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Abstract. Coupled systems of differential-algebraic equations (DAEs) may suffer from insta-
bilities during a dynamic iteration. For a general dynamic iteration, we extend the existing analysis
on recursion estimates, error transport and stability to a general DAE setting. In this context, we
discuss the influence of certain coupling structures and the computational sequence of the subsystems
on the rate of convergence. Furthermore, we investigate convergence and divergence for two coupled
problems stemming from refined electric circuit simulation in detail. These are the semiconductor-
circuit and field-circuit coupling. As a result of our analysis, we quantify the convergence rate and
behavior also using Lipschitz constants and suggest an enhanced modeling of the coupling interface
in order to improve convergence.
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1. Introduction. In today’s applications, multiphysical modeling is indispens-
able due to miniaturization and the increasing complexity of components. Thus cou-
pled simulation (or simulator coupling) is naturally needed. That is, different sim-
ulation packages are applied to different subsystems and often one cannot solve the
system as a whole in the time-domain. Even if this is possible, it remains a chal-
lenging task for time-integrators: the intrinsic time rates of the subsystems can differ
by several orders of magnitude and the structure of the subsystems can differ signif-
icantly, e.g. with respect to symmetry and definiteness. This holds in particular for
applications from electrical engineering. When coupling an electric circuit to a dis-
tributed device (mixed mode simulation [15]), the circuit is commonly described by
differential algebraic equations (DAEs) using a network approach, whereas the device
is modeled by partial differential equations (PDEs). The network system is generally
not symmetric and typically integrated by direct solvers, whereas the discretized PDE
typically forms a symmetric system that is commonly solved by iterative methods.
Standard time-integration is inefficient for those problems. One way to overcome this
impasse is to revisit co-simulation, [29].

This paper addresses the (time-domain) co-simulation of PDAE systems, i.e., the
time-integration of systems of PDEs and DAEs by the means of dynamic iteration.
First, dynamic iteration has been applied to coupled ordinary differential equations
(ODEs), where they are known to be unconditionally stable, [21, 9]. Usually a window-
ing technique is applied to enhance convergence, i.e., the contractivity of the related
fixed-point operator. However, in the applications of dynamic iteration schemes to
DAEs, severe instabilities occurred. The contraction of the fixed-point operator can
only be guaranteed if a stability constraint is fulfilled. This concept dates back to
Lelarasmee [18] and was applied for single window convergence [16, 5]. The error
transport for multiple windows has been analyzed for DAEs with a special coupling
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structure of Lagrangian type in [3]. In [12] the error transport was considered under
the simplifying assumption that the DAE system can be reduced to its underlying
ODE. The coupling structure and its influence on the stability of dynamic iteration
was also studied in [17].

In this paper we present a generalization of these previous work by extending
their rigorous analysis to the general DAE case. Guided by [3], we deduce a simi-
lar contractivity condition, which ensures convergence of dynamic iteration schemes
applied to general index-1 DAEs. By examination of the error propagation for the
windowing technique, we prove that the dynamic iteration scheme is globally conver-
gent if stability is given. We identify certain coupling structures, where our analysis
immediately guarantees a higher rate of convergence with respect to the time window
size. This is of special interest for radio frequency applications, where the applied
time window is usually rather small. We show that the sequence of computation of
the subproblems can be crucial for convergence. Additionally, we verify that even
if the iteration scheme is convergent independent of the sequence of the subsystems,
the sequence can have severe influence onto the rate of convergence. In applications
from electrical engineering, the different coupling structures and their influence onto
convergence and the rate of convergence are investigated. For two different prob-
lems we suggest an enhanced modeling of the coupling interface (by overlapping or
model parameter extraction) such that convergence is ensured and a higher rate of
convergence can be achieved compared to coupling via the unmodified interface.

The paper is organized as follows. In Section 2 we introduce the notation for our
coupled DAE-problems and the dynamic iteration schemes. In Section 3 we analyze
the convergence and stability of the dynamic iteration schemes. We consider the error
transport for both differential and algebraic components and show that global conver-
gence (including error transport) is ensured if the splitting error remains close to the
analytical solution. Finally, we show that the mutual dependency of the subsystems,
i.e., coupling via differential or algebraic variables, is crucial for the convergence of
the iteration scheme. To apply the theoretical results in circuit simulation, we recall
the electric network model and discuss coupling strategies in Section 4. Based on
this, we analyze two coupled problems. First we investigate the semiconductor-circuit
problem in Section 5–7. Secondly, the field-circuit system is analyzed in Section 8–10.
In both applications, we focus on the modeling of the coupling interface: we show
under which conditions the convergence behaves like in a coupled ODE problem and
how this can be obtained by sophisticated modeling, e.g. overlapping or extraction of
model parameters, cf. [22]. Both examples numerically confirm the theoretical results
about convergence and divergence. The paper finishes with conclusions.

2. Description of coupled DAE systems for dynamic iteration schemes.
We address the time domain simulation of coupled problems. To this end, we assume
that a suitable spatial discretization is already applied to a coupled PDAE problem
and consider the time integration of the resulting coupled DAE problem. A large class
of these initial value problems (IVPs) can be written in semi-explicit form:

ẏ = f(y, z), y(0) = y0, (2.1a)

0 = g(y, z), z(0) = z0. (2.1b)

This formulation addresses the whole system at once, but suppresses the subsystem
structuring, which will serve us to extract certain principle results and allow for
condensed argumentations. Under the following assumption, y denotes the differential
variables and z the algebraic variables of the system (2.1).



Dynamic iteration for coupled simulation 3

Assumption 2.1. Given problem (2.1).
a) The right-hand side functions and the initial values (IVs) are assumed to

guarantee a unique solution x on [0, te]:

x := (y, z)> with y : [0, te]→ Rny , z : [0, te]→ Rnz

(neglecting some transpose signs to keep the notations simple).
b) Functions f and g are supposed to be sufficiently often differentiable in the

neighborhood of the unique solution.
c) The Jacobian ∂g/∂z is non-singular in the neighborhood of the solution.

Assumption 2.1 ensures consistent IVs and the system (2.1) to be of index-1.

2.1. Coupled system representation. In a multiphysical framework, system
(2.1) is often naturally partitioned in a set of r coupled DAE subsystems:

ẏi = fi(y, z), (y = (y1, . . . ,yr)
>) (2.2a)

0 = gi(y, z), (z = (z1, . . . , zr)
>) (2.2b)

for i = 1, . . . , r, and f = (f1, . . . , fr)
>, g = (g1, . . . ,gr)

>. In order to ensure index-1
for each subsystem, in this framework, additionally to Assumption 2.1, it has to hold

∂gi/∂zi is non-singular for all i = 1, . . . , r, (2.3)

i.e., each subsystem gi(y, z) = 0 is locally, uniquely solvable for zi (for given y, z1,
. . . , zi−1, zi+1, . . . , zr).

Remark 2.2 (Overlapping). In some settings, certain quantities (and corre-
sponding algebraic constraints) can be assigned to several subsystems. This is called
overlapping. It introduces additional degrees of freedom to the latter dynamic iteration
scheme, see e.g. [4]. Here, these aspects are not discussed.

2.2. Iteration schemes. Starting for a general DAE (2.1), any dynamic itera-
tion scheme needs to work on a split structure, e.g. on (2.2). This allows to exploit
special structures or properties by invoking dedicated solvers. To analyze dynamic
iteration methods, we formalize this procedure: we seek to compute a sufficiently
accurate numerical approximation x̃ of the unique x for (2.1) with

x̃ := (ỹ, z̃)> : [0, te]→ Rny ×Rnz .

