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A meshfree approximation scheme based on the radial basis function methods is presented for
the numerical solution of the options pricing model. This work deals with the valuation of the
European, Barrier, Asian, American options of a single asset and American options of multi
assets. The option prices are modeled by the Black-Scholes equation. The θ-method is used to
discretize the equation with respect to time. By the next step, the option price is approximated
in space with radial basis functions (RBF), in particular, we consider multiquadric radial
basis functions (MQ-RBF). In case of American options a penalty method is used, i.e. the
free boundary is removed by adding a small and continuous penalty term to the Black-Scholes
equation. Finally, we present a comparison of analytical and finite difference solutions and
numerical results.

Keywords: meshfree methods; option pricing; radial basis functions; European option;
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1. Introduction

An option is a derivative product representing a contract, which gives the buyer a
right to buy (call) or sell (put) the underlying asset at prescribed price (the strike

price) depending on the certain period of time or on a prescribed date (exercise
date).
There are plenty of kinds of options in the market. In this work we focus on

Vanilla options, i.e. an option without any nonstandard properties. A vanilla op-
tion can belong to different styles of options, namely the European option or the
American option. The difference between these two styles of Vanilla options is the
date of exercise: the European option can only be exercised at the end of its life on
the maturity date, while the American option allows the holder the early exercise
before the maturity date.
An analytical formula exists for the evaluation European call and put options.

By assuming a risk-neutrality of the underlying asset price, Black and Scholes [1]
showed that the European call option value satisfies a lognormal partial differential
equation of diffusion type, which is known as the Black-Scholes equation. However,
there is no analytical formula for the American option due to the free boundary.
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Until recently, there are only a few grid-based numerical methods for the valuation
of the American options, but in this work we focus our attention on a meshfree

radial basis function (RBF) approach as a spatial approximation for the numerical
solution of the options value and its derivatives in the Black-Scholes equation.
Recently the meshfree RBF approximation for solving the Black-Scholes equa-

tion for both European and American options has been examined by a couple of
authors. For instance, the meshfree RBF approach has been considered as a spa-
tial approximation for the numerical solution of American option by Fasshauer et
al. [2, 3]. Hon et al. [8, 9] examined the application of global RBFs to transform the
Black-Scholes equation into a system of first-order ordinary differential equations
with respect to time in order to approximate the numerical solution by known
numerical schemes like, for example, the fourth-order Runge-Kutta method; opti-
mizing the method parameters has been investigated by Pettersson et al. [13]. A
RBF approximation for options value was also studied by Koc et al. [10], Goto et

al. [7] and Marcozzi et al. [12].
Hon and Mao [9] developed a numerical scheme by applying the RBFs, particu-

larly Hardy’s multiquadric, as a spatial approximation for the numerical solution
of the options value and its derivatives in the Black-Scholes equation. They showed
that the method does not require the generation of a grid in contrast to the finite
difference method. Moreover, the computational domain is composed of scattered
collocation points. As we can see, the RBFs are infinitely continuously differen-
tiable and this is the reason why the higher order partial derivatives of the options
value can directly be computed by using the derivatives of the basis function.
Fasshauer, Khaliq and Voss [3] considered the Black-Scholes model for American

basket options with a nonlinear penalty source term. A basket option is an option
whose price is based on multiple underlying assets. A penalty method replaces
a constrained optimization problem by a series of unconstrained problems whose
solutions ideally converge to the solution of the original constrained problem. The
unconstrained problems are formed by adding a term to the objective function
that consists of a penalty parameter and a measure of violation of the constraints.
The measure of violation is nonzero when the constraints are violated and is zero
in the region where constraints are not violated. The problem can be solved on
a fixed domain. The Gaussian radial function was used in this approach with a
user-selectable shape parameter in the numerical tests.
In Section 2 the foundations of the option pricing are presented. Meshfree meth-

ods are presented in Section 3. In Section 4 and Section 5 the procedure of dis-
cretization is described and algorithms are given. Finally, all numerical results are
presented in Section 6.

2. Option pricing

Here we describe briefly the basics of the European, the American, the Barrier, the
Asian and the basket options.

2.1 European Options

An analytical formula exists for the evaluation of European call and put op-
tions [17]. By assuming a risk-neutrality of the underlying asset price, Black and
Scholes showed in their pioneering work [17] that the European call option value
satisfies a backward-in-time lognormal partial differential equation (PDE) of diffu-
sion type, which is known as the Black-Scholes equation.
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We consider an option, whose price V (S, t) satisfies the following Black-Scholes
PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 ≤ t ≤ T, S ≥ 0, (1)

where r is the risk-free interest rate, σ is the volatility of the asset price S, V (S, t)
denotes the option value at time t and asset price S. The terminal condition at the
time of expiry T is given as

