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This paper discusses the weak coupling of nonlinear magnetoquasistatic field models (e.g. of induction motors) to an external electric network
model (e.g. of frequency converters). A piece-wise linear inductance (as lumped field model) is not sufficiently accurate if the magnetic field exhibits
strong eddy current effects. Here, we propose to represent the field model in the circuit equations by a more complex surrogate model. It is fitted
by dynamic iteration (’waveform relaxation’) during the co simulation procedure. We demonstrate the link between dynamic iterations and the
achievable convergence order of the time integrator numerically.

Index Terms—Coupling circuits, Eddy currents, Iterative algorithms, Differential-equations, Convergence of numerical methods.

I. I NTRODUCTION

FOR field-circuit coupled models of electrical energy trans-
ducers, two general approaches are well established. A

first approach consists of extracting lumped parameters or
surrogate models from a field model and inserting these as a
netlist into a Spice-like circuit simulator. Then, time dependent
phenomena (e.g. saturation, eddy currents, hysteresis) require
quite elaborated surrogate modeling. This is circumventedby
the second approach, monolithic coupling, where field and
circuit model are solved together. This, however, necessitates
specialized time integration and solving techniques.

We propose a particular synthesis, [1]. Based on commonly
definedtime windows and intermediatesynchronization points,
the electric circuit model and the magnetic field model are
solved independently with a possibly different time step from
one to the next synchronization point. Intermediate solutions
and on-the-fly calculated lumped parameters are exchanged at
the synchronization points. Adynamic iteration, i.e., repeating
the time window with updated information, guarantees a tight
coupling between the subproblems. This approach is a true
two-way coupling and naturally enables different time steps
and solution techniques for each subsystem.

In this paper, we show that adapting the surrogate model
and repeating the time window is necessary to realize a higher
order convergence of the overall time integration, in particular
when nonlinearities and motional effects are included. A
classical operator splitting approach (e.g. Yanenko splitting)
without iterations only achieves a first order splitting error,
[2]. We will show that a higher order time integration of
the subproblems makes only sense when carrying out an
accordingly chosen number of dynamic iterations.

II. B ENCHMARK MODEL: OSCILLATOR

Let us consider a simple oscillator circuit, see Fig. 1. For
simplicity we describe here the circuit in minimal coordinates,
i.e., in the electric voltagesu at the nodes 1 and 2:

u̇1 =
R

L(i)
(u2 − u1), u̇2 =

1

RC
(Vop − u1)−

1

C
g(u2). (1)

The inductanceL is described by a nonlinear magnetostatic
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Fig. 1. Tunnel diode oscillator with parametersC = 0.05F, R = 0.5Ω,
Vop = 0.25V and diodeg(v) = −v, s.t. explicit time integration is feasible.

-1

-0.5

0

0.5

1

1.5

2

0 0.02 0.04 0.06 0.08 0.1

n
o

d
e 

v
o

lt
ag

es
 [

V
]

time [s]

voltage node 1

voltage node 2

Fig. 2. Nodal voltages of the oscillator circuit shown in Fig. 1.

partial differential equation (PDE) model, the curlcurl equa-
tion. Spatially discretized (e.g. by FEM, [3]), it reads:

K(a)a −Xi = 0, (2)

wherea is the line-integrated magnetic vector potential,K is
the nonlinear curl-curl-reluctance matrix andX is the winding
function that describes the current distribution in the coil. This
inductor model is excited by the currenti = (Vop − u1)/R.
The waveforms for the node voltages are given in Fig. 2.

Solving (2) partially fora, we can extract the inductance

L(a) := X⊤ (K(a))−1
X

for insertion in (1). Doing so, we defined a two-way coupled
system which will be explored in the next section.

III. C OSIMULATION

The coupled system (1-2) reads in semi-explicit form as:

u̇ = f(u, L) and 0 = g(u, L).

The cosimulation is organized as a Gauß-Seidel-scheme. The
time interval of interest[0, T ] is subdivided into a series of
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Fig. 3. Convergence plot of cosimulation withn = 3 iterations per window
using constant extrapolation and cubic interpolation.

time windows: 0 = T0 < T1 < · · · < Tn = T with
synchronization pointsTi and window sizesHi = Ti+1 − Ti.
The circuit and field problems are sequentially solved on those
windows [Ti, Ti+1]. The waveforms are exchanged iteratively
on each time window, i.e., the field problem is recomputed on
a time window by using the new circuit waveforms etc.

u̇(k+1) = f(u(k+1), L(k)) and 0 = g(u(k+1), L(k+1)),

where the superscriptk = 1, . . . ,m denotes the iteration
number, see [4] and the special casem = 1 in [5], [6].

Notice, the inductanceL = L(t) is now considered as a
waveform that depends on time instead of currents or magnetic
vector potentials. This introduces splitting errors: on each
time windows we solve the subsystems separately. The first
waveform (k = 0) is extrapolated from previous solutions.

IV. H IGHER ORDER COSIMULATION

In [2], [7] it has been shown that iterations are not only
necessary for improving stability but also for fully exploiting
the accuracy of higher order time integration of the subprob-
lems. For the given problem the splitting error decreases by
O(H) with each dynamic iteration.

