!f(t)\dté/o 2" 71| F(4)]dt < Co2 " TIM f(27 Y,

where Cg > 0 is a constant dependent only on the integration kernel O(t) =
X[0,00)(t + 1)e7*"t and M f is the Hardy-Littlewood maximal function. We
refer to e.g. [15], page 57, equation (16) for a pointwise estimate between the
maximal function induced by the kernel © and M. We can easily dominate ©
by a positive, radial, decreasing L' function here. Consequently,

/S NECTCIED D CR TS

< C% Z 2q(—n+1)2nq/p’(Mf(z—n—l-l))q

= C§ Z 20/v' (2= 1) (g f (2P )a/p
0 a/p

< C%zq/f”< > 2<‘"“><Mf<2—"+1>>p)

S A5

Note that in the case 1 < p < 2, (but not for p > 2) this result can also easily
be deduced from the Hausdorff-Young inequality and Duren’s Theorem [3].

16



(4) = (2) Let I C iR be an interval which is symmetric about 0. We can assume
without loss that |I| = 2™. It is easy to see that

_9on—1 o 1
|(Le Nz)| = ST > S for z € Q.
Thus
p@) < @ [ e I )
Cy
< C(2n+1)qH6—2”‘1'H% ~ 9n49—na/p _ ona/p"
(1) = (3) and (3) = (4) are obvious. [

Remark 3.4 Let u, 6, p and q be as in Theorem 3.3. In [7], Theorem 3.2, es-
sentially the equivalence of the following statements is shown for discrete mea-
sures:

1. The Laplace—Carleson embedding
L:IP(Ry) — LUCy,p), s LF.
is well-defined and bounded.

2. There exists a constant C' > 0 such that fi(Q) < C|I|9/P for all intervals
in I C iR which are symmetric about 0, where dji(z) = |z|9du(L).

The proof also uses the method of the maximal function.

Now let us consider the case p > ¢ for sectorial measures p. We will, among
others, obtain a condition in terms of the balayage S, of i (compare this with
the characterization of bounded HP(Cy) — LY(C,, u) embeddings for p > ¢ in
[10]). Recall that the balayage S, of a positive Borel measure p on C is given
by Su(t) = [o, p=(t)dp(z).

To look at a dyadlc version, let

T,={z+iyeCy:2" < <on vl <y <only

as in the previous proof, and for k € Z, let T;, , = T;, + k2", so the T, ;, are the
translates of T, parallel to the imaginary axis. Similarly, let I, = I,, + k2"
be the translates of I, := {y € R : |[y| < 2"7'}. The {T},x : n,k € Z} then
form a dyadic tiling of the right half plane. We write S, = UrezTnh i = {2 €
C:2" 1 <Rez < 2"}. Let

Z Xlnk 2;lk)

n,kEZ

Sd is called the dyadic balayage of . Note that S < 27S,, pointwise, since

Su(t) = /C D> S S /T p(t)du(2)

n=—00 k=—o00
00 00

> 3 )l O > - Y w01 )

n=—00 k=—o0 n,kEZ
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In the special case that u is sectorial with opening angle # < /2, the measure
1 is supported on U, ez, and we get a particularly simple form of the dyadic
balayage Sﬁ, namely

iy N — (Tn+k) e ad
Sut) = D xalt =2 2 X (O = D S,
n=-—00 k=0n=—o0 k=0

where

(T +k) d ok
Z Xln\ln 1 2n7—l|—k SM70(2 t)'

n—=—oo

Let us now look at an estimate from above for S, in terms of the Sik. Let
t € I,\I,—1. Then

2k :
—“2— if n>k
max < 7\‘22" 9
zeTkpz( )< {# if n<k.