V (S, T ) =

{

max {E − S, 0}, for a put option P (S, t) = V (S, t),
max {S − E, 0}, for a call option C(S, t) = V (S, t),

(2)

where E is the strike price of the option.
The boundary conditions for a European call option read

C(0, t) = 0, C(S, t) ∼ S as S → ∞, (3)

where C(S, t) is the value of the European call option satisfying the corresponding
equation (1).
The boundary conditions for a European put option are given as

P (0, t) = Ee−r(T−t), P (S, t) ∼ 0 as S → ∞, (4)

where P (S, t) is the value of the European put option satisfying the corresponding
equation (1) with a constant interest rate r.
By the simple exponential substitution S = ey the PDE (1) and terminal con-

dition (2) changes to

∂U

∂t
+

1

2
σ2∂

2U

∂y2
+ (r − 1

2
σ2)

∂U

∂y
− rU = 0, (5)

U(y, T ) =

{

max {E − ey, 0}, for a put option,
max {ey − E, 0}, for a call option.

(6)

2.2 American Options

The typical feature of an American option is that it allows for an early exercise
before the maturity date leading to a free boundary problem. There is no explicit
solution known for this case due to the free boundary.
A valuation of the American option is difficult because at each moment of time

we have to determine not only the option value, but also the decision whether or
not the option should be exercised for each value of S. This problem is known as
a free boundary problem. In case of the American option it is unknown a priori
where the boundary conditions should be applied since the optimal exercise price
Sf is unknown.
The American option valuation problem can be specified by a few constraints.

The first constraint says that the option value has to be greater than or equal to
the payoff function since the arbitrage profit, which is given from an early exercise,
should not be greater than zero. To avoid arbitrage opportunities the option should
be exercised in the region where the option value is equal to the payoff function,
or it has to satisfy the corresponding Black-Scholes equation where it transcends
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the payoff. Therefore another constraint requires that the Black-Scholes equation
is replaced by an inequality. From the arbitrage it also follows that the option value
has to be a continuous function of S.
The value V (S, t) of the American option satisfies the following inequality

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0. (7)

The terminal condition at the time of expiry T is given as

V (S, T ) =

{

max {E − S, 0}, for a put option,
max {S − E, 0}, for a call option,

(8)

where E is the strike price of the option.
By the same exponential substitution S = ey as in the European option case the

inequality (7) and condition (8) can be changed to

∂U

∂t
+

1

2
σ2∂

2U

∂y2
+ (r − 1

2
σ2)

∂U

∂y
− rU ≤ 0, (9)

U(y, T ) =

{

max {E − ey, 0}, for a put option,
max {ey − E, 0}, for a call option.

(10)

2.3 Barrier Options

Barrier options can be ”knock-out” or ”knock-in” options. If the barrier price of
the option equal the barrier K, the option is called knock-out in case it can be
exercised unless the asset price S achieves the barrier K before expiry. The option
is called knock-in in case it can be exercised if the asset price S passes the barrier
K before expiry.
The knock-out options can be classified into ”up-and-out” and ”down-and-out”

options. The up-and-out option becomes worthless if the barrier K is reached from
below before expiry. The down-and-out option becomes worthless if the barrierK is
reached from above before expiry. The knock-in options can be classified into ”up-
and-in” and ”down-and-in” options. The up-and-in option is worthless unless the
barrier K is reached from below before expire. The down-and-in option is worthless
unless the barrier K is reached from above before expire.
Barrier options are attractive because they give more flexibility: the option pre-

mium can be reduced through the barrier option by not paying a premium to cover
scenarios which are regarded as unlikely.
The value C(S, t) of the down-and-out call barrier option with the barrier K

satisfies

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, S > K, (11)

C(S, t) = 0, S ≤ K. (12)
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The terminal condition on the expiration date T is given as

C(S, T ) = max {S − E, 0}. (13)

If the asset price S reaches K, the option is worthless. Therefore,

C(K, t) = 0, S = K. (14)

Consequently, the payoff X at the expiry date T satisfies

X =

{

max {S − E, 0}, if S > K for all t < T,
0, if S ≤ K at t < T.

(15)

2.4 Asian Options

Asian options are averaging options whose terminal payoff depends on some form
of averaging of the price of the underlying asset over a part or the whole of the
option’s life. For details we refer the reader to Kwok [11].
Asian options have the following advantages: Asian options reduce the risk of

market manipulation; Asian options are typically cheaper than European or Amer-
ican options, because of the reduced volatility inherent in the option.
There are two main classes of Asian options, the ”fixed strike” (average rate)

and the ”floating strike” (average strike) options. An average rate option is a cash
settled option whose payoff is based on the difference between the average value
of the asset during the period from the day of purchase and the expiration date
and a strike price. An average strike option is a cash settled whose payoff is based
on the difference between the average value of the asset during the period and the
asset price at the expiration date. The terminal call payoff X is given as

X =

{

max(AT − E, 0), for a fixed strike,
max(ST −AT , 0), for an average strike.