Usually the iteration is performed on so called windows [tn, tn+1] with 0 = t0 < t1 <
t2 < . . . < tN = te and window size Hn := tn+1−tn. Assuming the numerical approx-
imation is already computed on [0, tn], a dynamic iteration defines the approximations

(ỹ, z̃)|[tn,tn+1] ∈ C1,0
n with C1,0

n := C1([tn, tn+1],Rny )× C([tn, tn+1],Rnz ),

on the subsequent window by an extrapolation step followed by iterations:
• extrapolation step: let the operator Φn : C1,0

n−1 → C1,0
n be a continuous ex-

trapolation from [tn−1, tn] to [tn, tn+1] defining our initial guess:(
ỹ

(0)
n

z̃
(0)
n

)
:= Φn

(
ỹ|[tn−1,tn]

z̃|[tn−1,tn]

)
with Φn =

(
Φy,n

Φz,n

)
. (2.4)

A simple choice is a constant extrapolation, which introduces errors inO(Hn):

ỹ(0)
n (t) = ỹ(tn), z(0)

n (t) = z̃(tn) (for all t ∈ [tn, tn+1]).

Higher order polynomials could improve this error. Such an operator satisfies
a uniform Lipschitz condition independent of Hn [3].
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• iteration step: the following iterations define a map Ψn : C1,0
n → C1,0

n as(
ỹ

(k−1)
n

z̃
(k−1)
n

)
→
(

ỹ
(k)
n

z̃
(k)
n

)
:= Ψn

(
ỹ

(k−1)
n

z̃
(k−1)
n

)
with Ψn =

(
Ψy,n

Ψz,n

)
(2.5)

with label k = 1, . . . , kn and finite iteration number kn. To obtain solutions
to our DAE (2.1), we define Ψn as the solution operator for the IVP

˙̃y(k)
n = F(ỹ(k)

n , ỹ(k−1)
n , z̃(k)

n , z̃(k−1)
n ) with IV ỹ(k)

n (tn) = ỹ(k−1)
n (tn), (2.6a)

0 = G(ỹ(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ). (2.6b)

The so-called splitting functions F and G are arbitrary smooth functions,
which fulfill the compatibility conditions for problem (2.1):

F(y,y, z, z) = f(y, z), G(y,y, z, z) = g(y, z). (2.7)

Both F and G are assumed to be sufficiently differentiable.
Remark 2.3. (i) Due to compatibility (2.7), the analytic solution x := (y, z)> is

a fixed-point of the iteration operator Ψn.
(ii) The solution computed by dynamic iteration on [tn, tn+1] reads:(

ỹ|[tn,tn+1]

z̃|[tn,tn+1]

)
= (Ψkn

n ◦ Φn)(

(
ỹ|[tn−1,tn]

z̃|[tn−1,tn]

)
). (2.8)

For the partition (2.2) with corresponding unknowns ỹn = (ỹ1,n, . . . , ỹr,n)>, z̃n =
(z̃1,n, . . . , z̃r,n)>, the iteration operator Ψn is defined by r initial-value problems:

˙̃y
(k)
i,n = Fi(ỹ

(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ), with ỹ
(k)
i,n (tn) = ỹ

(k−1)
i,n (tn), (2.9a)

0 = Gi(ỹ
(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ) (2.9b)

for i = 1, . . . , r and using compatible splitting functions Fi and Gi, such that F =
(F1, . . . , Fr)

> and G = (G1, . . . , Gr)
>. Common dynamic iterations schemes for the

coupled DAE systems (2.2) can be represented by

Fi(ỹ
(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ) = fi(Ỹ
(k)
i,n , Z̃

(k)
i,n), (2.10a)

Gi(ỹ
(k)
n , ỹ(k−1)

n , z̃(k)
n , z̃(k−1)

n ) = gi(Ỹ
(k)
i,n , Z̃

(k)
i,n) (2.10b)

(i = 1, . . . , r). Important examples are stated in Table 2.1. In these methods, obvi-
ously, F and G inherit the differentiability from f and g.

For coupled ODEs, the above discussed methods can be made convergent by
choosing the window sizes sufficiently small. For DAEs an additional contractivity
must be satisfied to obtain (a) the convergence of iterations within a window and (b)
the stable error propagation in algebraic variables (window to window).

Table 2.1: Common dynamic iterations.

Picard: Ỹ
(k)
i,n = ỹ

(k−1)
n , Z̃

(k)
i,n = z̃

(k−1)
n .

Jacobi: Ỹ
(k)
i,n = (ỹ

(k−1)
1,n , . . . , ỹ

(k−1)
i−1,n , ỹ

(k)
i,n , ỹ

(k−1)
i+1,n , . . . , ỹ

(k−1)
r,n )>.

Z̃
(k)
i,n = (z̃

(k−1)
1,n , . . . , z̃

(k−1)
i−1,n , z̃

(k)
i,n , z̃

(k−1)
i+1,n , . . . , z̃

(k−1)
r,n )>,

Gauss-Seidel: Ỹ
(k)
i,n = (ỹ

(k)
1,n, . . . , ỹ

(k)
i,n , ỹ

(k−1)
i+1,n , . . . , ỹ

(k−1)
r,n )>,

Z̃
(k)
i,n = (z̃

(k)
1,n, . . . , z̃

(k)
i,n , z̃

(k−1)
i+1,n , . . . , z̃

(k−1)
r,n )>.
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Figure 3.1: A differential waveform is
shown for the k-th iteration of the time win-
dow [tn, tn+1]. The old waveforms Ỹk−1

n

and Yk−1
n are in the smaller neighborhood

Ud,n, whereas the new waveforms Ỹk
n and

Yk
n are in the larger one Ud0,n.

3. Analysis of convergence and stability. The convergence of our dynamic
iteration schemes is investigated by studying error recursions within one window and
the error transport from window to window. We neglect errors from time integration,
i.e., we iterate on analytic waveforms. Our strategy generalizes the approach of [3] as
already started in [5]. In the first part, we define the corresponding function space and
deduce the error recursion on one window by tracking the constants in our estimates.
Then, in the second part, we summarize the line of arguments towards contraction,
general convergence and stability. In the last part, we investigate the implications of
our results for the rate of convergence given certain coupling structures.

3.1. Error recursion on one window. Given d0 > 0, we define for all d with
0 < d ≤ d0 the function space Ud,n as neighborhood of the exact solution x := (y, z)>

Ud,n =
{

X := (Y,Z)> ∈ C1,0
n :

∣∣∣∣Y − y|[tn,tn+1]

∣∣∣∣, ∣∣∣∣Z− z|[tn,tn+1]

∣∣∣∣ ≤ d}
on the n−th window by employing ||v|| := maxt |v(t)| the maximum-norm in the time
domain of v (for t from a given interval) and the Euclidean norm | · |. The purpose of
d0 is to identify a largest function space Ud0,n to be considered in the proofs below.
In particular, the following prerequisites are considered on this function space:

Assumption 3.1. For (2.1) with splitting functions F, G there is d0 > 0 with:

(a) F is Lipschitz-continuous on Ud0,n with constant LF > 0, (3.1)

(b) G is totally differentiable with Lipschitz-continuous derivatives on Ud0,n, (3.2)

(c) Gz(k) (partial derivative) is invertible on Ud0,n. (3.3)

Note, Ass. 3.1 ensures the system (2.6) to be index-1 with a well-defined solution. We
prove contractivity in a smaller set Ud,n ⊂ Ud0,n. — For arbitrary X, X̃ ∈ Ud0,n and
k dynamic iterations on the n-th time window, we introduce the abbreviations:

Yk
n := Ψk

y,nX, Zkn := Ψk
z,nX, Ỹk

n := Ψk
y,nX̃, Z̃kn := Ψk

z,nX̃. (3.4)

This shorthand must not be confused with the argument of the splitting functions
used in (2.10). To measure the distance after k iterations, we define the notation:

∆k
y(t) := Yk

n(t)− Ỹk
n(t), δky := ||∆k

y|| = maxtn≤t≤tn+1

(∣∣∆k
y(t)

∣∣) ,
∆k

z(t) := Zkn(t)− Z̃kn(t), δkz := ||∆k
z || = maxtn≤t≤tn+1

(∣∣∆k
z(t)

∣∣) . (3.5)

These notations and the neighborhood Ud,n are visualized in Fig. 3.1.
Next we derive an estimate for the error recursion of the dynamic iteration in Ud,n.