This easily implies that for ¢t € I,\I,_1,

-1 o]
1 onti 1
S‘u (t) < — o M(Tn—l—j + E n+ n—l—j
T\ . 2 2 it
Jj=—00 Jj=0
1 -1 e M
_ 25 M\ ntj) "Z+J n—i—]
= Ly i) 5ol
Jj=—00 Jj=0
1
= = § 2%84 (271) § J
- S )+ 0 (27t)
Jj=—00
Hence, for t € R
1 -1
— 2jgd (9] J
Sut) < = 7-—2_00: 22757 (291) +7§0 4 (27t (18)

—_

= —| 2o 2802 + S)

j=—00

Theorem 3.5 Let i be a positive reqular Borel measure supported in a sector
S@O) cCy,0< 0 < Fandletl < q < p < oo. Then the following are
equivalent:

1. The embedding
L:LP(Ry) — LYCyp),  f= LS,
is well-defined and bounded.
2. The sequence (27" 1u(S,,)) is in (P/®=9(Z).

18



3. The sequence (2"/p||£/~62n||LZ) is in (9! (P=9) (7).
If p’ < q, then the above is also equivalent to

4. tq@—p)/pgﬂ c Lp/(p—q)(R).

Remark. If p’ > ¢, then the sweep S, may be infinite everywhere, so we cannot
expect a characterisation in terms of S),.

Proof: We will start by showing (2) = (1). Recall that S(6) is contained in
UZ?keZ,leN T, i for some N € N. Suppose that (2) holds. Now as in the proof
of Theorem 3.3, we obtain for z € S,

[Lf(2)] < / e [ f(t)]dt < / 2" | F()]dt < Co2 M TIMF(277 ),
0 0
Note that x7_, M f(27"") < x7_, M f. Consequently

/ £F(2)dp(2)
Cy

S > 200 M (T u(S,)
> 20 M (27 ()
oo q/p oo 1/(p/q)
< (Z 2(—n+1)Mf(2—n+1)p> <Z 2(q/p’)(—n+1)(p/q)’u(5n)(p/q)’)
n=—oo n=—oo

< AL 1 (Sl /ey

by the boundedness of the Hardy-Littlewood maximal function on LP(0, 00).
(1) = (2) For A > 0 we write k) for the LP(0,00) function given by

Ea(t) = AYPe™™ (£ >0),

noting that ||k z» = 1.
From a result of Gurarii and Macaev in [6], it can be deduced that

1/p
Zan];gn R~ (Z ]an]p> (19)

nel nez

14

for any IP sequence (av,).
More precisely, we claim that there are constants A, B > 0 such that for all
scalars (ag) we have

AY P <
n

Z (679 lngn

p
<B) loal
p n
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By the change of variable x = e~ we have
> ankr| = [

Recall that a sequence (m;) is a lacunary sequence if infmjii/m; = r > 1.
Now, the result of Gurarii and Macaev in [6] asserts the following: If (n;+1/p)
is lacunary, then the sequence of functions (¢ + (n; + 1/p)/Pt") in LP(0,1) is
equivalent to the standard basis of /7.

Writing n; = 2/ — 1/p for j € Z, we have the conditions of the Gurarii-Macaev
theorem, and the claim follows.

p
dx.

S 20/ -1
n

Now, denoting by (2, dS2) the probability space of sequences (e,) taking values
in —1, 1 with equal probability, equipped with the standard product o-algebra
and probability measure, we obtain

q/p
(Z\anwﬁ) 2 [ 160 nanbu)ltyane)
- L)
[ (S tanpers " o)
Cy - " ’2"4‘2‘2
q/2
1
_ 202n/p -
;/S (;\anr 2 ‘mz,q) e

" 1
2 2 [l dute)

= Y lan 127797 u(S,).

q
du(z)dS(e)

1
; encin 2" M+ 2

Q

Here, we have used the fact that p is supported in a sector S(6) in the last
inequality. Thus (27"%/F 14(S,,)) is a {®/9" sequence, and we have proved the
desired implication.

A simple argument, again using sectoriality, shows that

1
| €k ll§ 2 Soi(Sn)-

Hence (3) = (2).
For (1) = (3), note that for any n,

Re Lkon 2 |Lkon(2)] for z € S(0).
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Hence for any sequence (ay,) € IP/9(Z), ay, > 0 for all n,

q
2 anllZ ke gy < . (Zai/%"/pwkw(z)r) du(2)
+

n

q
/ (ReZa}/qT‘/”Ekgn (z)) du(z)

q
/<C+

A

174N

IN

du(z)

L a}/12MPkgn)(2)

q

< 711/ 19"/,

p

lanllp/q
by (19). This proves the equivalence of the first three statements.