(16)

Here ST is the asset price at expiry, E is the strike price, AT denotes some form
of average of the price of the underlying asset over the averaging period [0, T ].
In the discrete case we consider an arithmetic average

AT =
1

n

n
∑

i=1

Sti , (17)

where, Sti is the asset price at the discrete time points ti, i = 1, 2 . . . , n.
In the limit n→∞ the discrete sampled average become the continuous sampled

average

AT =
1

T

∫ T

0
Stdt. (18)

Consider that the payoff of an option depends on an average strike of an asset
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1

t

∫ t

0
S(τ)dτ. (19)

Setting

I =

∫ t

0
S(τ)dτ, (20)

we can obtain the following PDE for valuing Asian options [11]

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂I
− rV = 0, (21)

where r is the risk free interest rate, σ is the volatility of the stock price S, V (S, t)
is the option value at time t and stock price S.
The terminal payoff V (S, I, T ) is given by the following expression for put and

call options

V (S, I, T ) =

{

max(S − 1
T

∫ t

0 S(τ)dτ, 0), for a call option,

max( 1
T

∫ t

0 S(τ)dτ)− S, 0), for a put option.
(22)

2.5 American Basket Options

A basket option is an option whose price is based on several underlying assets. The
basket option is a good opportunity for reducing several different risks at the same
time and for this reason it is cheaper [2].
Consider an American basket option. The price of d assets at time t is denoted

by

S(t) = (S1(t), . . . , Sd(t)). (23)

For the American option early exercise is allowed, therefore this problem can be
formulated as a free boundary problem that can be stated by a the Black-Scholes
equation for multi-asset problems

∂P

∂t
+

1

2

d
∑

i=1

d
∑

j=1

ρijσiσjSiSj
∂2P

∂SiSj
+

d
∑

i=1

rSi
∂P

∂Si
− rP = 0, (24)

Si > Si(t), i = 1, . . . , d, 0 ≤ t < T, (25)

where P (S, t) is the value of the American put option, S(t) = (S1(t), . . . , Sd(t))
is the free boundary, T is the time of expiry, σi denotes the volatility of the i-th
underlying asset, r - the risk free interest rate (assumed to be fixed throughout the
time period of interest), ρij is the correlation between assets i and j.
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The payoff function is given by

F (S) = max(E −
d

∑

i=1

αiSi, 0), (26)

where E is the exercise price of the option and αi are given constants.
The terminal condition reads

P (S, T ) = F (S), S ∈ Ω = {(S1, . . . , Sd) : Si > 0, i = 1, . . . , d}, (27)

and along the free boundary

P (S(T ), t) = F (S(t)), F (S(T )) = 0. (28)

The smooth pasting condition to determine the location of the free boundary is
given by

∂P

∂Si
(S, t) = −αi, i = 1, . . . , d. (29)

The boundary conditions read

lim
Si→∞

P (S, t) = 0, P (S, t) = gi(S, t), Si ∈ Ωi, S ∈ Ω, i = 1, . . . , d, (30)

where the Ωi denote the boundaries of Ω along which the price Si vanishes.
For the American option early exercise is allowed, therefore we have the following

positivity constraint

P (S, t)− F (S) ≥ 0, S ∈ Ω. (31)

3. Meshfree Methods

Computation with high-dimensional data is an important issue in many areas of
science but a lot of traditional grid based numerical methods can not handle such
problems. Meshfree methods are a better strategy when dealing with changes in the
geometry of the domain of interest than classical discretization techniques such as
finite differences, finite elements or finite volume methods. Moreover, the meshfree
discretization is independent from a mesh, because these techniques are based only
on a set of independent points.
The scattered data fitting problem is one of the fundamental problems in approx-

imation theory and data modelling in general. We refer the reader to Fasshauer
[4], [5] for a more detailed view, how the meshfree approximation method can be
applied to PDEs.
Here we write very basic concepts adopted from [4], [5].

Problem 3.1 [4] Given data (xj , yj), j = 1, . . . , N with xj ∈ R
s, yj ∈ R find a

continuous function Pf such that Pf(xj) = yj , j = 1, . . . , N .
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Here the xj are the measurement location (or data sites), and the yj are the
corresponding measurements (or data values). These values are obtained by sam-
pling a data function f at the data sites, yj = fxj , j = 1, . . . , N , xj lies in a
s-dimensional space R

s.
We assume in the sequel that the function Pf is a linear combination of certain

basis functions Bk

Pf(x) =
N
∑

k=1

ckBk(x), x ∈ R
s. (32)

Hence, we have to solve the following linear system Ac = y, where the en-
tries of the interpolation matrix A ∈ R

N×N are given by ajk = Bk(xj), j, k =
1, . . . , N, c = [c1, . . . , cN ]⊤, y = [y1, . . . , yN ]⊤.
Problem 3.1 is well-posed, i.e. a solution to the problem will exist and be unique,

if and only if the matrix A is non-singular.