Lemma 3.2 (Error recursion). We consider the DAE (2.1) with a dynamic itera-
tion (2.6) satisfying Ass. 2.1 and Ass. 3.1. We assume having reached the n-th window
[tn, tn+1]. Then there are constants C, c̃ > 1, such that for d < min{d0/C, 1/(2c̃)}
and time step size H < H0 the hypothesis
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Ψk−1
n X, Ψk−1

n X̃ ∈ Ud,n (for k ≥ 1)

implies the recursion estimate(
δky
δkz

)
≤ K

(
δk−1
y

δk−1
z

)
+

(
1 + CH

C

)
|∆k−1

y (tn)| (3.6)

with

K :=

(
CH CH

C CH + αn

)
, αn := (1 + c̃ d)

∣∣∣∣G−1
z(k) Gz(k−1)

∣∣∣∣+ Cd. (3.7)

Notice ∆k−1
y (tn) = ∆0

y(tn) is the difference IVs for the n-th window.
Proof. The proof has two parts, corresponding to the two lines of the estimate

(3.6). For the differential estimate, we write (2.6a) for both initial guesses of the
dynamic iteration, X̃ and X. For the difference of the k-th iterate, integrated over
[tn, τ ] (for tn < τ ≤ tn+1) it holds

|∆k
y(τ)| ≤ |∆k−1

y (tn)|+ LF

∫ τ

tn

{
|∆k

y|+ |∆k−1
y |+ |∆k

z |+ |∆k−1
z |

}
dt, (3.8)

using the solvability of the ODE (2.6a), that is guaranteed by standard arguments
for a sufficiently small time window Hn < 1/C (where the smallness of Hn will be
concretized later on by defining C). Furthermore Lipschitz-continuity and consistency
of F and the fact ∆k−1

y (tn) = ∆k
y(tn) must be employed.

For the algebraic part in (3.8), we solve (2.6b) for Z(k) = φ̂(Y(k),Y(k−1),Z(k−1))

(using Ass. 3.1). Lipschitz continuity of φ̂ gives:

|∆k
z | = |φ̂(Y(k),Y(k−1),Z(k−1))− φ̂(Ỹ(k), Ỹ(k−1), Z̃(k−1))|
≤ Lφ̂

(
|∆k

y|+ |∆k−1
y |+ |∆k−1

z |
) (3.9)

with constant Lφ̂ > 0. Inserting this result into (3.8) yields for the maximum

δky ≤ |∆k−1
y (tn)|+ L0H

(
δky + δk−1

y + δk−1
z

)
with L0 := LF(1 + Lφ̂). Thus, for δky we find the estimate:

δky ≤
(

1 +
L0

1− L0H
H

)
|∆k−1

y (tn)|+ L0

1− L0H
H
(
δk−1
y + δk−1

z

)
. (3.10)

For H < H0 := 1/(2L0) we have L0H < 1/2 and it holds

δky ≤ (1 + 2L0H) |∆k−1
y (tn)|+ 2L0H

(
δk−1
y + δk−1

z

)
. (3.11)

This is the first line of estimate (3.6) for a sufficiently large constant C, see be-
low. Using estimates (3.9) and (3.11) twice for the two particular choices: (a)
X = x|[tn,tn+1] and X̃ arbitrary, and (b) X arbitrary and X̃ = x|[tn,tn+1], one ob-

tains from Xk−1
n , X̃k−1

n ∈ Ud,n∣∣∣∣Yk
n − y|[tn,tn+1]

∣∣∣∣, ∣∣∣∣Ỹk
n − y|[tn,tn+1]

∣∣∣∣ ≤ 4d,∣∣∣∣Zkn − z|[tn,tn+1]

∣∣∣∣, ∣∣∣∣Z̃kn − z|[tn,tn+1]

∣∣∣∣ ≤ 6Lφ̂ d.
(3.12)

Thus Xk
n, X̃

k
n ∈ Ud0,n for a sufficiently large constant C > max{2L0, 4, 6Lφ̂}.

Secondly, we establish the algebraic part of (3.6) by a homotopy; for θ ∈ [0, 1] let
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Y(k),θ(t) := θỸk
n(t) + (1− θ)Yk

n(t), and Z(k),θ(t) := θZ̃kn(t) + (1− θ)Zkn(t).

Inserting this in the splitting function G, we use the abbreviation (with u denoting
an arbitrary argument of the splitting function):

G(θ) := G
(
Y(k),θ, Y(k−1),θ, Z(k),θ, Z(k−1),θ

)
and Gu(θ) :=

∂G

∂u
(θ).

Thus it holds G(0) = G(1) = 0 and therefore

0 = G(1)−G(0) =

∫ 1

0

(
Gy(k)(θ)∆k

y + Gy(k−1)(θ)∆k−1
y

+ Gz(k)(θ) ∆k
z + Gz(k−1)(θ) ∆k−1

z

)
dθ. (3.13)

Employing ∂
∂θY

(k),θ = ∆k
y etc., Lipschitz continuity of Gz(k) on Ud0,n for Cd ≤ d0

with constant LG′ and estimate (3.12), we obtain for any time t ∈ [tn, tn+1]

|Gu(θ)−Gu(0)| ≤ LG′

( ∣∣θỸk
n(t) + (1− θ)Yk

n(t)−Yk
n(t)

∣∣+ · · ·+∣∣θZ̃k−1
n (t) + (1− θ)Zk−1

n (t)− Zk−1
n (t)

∣∣)
= LG′θ

(
|∆k

y|+ |∆k−1
y |+ |∆k

z |+ |∆k−1
z |

)
≤ 12(1 + Lφ̂)LG′ d. (3.14)

Ass. 3.1 guarantees that Gz(k)(0) is regular, thus from the estimate (3.13) we obtain
by left-multiplication

0 =

∫ 1

0

G−1
z(k)(0)

(
Gy(k)(θ)∆k

y+Gy(k−1)(θ)∆k−1
y +

(
Gz(k)(0) +

[
Gz(k)(θ)−Gz(k)(0)

])
∆k

z

+
(
Gz(k−1)(0) +

[
Gz(k−1)(θ)−Gz(k−1)(0)

])
∆k−1

z

)
dθ.

Due to our smoothness assumptions, all operators G−1
z(k) , Gz(k−1) , Gy(k) , Gy(k−1) are

uniformly bounded on Ud0,n with constant cg, say. Solving the last equation for
G−1

z(k)(0)Gz(k)(0)∆k
z = ∆k

z , we obtain for the maximum norm when using (3.14):

δkz ≤
(
||G−1

z(k) Gz(k−1) ||+ c̃

2
d
)
δk−1
z +

c̃

2
d δkz + c2g

(
δky + δk−1

y

)
,

where c̃ := 24(1 + Lφ̂)LG′cg and

||G−1
z(k)Gz(k−1)||= ||G−1

z(k)Gz(k−1)||(0)=
∣∣∣∣G−1

z(k)Gz(k−1)

∣∣∣∣(Yk
n(t),Yk

n(t),Zkn(t),Zkn(t)
)
.