(2) = (4) Again, we can assume without loss that 0 < 6 < 7/2, in which
case S(0) C U2 Ty IE (43P0, & L/v=4(R), then by (17) #1G-D/pgt | ¢

S e/l = |

~

n=—oo

Lp/(p_Q) (R)’ and

Z 9—nar/ W' (P=a)) (G, P/ (P=0)

n=—oo

— Z ong—n(p—2)a/(p— o) 1U(Sn)P/ P~
onp/(p—q)

n=—oo

p/(p—q)

Z / ‘t—(p—zm/p s it
e ! Int1\In -

= |t (p— 2<J/p5d HZZ g) < oo,

%

Thus (2) holds.
Conversely, if (2779/7' 14(S,,)) € 1P/®=9) then t_(p_Q)Q/pSiO € LP/P=4(R) by the
above calculation. By (18),

”t—(p—Z)q/pSM Hp/(p—q

—1
< (”t (= 2)q/de( )”p/p q)+ Z 22kHt (= 2)q/de (2kt)”p/p q))

k=—o00

One sees easily that

22kHt_(p_2)q/pSﬁ,0(2kt)Hp/(p—q) — 92kg—k(p—a)/pok(p—

thus the second term in the sum converges and is controlled by the expression
Ht_(p_Q)Q/(p_q)SiOHp/(p_q). For the first term, write

D SRTRCLL 1 g RPN LI =)

k=0 n
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as before. For each k& > 0, it follows that

A(Tor) p/(p—q)

B n+k

/(tq(2 p)/pZXIn\In—l(t) on+k ) dat
n

< Z annq@—p)/(lﬂ—‘ﬁ2_(”+k)p/(p_q)M(Tn+k)p/(p_q)

n

— Z on(a/p=a+1)p/p=a)g=(ntk)p/w=a) (T \P/(P=0)

— Z on(=a/p'+Vp/(p=a)g—(ntk)p/(p=a) (T, .\ P/ (P—0)
9—k(1=q/p")p/(p—q) Z o(ntk)(=a/p)p/(0=a) (T, P/ (P=9)

< 9 kQ-a/p)p/(p=q)

Hence t~(#=2)4/Pg, ¢ [P/(P~9(R). This concludes the proof. [ |

3.2 A counterexample

Let p denote the measure on the interval [1,00) defined by du(z) = dz//x.
Clearly, u is sectorial and contained in a shifted half-plane. Moreover y satisfies
the estimate that for a Carleson square @ of size h one has u(Q) < 2h1/2.

Nonetheless, the Laplace-Carleson embedding £ : L?(0,00) — L'(u) is un-
bounded (or equivalently, in this case, the Carleson embedding H?(C,) —
L' () is unbounded). This can be seen by noting that p does not satisfy the
condition of [11, Theorem C], since the function ¢ — fr(t) = du(z) behaves as

22 and thus does not lie in L2. (Here I'(¢) may be taken to be the interval
[t,00).)

It is constructive to give an explicit counterexample, following the reasoning of
the proof of [11, Theorem C]. (Note that counterexamples in the case of the
disc are simpler, and can be found in [16].)

Define ¢ : R — R by

1 if ¢ < 1,
t=4(1 +log |t|) if |t| > 1.

Thus ¢ € L?(R) and there is a function F' € H? with Re F(it) = ¢(t). Now, if
F € L'() we would have

/RequS /\F\du<oo,

from which, as in [11] we could conclude (by writing Re F'(x,0) in terms of the
Poisson kernel) that

o0 *© dx
A= —_—
/_Ooé(t)/l PO Ry A
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and hence

/_:¢(t)\t\_1/2dt=/oo ¢(t)/|oo T AT <A < oo,

oo y 222

which is a contradiction.