Definition 3.2 A function Φ : R
s → R is called radial provided there exists a

univariate function ϕ : [0,∞)→ R such that Φ(x) = ϕ(r), where r = ‖x‖, and ‖ �‖
is some norm on R

s — usually the Euclidean norm.

Fasshauer [5] showed, that if the univariate function ϕ is completely monotone
and not a constant function, then it leads to a strictly positive definite radial

function on any R
s, and can be used as a basic function to generate bases for the

problem.

4. Discretization

For evaluating the prices of European, Barrier, Asian, American and multi-asset
American options with radial basis functions we consider discretization methods
which were proposed in Goto et al. [7] and Fasshauer et al. [2].

4.1 The Case of European Options

It is well-known that the Black-Scholes equation (1) holds for the option price
V (S, t) with asset price S at time t, where the volatility σ is assumed to be constant
between the date of purchase and the expiration date.
If the differential operator is abbreviated as

F1 =
1

2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r, (33)

the PDE (1) becomes

∂V (S, t)

∂t
+ F1V (S, t) = 0, t ∈ [0, T ]. (34)

The backward-in-time parabolic PDE (34) is supplied with the terminal condi-
tions (2). An application of the θ-method for the time discretization of (34) leads
to
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V (S, t+∆t)− V (t)

∆t
+ (1− θ)F1V (S, t+∆t) + θF1V (S, t) = 0, (35)

where 0 ≤ θ ≤ 1 denotes the implicitness parameter.
After rearranging terms in (35) we obtain

[1 + (1− θ)∆tF1]V (S, t+∆t) = [1− θ∆tF1]V (S, t), (36)

i.e.

H1V (S, t+∆t) = G1V (S, t), (37)

where

H1 = 1 + (1− θ)F1, G1 = 1− θ∆tF1.

The multi-quadric radial basis function (MQ - RBF), which will be used for the
approximation of the option price V (S, t), is given as [7]

φ(S, Sj) =
√

c2 + ‖S − Sj‖2, (38)

where Sj is the asset price at the collocation point j for approximating the option
price V and ‖S − Sj‖ denotes the radial distance of each of the N scattered data
points Sj . The parameter c is positive and it is called shape parameter. The value of
c has dual effects on stability and accuracy of the approximation: as c is increased,
so does the accuracy, but only at the cost of ill-conditioning of the matrix of the
RBF. This effect is known as the trade-off principle.
Therefore, the approximation for the option price V (S, t) by the RBF is given as

V (S, t) ≃
N
∑

j=1

λt
jφ(S, Sj), (39)

where N is the total number of the collocation points at the date t, λt
j denote the

unknown parameters depending on time t, λt
j = λj(t), λ

t+∆t
j = λj(t +∆t), where

∆t is the time-step size.
After substituting the ansatz (39) into equation (37) we get

N
∑

j=1

λt+∆t
j H1φ(S, Sj) =

N
∑

j=1

λt
jG1φ(S, Sj). (40)

Starting from the terminal condition (2), the coefficients λ are determined from
the numerical result by using any backward time integration scheme at each time
step T −∆t.
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4.2 The Case of Barrier Options

Consider the down-and-out option with the expiration price E and the barrier K.
It means that the option becomes worthless if the barrier K is reached from above
before expiry. The price of the option satisfies (11). The terminal condition is given
as (13). It was shown, that the payoff function X for the barrier option is given as
(15). Obviously, the discretized equation derived from equation (11) is the same
as for the European option, equation (40), because the PDE is identical.

4.3 The Case of Asian Options

For Asian options the payoff depends on an average strike of an asset S, given as

1

t

∫ t

0
S(τ) dτ. (41)

Let us set

I =

∫ t

0
S(τ) dτ, (42)

therefore, the following PDE for the Asian option price V holds

∂V

∂t
+ S

∂V

∂I
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (43)

By using the substitution [7]

V (S,R, t) = S ·H(R, t), (44)

where H denotes the option price and R is defined as

R =
1

S

∫ t

0
S(τ) dτ =

I

S
, (45)

equation (43) leads to the backward-in-time convection-diffusion equation

∂H

∂t
+ F2H = 0. (46)

Here, the operator F2 is defined as

F2 =
1

2
σ2R2 ∂2

∂R2
+ (1− rR)

∂

∂R
. (47)

The payoff function on the expiration date t = T for a call option is given as
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V (S,R, T ) =
(

S − 1

T

∫ t

0
S(τ) dτ

)+
. (48)

Using the equation (44) and (45) in expression for the payoff (48) leads to

S ·H(R, T ) = S ·
(

1− R

T

)+
.