Last, we use the estimate (3.11) for δky. For H < 1/C and d < 1
2c̃ , we find

δkz ≤ 3(1 + c̃d)c2g

(
|∆k−1

y (tn)|+ δk−1
y

)
(3.15)

+ (1 + c̃d)
(

2c2gL0H + ||G−1
z(k) Gz(k−1) ||+ c̃

2
d
)
δk−1
z .

The global constant C must be large enough to deduce the self-mapping (3.12) and
to deduce the error recursion claim (3.6) from estimates (3.11) and (3.15); this gives

C > max

{
2L0, 4, 6Lφ̂, 3(1 + c̃d0)c2g, (1 + c̃d0)c2gL0,

c̃

2

}
with d > d0.

The estimate for the error recursion is used to verify that the mapping defined by
our dynamic iteration scheme is a fixed-point operator. In contrast to related works,
the origins of the constants in the proof remain visible. This will be exploited in the
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applications in Section 4f in order to achieve a better rate of convergence by enhanced
modeling of the coupling interface. However, the structure of the estimate is similar
to the structure of the estimates in the literature. When neglecting the special role
of the initial offsets as in [3], one obtains:

Remark 3.3. Using |∆k−1
y (tn)| ≤ δk−1

y , (3.6) can be transformed into(
δky
δkz

)
≤ K

(
δk−1
y

δk−1
z

)
+

(
1

0

)
|∆k−1

y (tn)|

with a possibly larger constant C in K.

3.2. Convergence and stability. Based on the error recursion estimate (3.6)
for general coupled DAEs (2.1) we can follow the line of [3] to investigate convergence
and stability for our generalized setting. According to (3.6) the spectral radius of
the iteration matrix ρ(K) is essential for error reduction per iteration and thus for
convergence. We need ρ(K) < 1 to establish contractivity. Inspecting the eigenvalues

λ1,2(K) =
1

2

(
αn + 2CH ±

√
α2
n + 4C2H

)
, (3.16)

we find that αn < 1 is sufficient for contraction (given H small enough). This leads
directly to the main contraction result:

Theorem 3.4 (Contraction). We consider an index-1 DAE (2.1) (Ass. 2.1). Let
the splitting functions fulfill Ass. 3.1, let x be the analytic solution. The extrapolation
operator has an accuracy of O(H). Given d < d0 and H < H0 small enough, then∣∣∣∣G−1

z(k) Gz(k−1)

∣∣∣∣ < 1 (3.17)

implies that the local error decreases with each iteration, such that the dynamic iter-
ation Ψ is strongly contractive.

Notice that (3.17) implies indeed αn < 1 in (3.7) for d and H small enough and
therefore it implies contraction.Thus, it follows from Thm. 3.4 that the local error can
be made arbitrary small as k →∞.

Employing a similar estimation for the propagated error, one obtains finally:
Theorem 3.5 (Stability). Given a continuous extrapolation Φ (2.4) of accuracy

order O(H), which fulfills a uniform Lipschitz condition (LΦ). Let the dynamic itera-
tion (2.6) be given with consistent splitting functions F, G, which satisfy the Ass. 3.1
on [tn, tn+1]. Furthermore let the contractivity constants be bounded

αn ≤ ᾱ < 1 and LΦα
kn
n ≤ ᾱ

and the numerical approximations (before the n-th time window) stay in the neigh-
borhood of the exact solution. Then the global error on the time window [tn, tn+1] is
smaller than d for all window size 0 < H < H0 small enough.

3.3. Rate of convergence. We have seen that ρ(K) governs (the speed of)
convergence. Now as rate of convergence of the dynamic iteration (2.6), we inspect
the asymptotics of the eigenvalues of K (3.7) as H → 0. This gives rise to the following
discussion of ρ(K) for different coupling structures what then leads to a corollary for
Thm. 3.4. Finally, we are able to identify former results from literature as special
cases of our generalized approach.

Remark 3.6 (Convergence rate of fixed point iteration).
(i) A Taylor expansion of the square root in λ(K) (3.16) yields√

α2
n + 4C2H = αn (1 + 2C2H/α2

n) +O(H2).

Thus, if αn 6= 0 and 4C2H < α2
n, then the rate is αn +O(H).
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(ii) The convergence of the distributed DAE-time integration requires also the
stability of the coupling of algebraic to algebraic components (3.17).

(iii) The computational sequence of the subsystems is reflected in the splitting func-
tions; thus (3.17) may change for different sequences, e.g. when using a
Gauss-Seidel scheme (see Section 6.2 for a computational example).

If possible, the modeling of distributed time integration of coupled DAEs should
be performed such that contraction is directly ensured – as for example in the fol-
lowing special cases. Here contraction is guaranteed by inspecting the structure of
the coupling (cf. [5]). The results are obtained by following the lines of the proof of
Lem. 3.2 but exploiting the special cases.

Corollary 3.7 (Simple coupling). We assume the hypothesis of Lem. 3.2.
i) Given a splitting, where no algebraic constraint depends on an old algebraic

iterate, that is,
Gz(k−1) = 0, (3.18)

then αn = 0 and contraction follows with rate O(
√
H).

ii) Given a splitting, where no algebraic constraint depends on old iterates, i.e.,

Gz(k−1) = 0 and Gy(k−1) = 0, (3.19)

then contraction follows with rate O(H).

Remark 3.8 (Fractional step). Cor. 3.7i) includes the special case of a Gauss-
Seidel-type iteration scheme for a semi-explicit DAE (index-1), where one subsystem
is the ODE and the other subsystem is the algebraic equation, i.e.,

F := f(y(k), z(k−1)) and G := g(y(k), z(k)). (3.20)

For this so called ‘fractional step method’ applied to index-1 DAEs, the convergence
rate O(H) has been proven independently, [28].

4. Applications in electric circuit simulation. In circuit simulation, e.g.
[10], electromagnetic devices and semiconductor devices are modeled as a network of
idealized basic elements (resistors, inductors, capacitors and sources). The network
ansatz yields a system of DAEs, such that the entire circuit can be simulated using
common circuit simulation tools. However, many devices cannot be given sufficiently
accurate in terms of idealized lumped elements. This requires the hierarchical coupling
of PDE device models to the network. Space-discretization turns this into a DAE-
DAE coupled problem.

The common monolithic simulation is often cumbersome or sometimes even im-
possible due to incompatible simulation tools. For example, a circuit simulator and
a device simulator may not have interfaces to interchange all necessary data during
transient simulations (e.g. the Jacobians must be interchanged). On the other hand,
the injection of lumped parameters, i.e., currents, into the circuit simulator is not a
problem. This will be exploited by the co-simulation scheme given below.

4.1. Electric circuit model. Circuit simulators are commonly based on the
flux/charge oriented modified nodal analysis (MNA), see e.g. [14]:

AC
d

dt
q + ARgR(A>Ru, t) + ALiL + AViV + AIi(t) + ADiD = 0, (4.1a)

d

dt
Φ −A>Lu = 0, A>Vu − v(t) = 0, (4.1b)

q − qC(A>Cu, t) = 0, Φ −ΦL(iL, t) = 0, (4.1c)
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where qC(v, t), gR(v, t), ΦL(i, t), vS(t) and iS(t) denote the element contributions as
charges, currents of resistors, fluxes, voltage and current sources, respectively. The
matrices A? denote network incidences and finally iD is the injected current from the
semiconductor or field device (simulator) as discussed below. The unknowns of the
circuit model equations are charges q(t), fluxes Φ(t), currents iL(t), iV(t) through
inductors and voltage sources as well as all node potentials u(t) except ground.

In the following, we assume the standard conditions, such that the circuit equa-
tions (4.1) are of index-1 for a given function iD(t): namely, locally positive definite
element contributions and there exists neither a CV-loop nor an LI-cutset [13].