3.3 Measures supported in a strip

Theorem 3.6 Let 1 be a positive reqular Borel measure supported in a strip
Coyas ={2€C:as>Rez>aq} for some ag > a1 >0, and let 1 <p' < g <
o0, q > 2. Then the following are equivalent:

1. The embedding
EILp(0,00) _>Lq(((:+aﬂ)a f'_>£f

is well-defined and bounded, with a bound only depending on the Carleson—
Duren constant C' and the ratio g—f

2. There exists a constant C > 0 such that

w(Qr) < CIY"" for all intervals I C iR. (20)

3. There exists a constant C' > 0 such that |[Le™*|pa < Clle™*||ze for all
2 € Coy -

Proof: Again, obviously (1) = (3). To show (3) = (2), we have to remember
that the argument in Proposition 3.1 only works for Carleson squares Q7 with
centre A\; € Cqy a,- Any Carleson square with centre Ay € C,, /3.4, can be
covered by a Carleson square of at most triple sidelength with centre in Cg, q,,
any Carleson square with centre in A; € Cg,,/3 has nonempty intersection
with the support of p. If Q7 is a Carleson square with centre A\; € C,,, then

2Re)\1] 11

its intersection with the support of p can be covered by at most "

Carleson squares with centre in C,, o,. Hence
I /
u(@n) £ Dt < |1pre.
a2

This leaves (2) = (1).
Consider the line parallel to the imaginary axis iR + a;/2. Note that

L:LP(Ry) — L2(R + %)
is bounded, since

L1 2 eny = I£(e % ) 12my = e/ fl2

tnl/2 2
<l 2 11Flp S ar® £l
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Since the measure p is supported in Cy, ,, by the Carleson condition (15) we
have for each Carleson square in Q; = {z € C : ilmz € I,a;/2 < Rez <
01/2+ 11} in C, o,

w(Qr) < ClI < O[T =D 1j9/2 < Caf VP12 pjal2,
Thus the Poisson embedding
LA(iR+ ) = LY(Cy 1)

/_
is bounded by Duren’s Theorem, with constant Cozé/ P12, Again, composing

both maps yields the Laplace transform
L:LP(Ry) = LYCq, pa)

2=p 1/2-1/
with norm bound Ca;* oé/Q Yr— ¢ (Z—f) g

3.4 Sobolev spaces

In this subsection, we will be interested in embeddings
H%’(O’ OO) — Lp((c-‘ra M)a
where for § > 0 the space ’H%(O, o0) is given by
P P <4 B P
H(0,00) = VFeDP®y): [ () fePdt <ol
0 de
1718,y

d
7115+ 1) 1

Here (%)B f is defined as a fractional derivative via the Fourier transform.
It is now easy to find versions of Theorems 3.3 and 3.5 for Sobolev spaces.

Corollary 3.7 Let u be a positive Borel measure supported in a sector S(6) C
Cy,0<0< 3, and let g > p > 1. Then the following are equivalent:

1. The embedding
L HE0,00) > LTy, ), f oo LS,
is well-defined and bounded.

2. There exists a constant C > 0 such that g 3(Qr) < C|I|9?" for all
intervals in I C iR which are symmetric about 0. Here, dugp(z) =

(1t ho)du(2).

3. There ezists a constant C' > 0 such that ||[Le™|[La < CHe_'ZHHg for all
A R+.
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Proof: Follows immediately from Theorem 3.3 and basic properties of the
Laplace transform. [

Corollary 3.8 Let u be a positive reqular Borel measure supported in a sector

SO)CCy,0<0<7F andlet1 <q<p, B>0. Suppose that Sz, , € Lr/=a),
Then the embedding
L:H5(0,00) = LUCh.p),  f > LF.
is well-defined and bounded.
Proof: Follows immediately from Theorem 3.5. ]

Laplace—Carleson embeddings of Sobolev spaces ’H% are easily understood by
means of Theorem 1.1:

Theorem 3.9 Let pu be a positive Borel measure on the right half plane Cy
and let 8 > 0. Then the following are equivalent:

1. The Laplace—Carleson embedding
H%(()? OO) - LQ((C-H /’L)
is bounded.

2. The measure |1 + z|~?Pdu(2) is a Carleson measure on C,.

Proof: The proof is a simple reduction to the Carleson embedding theorem.
Note that the map

H3(Ry) — H*(Cy), [ (1+2)°Lf,

is an isomorphism. The remainder follows from the holomorphy of (1+ z)? and
Lf on C,, and a density argument. [ ]
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