The terminal condition for equation (46) is given as

H(R, T ) =
(

1− R

T

)+
. (49)

The approximation for the option price H(R, t) by the RBF is given as

H(R, t) ≃
N
∑

j=1

λt
jφ(R,Rj), (50)

where N is the total number of the collocation points at the date t, λj denote the
unknown parameters, and MQ-RBF φ(R,Rj) is given as

φ(R,Rj) =
√

c2 + ‖R−Rj‖2. (51)

As in the case of the European option the discretized equation reads

N
∑

j=1

λt+∆t
j H2φ(R,Rj) =

N
∑

j=1

λt
jG2φ(R,Rj), (52)

where

H2 = 1 + (1− θ)∆tF2, G2 = 1− θ∆tF2.

4.4 The Case of American Options and Multi-asset American Options

We apply the meshfree approximation schemes for the solution of the American
option problem and for the solution of multi-asset American option problems. Ac-
cording to Fasshauer, Khaliq and Voss [2], we will use a penalty method to remove
the free and moving boundary and a linearly implicit θ - method for the time dis-
cretization.
We consider the equation (24) with conditions described in Section 2.5 which

are satisfied for multi-asset problems.
For eliminating the moving boundary, we will use a penalty term, which was

proposed by Fasshauer, Khaliq and Voss [2]. The penalty term was chosen such
that the solution stays above the payoff function as the solution approaches expiry
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and small enough so that the PDE still resembles the Black-Scholes equation very
closely. Therefore, the penalty term has the following form

ǫC

Pǫ + ǫ− q
, (53)

where 0 < ǫ≪ 1 is a small regularization parameter, C ≥ rE is a positive constant,
and the barrier function is given as

q(S) = E −
d

∑

i=1

αiSi. (54)

After adding the penalty term (53) to the equation (24) the PDE becomes

∂Pǫ

∂t
+

1

2

d
∑

i=1

d
∑

j=1

ρijσiσjSiSj
∂2Pǫ

∂SiSj
+

d
∑

i=1

rSi
∂Pǫ

∂Si
− rPǫ +

ǫC

Pǫ + ǫ− q
= 0, (55)

where S ∈ Ω, 0 ≤ t ≤ T .
By using the RBF approach the following expression for the value of the option

is obtained

P (S, t) =

N
∑

j=1

aj(t)φ(‖S − xj‖).

Here the MQ-RBF is used

φ(‖S − xj‖) =
√

c2 + ‖S − xj‖2. (56)

5. Algorithms

In this section as an example of the computational procedure we consider an algo-
rithm for evaluating the Asian option’s value. Algorithms for other cases observed
in this work have the same structure with specified equations for certain kind of
options. For details we refer the reader to Goto et al [7] and Fasshauer et al [2].

(1) Hmax is chosen big enough and N collocation points are taken uniformly
for the asset price H in the interval [0, Hmax).

(2) The time-step size ∆t = T/M is chosen and the time interval [0, T ] is
discretized with the time-step ∆t, where t = 0 is the date of purchase,
t = T is the exercise date and M denotes the number of time steps.

(3) The option price H(R, T ) at the expiration date t = T is calculated from
the terminal condition (49).

(4) The parameter λT
j on the expiration date T is calculated from the equation

(50) on H(R, T ).
(5) t← T −∆t.
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(6) To obtain the unknown coefficients λt
j equation (52) is solved.

(7) t← t−∆t.
(8) If t > 0, the process returns to the step 6.
(9) To obtain the fair price of the optionH(R, 0), λ0

j is substituted into equation
(50).

6. Results

Here we will present results of our numerical experiments using the procedures
described before. In our experiments we use different values of the support radius
c and a couple of RBF for the radial basis function approximation of the option
price Vt: the Multiquadric (MQ) RBF (38) [7], the Quadratic Matern (QMat)
RBF, Wendland’s (Wend) RBF and Inverse multiquadric (IMQ) RBF. The detailed
description of these RBFs can be found in Fasshauer [5].

6.1 European Options

We consider a European call option with strike price E and expiration date T . The
parameters used in numerical example are presented in Table 1.

Table 1. Parameters for numerical analysis

Maximum asset price value Smax = 30
Number of asset data points N = 121
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Support radius c = 0.01

The numerical results for the RBF approximation with different RBF obtained
with the value of the support parameter c = 0.01 are illustrated by Figure 1 in
comparison with the analytical solution for the European call option. .
The numerical results obtained after increasing the parameter c to c = 1.0 are

illustrated in Figure 2.
The computational error ǫRMSE was measured as the root mean square error

(RMSE) and calculated in the form

ǫRMSE =
1√
N

√

√

√

√

N
∑

j=1

| V (Sj , t)RBF − V (Sj , t)Analytical |2, (57)

where V (Sj , t)RBF and V (Sj , t)Analytical denote the numerical solution by using
the RBF approximation and the theoretical solution, respectively.
The maximum computational error ǫmax is calculated as

ǫmax = max (| V (Sj , t)RBF − V (Sj , t)Analytical |). (58)
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Figure 1. Values of the European call option, obtained by meshfree methods in comparison with the
analytical solution for the European call option with parameters listed in Table 1. Here the MQ RBF,
Quadratic Matern RBF, Wendland’s RBF and IMQ RBF were used with the support parameter c = 0.01.