4.2. Coupling settings. Next, we apply the theoretical results from the sec-
tions above to the case of a circuit coupled to two different devices of very different
scale: in Sections 5–7 the semiconductor-circuit coupling, where we use a 1D PDE
model of a pn-diode and in Sections 8–10 the field-circuit coupling, where we employ
a 2D model of a transformer. In both cases, different coupling techniques and inter-
faces are discussed: (A) source coupling, and (B) coupling using extracted, lumped
parameters. The source coupling approach represents a black-box coupling where the
circuit does not see the physics of the device. The lumped parameter approach on
the other hand includes further physical effects. It fits into the framework of [12]
where compact models are used as predictor in the coupled simulation. Moreover, it
is related to the DIRM approach: dynamic iteration using reduced order models, [22].

Furthermore, we will show that the sequence of solving the subsystems can be
crucial for convergence of the iteration. Thus we discuss: (i) device-first, (ii) circuit-
first. Finally, we investigate the convergence rate of the fixed point iteration in terms
of the time window size in the mentioned cases.

5. Semiconductor-circuit coupling. First we state the drift-diffusion model
(spatially discretized). Then we discuss the two types of circuit coupling.

5.1. Semiconductor model. The pn-diode in our example is described by the
domain Ω ⊂ Rd for d = 1, 2, 3 with ∂Ω = Γ = ΓD ∪ ΓN . Its physical behavior
is modeled by the drift-diffusion (DD) model, which consists of conservation laws
for the electron and hole densities coupled to the Poisson equation for the electric
potential [26]. To ensure non-negativity of the carrier densities, the DD-equations are
discretized using exponentially fitted mixed finite elements as described in [19, 8].
Thus the discretized DD-equations read

An(V)
d

dt
n + Bn(p,V)n = fn(p,V), Ap(V)

d

dt
p + Bp(n,V)p = fp(n,V), (5.1a)

LV = n− p−C + fV(vD), (5.1b)

iD = jD(n,p,V), (5.1c)

with regular matrices An,Ap,Bn,Bp,L (cf. [8, 2]). Here n,p,C and V denote the
discrete approximations of the electron and hole density, the doping profile and the
potential. The applied voltage drop is given by vD. The total current leaving the
device iD takes into account the particle current as well as the displacement current.
The employed boundary conditions for the system are incorporated in the functions
fn, fp and fV, for details we refer to [2]. We note that standard finite element or finite
difference discretization would allow for a similar representation.

Alternatively the displacement current can be expressed in terms of a capacitance
CD and the time derivative of the applied voltage drop [1]. Instead of (5.1c) the total
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(a) Source coupling.
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Figure 5.1: Displacement current modeled inside the PDE device (A) and by capacitance extraction
in circuit (B), see [2].

current can be written as

iD = CD
d

dt
vD − iSD with iSD := jSD(n,p,V). (5.1d)

In case of a 1D model for a cubic diode with length l and cross-section A, it holds:
CD = εs ·A/l, where εs denotes the material’s permittivity.

5.2. Coupling types. The structure of the equations allows for two different
representations: (A) coupling by plain sources (source coupling), in which the dis-
placement current is considered as part of the distributed device model, i.e., iD is
defined by (5.1c), or, (B) coupling, where the displacement current is described in
terms of circuit variables, i.e., (5.1d) is treated as an additional circuit equation (cou-
pling with capacitance), see Fig. 5.1. In both settings the voltage drop vD in the
circuit describes the boundary condition for the electric potential V in the device
model. In the case of a monolithic coupling, those two representations are equivalent,
but in the case of a weak coupling by a dynamic iteration scheme, they exhibit differ-
ent behavior. Since the additional capacity CD in the circuit model (in setting (B))
can be considered as simple compact model for the capacitive behavior of the diode,
the coupling with capacitances reflects compact model design.

A. Source coupling. For given vD the spatial discretization of the DD-equations
(5.1) yields an index-1 DAE [8]. Moreover, we assume the coupled system to be of
index-1 [25], i.e., no additional CV -loop is introduced by the coupling. Then the
system can be written in semi-explicit form: (d for device and c for circuit)

ẏd = fd(yd, zd), ẏc = fc(yc, zc, zd),

0 = gd(yd, zd, zc), 0 = gc(yc, zc, zd),
(5.2)

with regular ∂gd/∂zd and ∂gc/∂zc. The differential variables of the diode and circuit
are yd := (n,p) and yc := (q,Φ), whereas the corresponding algebraic unknowns are
zd = (V, iD) and zc := (u, iL, iV). Here the device current iD is defined by (5.1c).

In fact, the spatial discretization by the positivity-preserving mixed finite element
scheme might turn some components of n,p into algebraic variables [8]. However, this
would not affect our iteration scheme as long as the index-1 assumptions hold.

In this setting all node potentials u and thus vD = A>Du are algebraic variables
of the circuit. Thus the algebraic equations of the device 0 = gd only depend on the
algebraic variable zc of the circuit. The diode current is also algebraic, but, depending
on the circuit’s topology, it may appear in the differential fc as well as in the algebraic
equation gc of system (5.2).

B. Coupling with capacitance. Now, we use the definition of iD from (5.1d)
in the current balance equation (4.1a). This leads to a slightly different system:

ẏd = fd(yd, zd), ẏc = fc(yc, zc, zd),

0 = gd(yd, zd,yc), 0 = gc(yc, zc),
(5.3)

with differential unknowns yd := (n,p) and yc := (q,Φ,PDu) and algebraic un-
knowns zd = (V, iSD) and zc := (QDu, iL, iV). Here QD denotes a projector onto
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the kernel of A>D and PD its complement, as they typically appear in circuit index
analysis, [13]. In this formulation the node potentials are split, since the capacitance
CD is not written in charge oriented form. Due to the linearity of CD the advantage
of the charge/flux oriented MNA, i.e., charge conservation, is still respected.

As a result of the capacitive path between the coupling nodes, vD is part of
the differential variables yc and the algebraic equations of the device subsystem only
depend on differential circuit variables. In turn, the device current iSD — an algebraic
device variable — enters differential equations fc of the circuit subsystem, only.

6. Dynamic iteration for the semiconductor-circuit system. Based on the
theory above, we discuss the convergence properties of the dynamic iteration in this
application. First we investigate the coupling types (A) and (B). Then the influence
of the subsystem’s computational sequence is studied (for type (B) only).

6.1. Coupling types in the dynamic iteration. We distinguish two types:
A. Source coupling. Here the two subsystems in (5.2) are coupled via alge-

braic variables z? in the algebraic equations g?. Independent of the sequence of the
subsystems in a dynamic iteration scheme, i.e., circuit-first or device-first, we always
observe a dependence of the algebraic equation (iteration k) on old algebraic variables
(k − 1). This holds true for Jacobi-Iteration as well as a Gauß-Seidel approach. For
the device-first approach, the Gauss-Seidel scheme reads

F :=

[
fd(y

(k)
d , z

(k)
d )

fc(y
(k)
c , z

(k)
c , z

(k)
d )

]
and G :=

[
gd(y

(k)
d , z

(k)
d , z

(k−1)
c )

gc(y
(k)
c , z

(k)
c , z

(k)
d )

]
, (6.1)

where the superscript (k) denotes the iteration number. Since G depends on an old
algebraic iterate the contraction factor α does not vanish, see (3.7). Thus convergence
cannot be guaranteed by the structural analysis. The parameters of device and circuit
will have a serious influence. This is discussed for an numerical example in Section 7.