Figure 2. Values of the European call option, obtained by meshfree methods in comparison with the
analytical solution for the European call option with parameters listed in Table 1. Here the MQ RBF,
Quadratic Matern RBF, Wendland’s RBF and IMQ RBF were used with the support parameter c = 1.0
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The RMSE and maximum computational error for different kinds of RBFs and
the various values of the parameter c are represented in Table 2.

Table 2. The RMSE and the maximum computational error

c ǫMQ
RMSE ǫQMat

RMSE ǫWend
RMSE ǫIMQ

RMSE ǫMQ
max ǫQMat

max ǫWend
max ǫIMQ

max

0.01 0.6205 0.2413 0.2413 0.2276 1.9245 0.6889 0.6889 0.5947
1.0 0.4416 0.2414 0.2414 0.2414 0.8284 0.6889 0.6889 0.6889

We can conclude based upon the Table 2, that for the European option the
IMQ-RBF gives the best result in comparison with the analytical solution, while
the MQ-RBF gives results with the largest error. The change of the parameter c
affects deeply MQ-RBF, but the Quadratic Matern RBF and the Wendland’s RBF
stay insensitive to this change.

6.2 Barrier Options

We consider a down-and-out call option with strike price E and barrier K. Param-
eters used in this numerical example are listed in Table 3.

Table 3. Parameters for numerical analysis

Maximum asset price value Smax = 30
Number of asset data points N = 121
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Barrier K = 9.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Support parameter c = 0.01

The numerical results for the RBF approximation with different RBF are illus-
trated by Figure 3 in comparison with the analytical solution for the down-and-out
call Option.
The numerical results obtained after increasing of the parameter c to c = 1.0 are

illustrated in Figure 4.
The RMSE and maximum computational error for different kinds of RBFs and

the various values of the parameter c are represented in Table 4.

Table 4. The RMSE and the maximum computational error

c ǫMQ
RMSE ǫQMat

RMSE ǫWend
RMSE ǫIMQ

RMSE ǫMQ
max ǫQMat

max ǫWend
max ǫIMQ

max

0.01 0.6207 0.2303 0.2303 0.2199 1.9245 0.6166 0.6166 0.5430
1.0 0.4358 0.2303 0.2303 0.2303 0.8284 0.6166 0.6166 0.6166

In case of the Barrier option we observe the same effect as in the European
option case: the IMQ-RBF gives the best result in comparison with the analytical
solution and the MQ-RBF has the largest error. The change of the parameter c
influences strongly on the results, obtained with the MQ-RBF, but the Quadratic
Matern RBF and the Wendland’s RBF stay insensitive to this change.
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Figure 3. Values of the down-and-out call option, obtained by meshfree methods in comparison with the
analytical solution for the down-and-out call option with parameters listed in Table 3. Here the MQ RBF,
Quadratic Matern RBF, Wendland’s RBF and IMQ RBF were used with the support parameter c = 0.01.

Figure 4. Values of the down-and-out call option, obtained by meshfree methods in comparison with the
analytical solution for the down-and-out call option with parameters listed in Table 3. Here the MQ RBF,
the Quadratic Matern RBF, the Wendland’s RBF and the IMQ RBF were used with the RBF parameter
c = 1.0
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6.3 Asian Options

We consider an Asian average strike call option. Parameters used in numerical
example are listed in Table 5.

Table 5. Parameters for numerical analysis

Maximum R Rmax = 1.0
Number of asset data points N = 101
Number of time steps M = 1000
Time-step size ∆t = 0.0005
Expiration date T = 0.5 (year)
Risk free interest rate r = 0.1
Volatility σ = 0.4
Crank-Nicolson method θ = 0.5
Support parameter c = 0.06

The numerical results for the RBF approximation with different RBF are illus-
trated by Figure 5 in comparison with the solution obtained by finite difference
method (FD), particularly, Crank-Nicolson method. Here HMQ denotes the result
obtained with the MQ-RBF, HQMat is the result obtained with the Quadratic
Matern RBF, HWend is the result obtained with the Wendland’s RBF and HIMQ

denotes the result obtained with the IMQ RBF.

Figure 5. Values of the Asian average strike call option, obtained by meshfree methods with parameters
listed in Table 5, in comparison with the finite difference method with implicitness parameter θ = 0.5
(Crank-Nicolson scheme). Here the MQ RBF, Quadratic Matern RBF, Wendland’s RBF and IMQ RBF
were used with the RBF parameter c = 0.06.

The numerical results obtained after increasing of the parameter c to c = 0.09
are illustrated by Figure 6.
The RMSE and maximum computational error for different kinds of RBFs and

the various values of the parameter c are represented in Table 6.
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Figure 6. Values of the Asian average strike call option, obtained by meshfree methods with parameters
listed in Table 5, in comparison with the finite difference method with implicitness parameter θ = 0.5
(Crank-Nicolson scheme). Here the MQ RBF, Quadratic Matern RBF, Wendland’s RBF and IMQ RBF
were used with the RBF parameter c = 0.09.

Table 6. The RMSE and the maximum computational error

c ǫMQ
RMSE ǫQMat

RMSE ǫWend
RMSE ǫIMQ

RMSE ǫMQ
max ǫQMat

max ǫWend
max ǫIMQ

max

0.06 0.0075 0.0025 0.0025 0.0262 0.0334 0.0239 0.0239 0.0735
0.09 0.0071 0.0025 0.0025 0.0253 0.0333 0.0239 0.0239 0.0627

Here we can see that for an Asian option the IMQ-RBF gives wavy results so it
is impossible to apply this RBF for the Asian option. The IMQ-RBF is also the
most sensitive for the change of the parameter c.

6.4 American Options

We consider an American put option and the parameters used in numerical example
are listed in Table 7.
The numerical results for the RBF approximation with different RBF are shown

are illustrated in Figure 7 in comparison with the solution obtained by finite dif-
ference method (FD), particularly, Crank-Nicolson method.
The numerical results obtained after increasing of the parameter c to c = 1.0 are

illustrated by Figure 8.
The RMSE and maximum computational error for different kinds of RBFs rel-

ative to FD method and the various values of the parameter c are represented in
Table 8.
For the American option the MQ-RBF gives the best result with the smallest

maximum error. The IMQ-RBF, the Quadratic Matern RBF and the Wendland’s
RBF gives almost the same value of RMSE and maximum error. They stay almost
insensitive to the change of the parameter c, while the MQ-RBF gives smaller value
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Table 7. Parameters for numerical analysis

Maximum asset price Smax = 30
Number of asset data points N = 101
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Constant in the penalty term C = 0.9
Regularization parameter in the penalty term ǫ = 0.001

Figure 7. Values of the American put option, obtained by meshfree methods with parameters listed in
Table 7, in comparison with the finite difference method with implicitness parameter θ = 0.5 (Crank-
Nicolson scheme). Here the MQ RBF, the Quadratic Matern RBF, the Wendland’s RBF and the IMQ
RBF were used with the support parameter c = 0.02.

Table 8. The RMSE and the maximum computational error

c ǫMQ
RMSE ǫQMat

RMSE ǫWend
RMSE ǫIMQ

RMSE ǫMQ
max ǫQMat

max ǫWend
max ǫIMQ

max

0.02 0.0899 0.0796 0.0796 0.0796 0.2469 0.4093 0.4093 0.4093
1.0 0.1180 0.0796 0.0796 0.0796 0.4186 0.4093 0.4093 0.4093

of the maximum error and RMSE with smaller parameter c.

Conclusions and Future Work

In this work, we analyzed European, Barrier, Asian and American options via the
meshless RBF approach to obtain the approximate value of the option price. It
is necessary to use accurate, fast methods with very low memory requirements,
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Figure 8. Values of the American put option, obtained by meshfree methods with parameters listed in
Table 7, in comparison with the finite difference method with implicitness parameter θ = 0.5 (Crank-
Nicolson scheme). Here the MQ RBF, the Quadratic Matern RBF, the Wendland’s RBF and the IMQ
RBF were used with the RBF parameter c = 1.0

because the financial markets are becoming more and more complex.
The RBF approximation with infinitely smooth RBFs can be spectrally accurate,

meaning that the required number of node points for a certain desired accuracy
is relatively small. Moreover, the method has a meshfree nature that makes it
relatively easy to use also in higher dimensions. These methods in contrast to the
traditional simulation algorithms use the geometry of the simulated object directly
for calculations. The interpolation problem with RBFs becomes insensitive to the
dimension of the space in wich the data sites lie, instead a multivariate function,
whose complexity will increase with increasing space dimension, we can use the
same univariate function for all choices of dimension. We analyzed the results
obtained by Goto et al. [7] and by Fasshauer et al. [2]. In [7] it was shown that
the results of the RBF approximation agreed well with the theoretical solution.
Fasshauer [2] got results for American options and multi-asset American options
problems comparable to the finite difference method with fewer degrees of freedom.
In our study, we examined and implemented the RBF approximation to obtain

the fair price of the European, Barrier, Asian and American options. As a new
development, besides MQ-RBF, we investigated different kinds of RBFs such as
the Quadric Matern RBF and Wendland’s RBF.
The meshfree approach can be more accurate and stable method compared with