B. Coupling with capacitance. Here, in system (5.3), the capacitance CD is
parallel to the device. The coupling of the two subsystems in the algebraic equations
only happens in terms of differential variables, i.e., gd depends on yc. According to
Corollary 3.7 and Remark 3.6, convergence of the dynamic iteration is guaranteed for
time windows size H small enough. Independent of the sequence of the subsystems,
we will observe a dynamic iteration with convergence rate O(

√
H) for H → 0, for a

Jacobi-Iteration approach.
According to Corollary 3.7, for the Gauß-Seidel approach we expect convergence

rate O(H) if we start the iteration scheme by computing the circuit-subsystem first,
since in this case the algebraic functions do not depend on old differential variables. If
we exchange the sequence of the subsystems, i.e., start the iteration by computing the
device subsystem first, and use the Gauß-Seidel approach, according to Remark 3.6
we only can guarantee convergence rate O(

√
H).

However, the structure considered in the theory above is rather general and our
two subsystems observe less dependencies than the general case. Thus, we shortly
address the two cases of Gauß-Seidel iteration for the system (5.3), i.e., circuit-first and
device-first with the technique used above, in order to get a more detailed statement
about the convergence rate of the fixed point iteration (3.7) in semiconductor-circuit
coupled applications.

6.2. Analysis of the sequence of the subsystems. In this section, we only
address case B, i.e., system (5.3), and assume that its two subsystems are of index 1.
Then the functions gc,gd are uniquely solvable with respect to zc and zd, respectively.
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0

R

v(t) }

ND

(a) Example circuit

Parameter Physical meaning

q = 1.6 · 10−19 As elementary charge
εs = 10−10 As/Vm permittivity constant
UT = 0.026 V thermal voltage at TL = 300K
µn/µp = 0.15/0.045 m2/Vs low-field carrier mobilities
C0 = 1023 m−3 maximum doping concentration
l = 10−7 m length
A = 10−14 m2 cross-section

(b) Physical parameters for a silicon pn-junction diode.

Figure 6.1: Circuit and device parameters.

We furthermore assume the functions fc and fd to be Lipschitz-continuous in Ud0,n (see
also Ass. 3.1) with respect to all its components. Additionally, the implicit functions
Φc and Φd determining zc and zd shall be Lipschitz-continuous.

Definition 6.1 (Lipschitz constants). We define the following abbreviations:
L: Maximum of the Lipschitz constants of f? and Φ? w.r.t. y? and z? for ? ∈ {d, c}.
Lc: Maximum of L and the Lipschitz constant of fc w.r.t. zd.
Ld: Maximum of L and the Lipschitz constant of Φd w.r.t. yc.

We note that the Lipschitz constants Ld and Lc can be regarded as the measure for
the strength of the coupling between the two subsystems with respect to differential
and algebraic variables, respectively.

Lemma 6.2 (Circuit-Device error recursions). (i) For the Gauss-Seidel scheme
applied to (5.3) with device-first, the error recursion according to (3.6) reads(

δky
δkz

)
≤
(
CdH 0
C 0

)
︸ ︷︷ ︸

=:KD

(
δk−1
y

δk−1
z

)
+

(
1 + CH

C

)
|∆k−1

y (tn)|. (6.2)

(ii) The circuit-first Gauss-Seidel scheme applied to (5.3) yields the error recursion:(
δky
δkz

)
≤
(

0 CH
0 CcH

)
︸ ︷︷ ︸

=:KC

(
δk−1
y

δk−1
z

)
+

(
1 + CH

C

)
|∆k−1

y (tn)|. (6.3)

Thereby it holds

Cd =
LcLd

1− L(1 + Lc)H0
, Cc =

LcLd
1− L(1 + Ld)H0

, (6.4)

with the maximum time window size H0 and a suitable constant C > 0.
Proof. This lemma is proven analogously to Lemma 3.2. The only difference is,

that we distinguish between the Lipschitz constants, here.
Theorem 6.3. For the coupled semiconductor-circuit system with capacitance

coupling (5.3) using a Gauss-Seidel dynamic iteration, the fixed point iteration is
convergent with convergence rate O(H) for H → 0. This holds independently of the
computational sequence and on each time window. The leading order coefficients can
be estimated by Cd and Cc, given in (6.4).

Proof. Convergence follows immediately from Corollary 3.7. The spectral radius
of the iteration matrix KD is given by ρ(KD) = CdH. Thus we expect the convergence
rate CdH for the device-first approach. Analogously the spectral radius of the iteration
matrix KC in (6.3) is given by ρ(KC) = CcH and thus we expect the convergence
rate CcH for the circuit-first approach.
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(b) Coupling with capacitance.

Figure 7.1: Relative error of network components between 2.2–2.3 · 10−12s.

Remark 6.4. Due to the special structure of our coupled semiconductor-circuit
problem, we obtain convergence rate O(H) for the device-first approach, even if we
observe a dependency of the algebraic constraints on old differential variables.

The speed of convergence of the dynamic iteration scheme depends on the leading
order coefficients Cc and Cd. Thus it strongly depends on the constants Lc and Ld,
which reflect the strength of the coupling via differential and algebraic variables and
equations, respectively. The symmetry of Cc and Cd with respect to Lc and Ld can be
observed in (6.4). Obviously, the device-first approach has a slower convergence for
large Lc than the other case. This reflects a strong dependence of the circuit equations
on the device model. Vice versa, we get an increasing constant Cc for the circuit-first
approach, for large Ld. Below, this behavior will be verified by simulations.

7. Numerical results. We visualize the above results by the simulation of a
series connection of a voltage source, a resistor and a block of several (1D-modeled)
silicon pn-diodes connected in parallel, see Fig. 6.1a. The circuit parameters are:
resistance R = 1Ω, the voltage source v(t) = sin(ωt)V with ω = 2π1011 Hz. Each
diode consists of a 50 nm n-region doped with C0 and a 50 nm p-region doped with
−C0. Further parameters of the diode are given in Fig. 6.1b.

First we assume that the diode-block consists of 1500 identical diodes in parallel.
Due to the parallel connection, accurate results are obtained by calculating one diode
only and multiplying the output current by the number of devices.

7.1. Convergence study of coupling types. In the following simulations we
applied a backward Euler with constant time step size of ∆t = 0.1·10−12s and simulate
our circuit until T = 10 · 10−12s. The choice of the Euler scheme is merely to due
the fact that we want to verify our analytic results unbiased (from other effects).
On each time window H = ∆t (i.e., each window is solved using exactly one step),
we accomplish 10 iterations and compare the network variables computed with our
dynamic iteration scheme below, to a monolithic reference solution. The reference
solution is made to verify the convergence of the dynamic iteration scheme to the
solution of the monolithic systems. Therefore it is computed with same step size but
strongly coupled. For details of the algorithm we refer to [2].

A. Source coupling. The dynamic iteration for this coupling approach applied
to the example circuit (Fig. 6.1) does not converge. In Fig. 7.1a, we depict the rela-
tive error of the network components, i.e., the deviation from the reference solution,
against the number of iterations in the time interval 2.2–2.3 · 10−12s. We choose this
interval, since there the simulation breaks down. For both sequences — device or
circuit first — the iteration scheme clearly diverges. The different starting values for
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(a) ND = 1.
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(b) ND = 10.
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(c) ND = 100.
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(d) ND = 1000.

Figure 7.2: Relative error between 0.4–0.5 · 10−12s for different numbers of diodes. From upper left
to lower right : ND = 1, 10, 100, 1000.

the two different sequences (Fig. 7.1a) are due to bad convergence in the previous
time windows and are the result of error propagation. We note that the amplification
of the diode current by the factor of 1500 (due to the 1500 devices in parallel) causes
the crucial parameter α in (3.7) to be greater than one, what results in divergence.