the Finite Difference method and can be applied to solve PDEs. In our work, the
best results were obtained in case of the Asian option for the solution of the reduced
equation, where the fair price of the option is purely comparable with the values,
obtained by the finite difference method.
Finally, we note that the results obtained by the meshfree method strongly de-

pends on the choice of the RBF, implemented for the approximation of the value of
the option. In our investigation, the smallest root-mean-square error was obtained
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with the MQ-RBF in comparison with Quadric Matern and Wendland’s RBF,
however the largest maximum error was obtained in the case of the MQ-RBF.
The choice of the RBF’s shape parameter c also affects to the accuracy of the

method, however we observed, that the influence of the change of the RBF’s pa-
rameter c is the most intense for the MQ-RBF while for the other examined RBFs
the RMSE and the maximum error remain almost unaltered.
In our further research, we will examine the influence of the different parameters

of the method to the accuracy, particularly, to find the optimal value of the RBF’s
shape parameter c. It would also be very interesting for us to find RBFs that yield
better results than the RBFs examined here.

Acknowledgements

The authors thank Ljudmila Bordag, professor of Halmstad University, for her
hospitality.

References

[1] F. Black and M.S. Scholes, The pricing of options and corporate liabilities, J. Political Economy 81
(1973), pp. 637–654.

[2] G.E. Fasshauer, A.Q.M. Khaliq and D.A. Voss Using Meshfree Approximation for Multi-Asset Amer-
ican Options. J. Chinese Inst. Eng. 27 (2004), pp. 563 – 571.

[3] G.E. Fasshauer, A.Q.M. Khaliq and D.A. Voss, A parallel time stepping approach using meshfree
approximations for pricing options with non-smooth payoffs. Proceedings of Third World Congress
of the Bachelier Finance Society, Chicago, 2004.

[4] G.E. Fasshauer Meshfree Methods. Handbook of Theoretical and Computational Nanotechnology, M.
Rieth and W. Schommers (eds.), American Scientific Publishers 27 (2006), pp. 33 – 97.

[5] G.E. Fasshauer Meshfree Approximation Methods with MATLAB (Interdisciplinary Mathematical
Sciences). World Scientific Publishing Co.Pte.Ltd., Singapore, 2007.

[6] B. Fornberg, E. Larsson and N. Flyer Stable computations with Gaussian radial basis functions. SIAM
J. Sci. Comput. 33 (2011), pp. 869–892.

[7] Y. Goto, Z. Fei, S. Kan and E. Kita Options valuation by using radial basis function approximation.
Engrg. Anal. Bound. Elem. 31(2007), pp. 836 – 843.

[8] Y.C. Hon A quasi-radial basis functions method for American options pricing. Comput. Math. Appl.
43 (2001), pp. 513 – 524.

[9] Y.C. Hon and X.C. Mao A radial basis function method for solving options pricing model. J. Financial
Engineering 8 (1999), pp. 1 – 24.

[10] M.B. Koc, I. Boztosum and D. Boztosum On the numerical solution of Black-Scholes equation.
Proceedings of international workshop on Meshfree method, Lisbon, Portugal (2003), pp. 6 – 11.

[11] Y.K. Kwok Mathematical Models of Financial Derivatives. Springer, Singapore, 1998.
[12] M. D. Marcozzi, S. Choi and C. S. Chen RBF and optimal stopping problems; an application to the

pricing of vanilla options on one risky asset. Boundary Element Technology XIV, C.S. Chen et al.
(eds.), Computational Mechanics Publications (1994), pp. 345 – 354.

[13] U. Pettersson, E. Larsson, G. Marcusson and J. Persson Option Pricing using Radial Basis Functions.
ECCOMAS Thematic Conference on Meshless Methods, Portugal, 2005.

[14] M.J.D. Powell The Theory of Radial Basis Function Approximation. Advances in Numerical Analysis
III, Oxford: Clarendon Press (1992), pp. 105 – 210.

[15] S. Rippa An algorithm for selecting a good value for the parameter c in radial basis function inter-
polation. Adv. Comput. Math.11 (1999), pp. 193 – 210.

[16] R. Seydel Tools for Computational Finance. Springer, Berlin, 2009.
[17] P. Wilmott, S. Howison and J. Dewynne The Mathematics of Financial Derivatives: A Student

Introduction. Cambridge University Press, 1995.
[18] Z. Wu and Y.C. Hon Convergence error estimate in solving free boundary diffusion problem by radial

basis functions method. Engrg. Anal. Bound. Elem., Barking, Essex, England: Elsevier 27 (2003), pp.
73 – 79.

[19] Z. Wu Compactly Supported Positive Definite Radial Functions. J. Adv. Comput. Math. 4 (2003),
pp. 283 – 292.