B. Coupling with capacitance. Here, we extract the capacitive behavior
of each diode as a parallel capacitance CD = 10−17 F. This results in an overall
capacitance of 1.5 · 10−14 F for the circuit subsystem. In turn, we compute the diode
current iSD without displacement contribution. In contrast to the source coupling
approach, we observe a convergent algorithm. In Fig. 7.1b we depict the relative
error (i.e., the relative deviation from the monolithic reference solution) of the network
components against the number of iterations in the interval 2.2–2.3 · 10−12s, where
the source coupling algorithm broke down. Clearly, we get convergence with the
capacitance in parallel. Moreover, we observed significantly better convergence on
the previous time windows.

7.2. Sequence study. We investigate the influence of the sequence of the sub-
systems onto the speed of convergence of the dynamic iteration scheme. Therefore,
we simulate the circuit given above for different numbers of parallel diodes, namely
ND = 10, 100 and 1000 devices. The number of devices is reflected by the Lipschitz-
constant Lc, i.e., for increasing ND the Lipschitz-constant Lc is increasing.

In Fig. 7.2 we depict the convergence of the dynamic iteration scheme on one
time window (we have chosen time window number 5) against the reference solution
computed for respective number of diodes. Again, we used a time step size ∆t =
0.1 · 10−12s. For the monolithic reference solution we applied the same step size.
Fig 7.2 shows that for few diodes the speed of convergence is almost the same for
both approaches. However, for more diodes the speed of convergence of the circuit-
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Figure 7.3: Splitting error for different values of Lc after 2 · 10−12s for different time window sizes
and for the circuit first6and device first approach with one iteration per time window.

first approach becomes faster. For 100 diodes we get the same accuracy with one
iteration less for the circuit-first approach. For ND = 1000 diodes we seem to save
even two iterations by using the circuit-first approach. Those results reflect the leading
order coefficients Cd and Cc given in (6.4).

We note that for increasing value of Ld we expect the device-first approach to
be superior. This shows the importance of a proper estimation of the strength of the
coupling, i.e., a proper estimation of the Lipschitz constants Lc, Ld, since by the value
of those constant we can determine the optimal sequence for solving the subsystems.

Finally, we investigate the rate of convergence for our coupled simulation. To
this end, we simulate the above introduced system for 2 · 10−12s with capacitance
coupling using either circuit-first or device-first approach. We only apply one Gauß-
Seidel iteration per time window (i.e. kn = 1). For time integration we use the first
order implicit Euler method. According to the theory, we expect convergence rate
O(H) (for window size H → 0) already after one iteration of the dynamic iteration
scheme on one window, for both approaches.

Fig. 7.3 shows that both approaches yield a convergence rate in the order of the
time window size H. Additionally, we see that for the larger Lipschitz-constants Lc
the circuit-first approach performs slightly better, as expected from Theorem 6.3.

8. Magnetostatic coupling. We come to a second application where we con-
sider the simulation of magnetic fields. Especially to optimize and analyze geometry,
nonlinearity etc., the coupling of electric networks with distributed models of electrical
machines, e.g. transformers, is important, [27].

For low-frequencies the electric displacement currents and the resistive eddy cur-
rents can be neglected in comparison to the currents induced by the magnetic field.
This yields the magnetostatic approximation of Maxwell’s equations. We will use dy-
namic iteration for coupled magnetostatic-devices and electric circuits. Thereby we
fit a lumped compact model (inductor) for the behavior of the magnetostatic PDE
model of a transformer. This approach works analogously for other devices and ap-
plications (as we have seen in the semiconductor-circuit coupling) and it is shown to
be very efficient when multirate behavior is exploited, [24]. After stating the model,
we examine its convergence properties, here.

8.1. Field device model. The transformer in our example circuit, Fig. 8.1a,
is described on a bounded 2D-domain Ω ⊂ R2, Fig. 8.1b. Its physical behavior
is described by a magnetostatic model, which is discretized in space using Whitney
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Figure 8.1: Nonlinear transformer embedded in nonlinear rectifier circuit.

elements, see [7]. Then the discretized device problem for the line-integrated magnetic
vector potentials a reads

Kν(a)a = XDiD, (8.1)

which is equipped with circuit coupling equations, e.g. [23]

d

dt
ΦD + RDiD = vD with ΦD := X>Da. (8.2)

Here RD denotes the device’s DC resistances, iD = ADi and vD = A>Dv are the
currents and voltage drops of the coil windings, and ΦD represents the magnetic flux.
Each column of the matrix XD is a spatial discretization of a winding function, such
that XDi describes the spatial distribution of the applied currents i. The curl-curl
matrix Kν := C>MνC depends nonlinearly on the magnitude of the discrete flux
density via the reluctivity to model saturation: Mν = Mν(|Ca|) with the discrete
curl operator C. Finally, the unknowns of the field system are (a,ΦD, iD). Note that
in simulations ΦD is not explicitly computed similar to flux-charged oriented MNA.

For a known solution a? of (8.1), we can invert Kν(a?), insert the result into the
definition of ΦD, (8.2), and finally replace ΦD in (8.2):

d

dt

(
LDiD

)
+ RDiD = vD with LD := X>DK−1

ν (a?)XD. (8.3)

This shows that (8.2) is the series connection of an inductor and a resistor.

8.2. Coupling. The structure of the model equations allows for two different
representations and interpretations of the field-circuit coupling:

A. source coupling, in which the PDE model is represented in the circuit by a
time-dependent current source iD (solving (8.2) for iD), and vice versa the
circuit excites the PDE-model by a time dependent voltage source, or,

B. coupling with inductance, where the inductive effect (of the PDE) is described
by a series connection of a resistor with constant resistance RD and a time-
dependent inductor with inductance LD (8.3); and the PDE model is excited
by a time dependent voltage source.

These approaches are depicted in Fig. 8.2; compare with the semiconductor circuit
coupling in Sect. 5. In the parameter coupling (B.), the inductance LD (a) is fitted
according to the solution a(t) of the discrete PDE problem (8.1).

In a monolithic simulation, the two field-circuit representations are equivalent:
one can interpret (8.3) as the Schur complement of (8.1–8.2). But in a weak coupling
by a dynamic iteration scheme, both approaches behave differently. The coupling with
inductance uses more physical knowledge than the source coupling. But the drawback
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Figure 8.2: Coupling by current through the MQS device (a) and by an extracted inductance (b).

is the additional computational costs: the inductance matrices LD must be extracted
by solving linear equations, cf. (8.3). For a given vD(t) the spatial discretization of
the magnetostatic problem (8.1–8.2) yields an index-1 DAE. Additionally, we assume
the coupled system to be of index-1, [6].
The abstract problem formulation is the same for source (A.) and parameter coupling
(B.). Using the subscript c for the circuit and d for the Maxwell device, we obtain:

ẏd = fd(zd, zc), ẏc = fc(yc, zc),

0 = gd(yd, zd), 0 = gc(yc, zc, zd),
(8.4)

with regular ∂gd/∂zd and ∂gc/∂zc (due to the index-1 assumption for the circuit).
The differential variables of the circuit and field equations are yc := (q,Φ) and
yd := ΦD, whereas the corresponding algebraic unknowns are zc := (u, iL, iV) and
zd := (a, iD,vD,LD). Thus both coupling variables iD and LD are components of zd.

9. Dynamic iteration for the field-circuit system. Independent of the cou-
pling type (A) or (B), a Gauss-Seidel-type (device-first) dynamic iteration for the
field-circuit system reads as splitting functions:

F :=

[
fd(z

(k)
d , z

(k−1)
c )

fc(y
(k)
c , z

(k)
c )

]
and G :=

[
gd(y

(k)
d , z

(k)
d )

gc(y
(k)
c , z

(k)
c , z

(k)
d )

]
. (9.1)

The only old iterate z
(k−1)
c , i.e., the voltage drop defined by the circuit, enters a

differential equation via the function fd. This setting is similar to the semiconductor-
circuit problem (coupling with capacitances), see Lemma 6.2. We do not repeat the
proof here, but conclude stability and convergence with rate O(

√
H) by application

of Corollary 3.7.
On the other hand it is not wise to reorder the computational sequence of the

subproblems. Thus a Jacobi or — as given here — the Gauss-Seidel approach with

F̃ :=

[
fd(z

(k)
d , z

(k)
c )

fc(y
(k)
c , z

(k)
c )

]
and G̃ :=

[
gd(y

(k)
d , z

(k)
d )

gc(y
(k)
c , z

(k)
c , z

(k−1)
d )

]
(9.2)

will exhibit a non-vanishing contraction factor α, see equation (3.7). Consequently,
convergence is not guaranteed by the theory above and divergence can occur similarly
to the semiconductor example shown in Fig. 7.1a. Moreover, even in the case of
convergence, we only can ensure a convergence rate of αn + O(H).1 Thus, in the
following numerical investigation, we employ the sequence as given in (9.1).

10. Numerical Results. In our application, the field model realizes a single-
phase isolation transformer. Its configuration, see Fig 8.1b, is taken from the doc-
umentation of the software package FEMM (Finite Element Method Magnetics), [20].

1In the parameter coupling case (B.), the inductance enters the circuit effectively in a differential
equation: the algebraic equation is just an evaluation, c.f. (4.1b) vs. (4.1c); Thus the convergence
guarantee can be extended to both sequences (device-first and circuit-first).
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Figure 10.1: Voltages, currents and inductance in the nonlinear transformer embedded in nonlinear
rectifier circuit example Fig. 8.1.

The primary coil has 260 turns and the secondary coil has 90 tunrs. The reluctivity
Mν is given by a highly nonlinear BH-curve taken from [11]. The attached rectifier
circuit, Fig. 8.1a, is driven by a sinusoidal voltage source v(t) = 160 sin(ωt)V with
ω = 2π · 60Hz. The diode currents are described by the lumped model

i = Is ·
(

exp

(
v

Vth

)
− 1

)
+G · v; with G = 10−12 1

Ω
, (10.1)

reverse saturation current Is = 10−9A and thermal voltage Vth = 2.5·10−2V. The load
resistor has a constant DC resistance of Rload = 10Ω. The resistances of the coil wind-
ings are extracted from the FEMM model. This gives RD = diag(0.44937, 0.061526)Ω.

The problem is simulated on the time interval from t0 = 0s until te = 10−2s. For
roughly a period of the applied signal, Fig. 10.1a–10.1c show voltages, currents and
inductances. The dynamics of the plots in Fig. 10.1b–10.1c are mainly due to the
nonlinear saturation of the transformer; the current peak (primary coil) reflects the
inrush current in this start-up phase of the transformer.

All time-integrations have been carried out by the implicit Euler method with a
fixed time step size ∆t = 10−5s. We applied both, the monolithic and the dynamic-
iteration approach to the problem in Fig. 10.1. The monolithic simulation is used as
a reference solution for the dynamic iteration approach. Thus we neglect the time-
discretization error (introduced by Euler’s methods) and focus only on the splitting
error of the iteration scheme (8.4). For a single-phase transformer, the extracted
inductance LD(t) corresponds to a 2 × 2-matrix for each time-step t. We use spline
interpolation to recover a waveform from the discrete inductances. The dynamic
iteration has been run for various window sizes H = 5 · 10−5s, . . . , 10−2s and up to
5 iterations per window. Fig. 10.2a shows the corresponding errors in the current
through the first coil in dependence of those window sizes. We see — in accordance
with the theoretic results of the previous section — that the error decreases with
the time window size. In particular for small window sizes H ≈ ∆t the first order
accuracy of the implicit Euler would dominate and only higher order methods can
yield an improvement here (independent of the number of window iterations).

The second convergence study, Fig. 10.2b, analyzes the number of iterations k =
1, . . . , 5 per window. The plot shows the time-integrated error on the first time
window T = [0, H] with H = 5 · 10−3s, for varying k. It matches the expected first
order for a simple coupled problem: we have shown that the contraction factor α
vanishes and thus Corollary 3.7 is applicable.
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Figure 10.2: Convergence study of the dynamic iteration scheme applied to the field-circuit coupled
problem using the time step size ∆t = 10−5.

11. Conclusion. In this paper we have broadened the results of [3] to general
index-1 DAEs. We have given a sufficient condition for convergence of dynamic it-
eration schemes applied to general index-1 DAEs. The error propagation for the
windowing technique was examined and we have shown that under the given contrac-
tivity condition the dynamic iteration scheme is globally convergent and stable.

We have carried out a detailed analysis of important special cases of coupled
index-1 problems. This included e.g. the simple coupling, where for a Gauss-Seidel
dynamic iteration scheme the rate of convergence with respect to the time window
size H can be higher than in the general case, namely O(H) instead of O(

√
H).

Often optimal modeling of the coupling interface is necessary to obtain the higher
convergence rate. Especially in electrical engineering this can be of high interest since
in applications incorporating radio frequency the chosen time window size usually is
significantly smaller than one.

We have shown that the sequence in which different subsystems are simulated may
be crucial to ensure convergence of the iteration scheme. Moreover, for the coupling
of two subsystems we have shown that even if the contractivity condition is fulfilled
for any sequence, the sequence of the subsystems influences the speed of convergence.
As measure for this we have identified the Lipschitz constants.

We have applied our theoretical results to two different applications in electrical
engineering; a coupled semiconductor-circuit system, as well as a coupled field-circuit
system. For both applications we suggest a tailor-made modeling of the interface in
order to ensure the best convergence of the applied iteration scheme. The simula-
tions verify that our condition for convergence is sufficient. Moreover, the examples
show, that without enhanced modeling of the interface and thus without fulfilling
the contractivity condition, the iteration may be divergent. Thus the examples not
only verify the theoretical results, but also show that in DAE-PDE coupling even for
simple settings iteration schemes can suffer from divergence.

The identification of coupled systems consisting of more than two subsystems and
coupling structures with a convergence rate higher than O(H) are subject to ongoing
research. Furthermore, the consideration of the coupled field-semiconductor-circuit
system is part of this ongoing research.
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[17] R. Kübler and W. Schiehlen. “Two Methods of Simulator Coupling”. In: Mathematical

and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in
Engineering and Related Sciences 6.2 (2000), pp. 93 –113.

[18] E. Lelarasmee. “The Waveform Relaxation Method for Time Domain Analysis of Large
Scale Integrated Circuits: Theory and Applications”. PhD thesis. EECS Department,
University of California, Berkeley, 1982.

[19] L. D. Marini and P. Pietra. “New mixed finite element schemes for current continuity
equations”. In: COMPEL 9 (1990), pp. 257–268.

[20] D. Meeker. Finite Element Method Magnetics User’s Manual. Version 4.2 (09Nov2010
Build). 2010.

[21] U. Miekkala and O. Nevanlinna. “Convergence of dynamic iteration methods for initial
value problems”. In: SIAM J Sci Stat Comput 8 (1987), pp. 459–482.

[22] M. Rathinam, Linda, and L. R. Petzold. “Dynamic Iteration Using Reduced Order
Models: A Method For Simulation Of Large Scale Modular Systems”. In: SIAM J
Numer Anal 40 (2002), pp. 1446–1474.

[23] S. J. Salon. Finite Element Analysis of Electrical Machines. Kluwer, 1995.
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