For the benchmark problem (1-2) both subsystems are
discretized with the same time step sizehi = Hi/4. This test
case setting is chosen to demonstrate the error behavior for
our cubic spline interpolation described below. Thus the wave-
forms on[Ti, Ti+1] are given as discrete values, e.g.L(k+1)(tj)
with tj = Ti+ j ·Hi/4 andj = 0, . . . , ni = 4. We solved the
circuit problem by Runge-Kutta methods of orders 1, 2 and
3. The continuous waveforms are recovered from the discrete
values by cubic spline interpolation. This is necessary because
single step methods compute their higher order approximations
by evaluating the right-hand-side function at intermediate
time instants and therefore the approximation order of the
interpolation should match the order of the time integration.
For the cosimulation we appliedm = 3 dynamic iterations
and used various window sizesH = 5 · 10−5, . . . , 5 · 10−3.
The results are compared to a monolithic reference solution
of high accuracy. As expected, the convergence order of the
time integration error isO(Hp) wherep is the order of the
subproblem time integrators (Fig. 3).

Due to the sequential computation of solutions for the
subsystems, we introduce a splitting error. This error is con-
trolled by the number of dynamic iterations. Fig. 4 shows
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Fig. 4. Contraction of solution on the first time window[0, 5 · 10−5]s for
increasing iterationsk = 1, . . . , 3 and methods of different order.

the reduction of the splitting error on a single window due
to additional iterations. The first order time integration does
not benefit from the additional iterations 2 and 3 because the
time discretization error dominates here (the analog argument
holds true for the second order approximation). Hence to
preserve the overall order, three iterations are only mandatory
in combination with third order subproblem time integrators.
Furthermore less iterations will destroy the global convergence
property, Fig. 5. To achieve a prescribed temporal convergence
order, one needs to conscientiously select both the subproblem
time integration methods, the interpolation and the numberof
dynamic iterations. Approaches without iteration, e.g., [5], [6],
should only be used in combination with first order integrators.

In practice the problem is more involved because each
subproblem may be described by a dynamical system (e.g.
the field part is magnetoquasistatic). Furthermore the problems
are not formulated in minimal coordinates (e.g. the circuit
might me modeled by modified nodal analysis) and then the
cosimulation might diverge, see [8]. Then window iterations
are even more important to guarantee stability and higher order
accuracy. In the end one will use different time steps for the
field and circuit subproblems to exploit multirate, [4].

V. ELECTRICAL MACHINES AND MULTIRATE

Let us discuss the cosimulation of more complicated de-
vices, e.g. the induction machine depicted in Fig. 6. This exam-
ple necessitates to consider eddy currents, saturation androtor
movement. Since these effects typically occur at differenttime
scales, we havemultirate behavior. The magnetoquasistatic
model with circuit-coupling reads

M
d

dt
a + K(a, θ)a −Xi = 0, X⊤

d

dt
a+ Ri = v. (3)

As above,a denotes the line-integrated magnetic vector po-
tential.R, i andv are the DC resistance matrix, currents and
voltage drops of the coils. Each column of the matrixX is
a discretization of a winding function.M is the conductivity
matrix andK is the curl-curl-reluctivity matrix. For an elec-
trical machine,K additionally depends on the rotor angleθ
(Fig. 6). This angle solves the motion equation

m
d2

dt2
θ + λ

d

dt
θ = f(a) (4)

with mass moment of inertiam, friction coefficientλ and
force f .
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Fig. 5. Convergence plot of cosimulation with 3rd order integrator using
constant extrapolation (higher order accuracy is lost form < 3).

A. Circuit Coupling by the Schur Complement

The PDE (3) can be solved (partially) fora

a = K−1(a, θ)Xi −K−1(a, θ)M
d

dt
a,

and then inserted into the coupling equation (3):

d

dt

(

X⊤K−1(a, θ)X
︸ ︷︷ ︸

:=L(a,θ)

i−X⊤K−1(a, θ)M
d

dt
a

︸ ︷︷ ︸

:=Φeddy(a,θ)

)

+Ri = v. (5)

This generalizes the Schur complement inductance extraction.
If the lumped equations (5) are updated at every time point
according to (3), then they exactly describe all effects of the
field part needed within the circuit. This evaluation comes with
additional cost and is not recommended within a strong cou-
pling. For a weak coupling as proposed here, this observation
motivates a multirate time stepping technique.

B. Cosimulation Essentials

We simulate the circuit and field subproblems independently
from each other on time windows using the cosimulation
approach as described in Section III. The algorithm is applied
to the field-circuit coupled induction machine model. The
circuit subproblem is solved with given waveforms forv(t)
and θ(t) and delivers solutions forL(t), Φeddy(t) and f(t).
L(t) andΦeddy(t) serve as inputs for the circuit model, whereas
f(t) serves as input for the equation of motion. It is important
to recognize that the dependencies ofL andΦeddy (e.g. the
angle θ) become a dependence on timet, because of the
waveform relaxation approach, i.e., they are assumed to be
known functions for the circuit problem. The computation of
field and circuit are successively solved in a dynamic iteration
in order to preserve the convergence order of the subproblem
time integrators at the time window level and in order to
guarantee the stability of the overall time integration process.

C. Multirate Dynamics of Nonlinear Effects

Often the physical relevant time scales are not well sepa-
rated in the coupling variables. We imagine an induction motor
driven by a pulse-width-modulated voltage source, which is
switching at 20kHz and carries a 50Hz signal, cf. [4]. The
circuit variables must be sampled on the fast scale, but the
dynamics of the extracted inductance matrix is governed by the
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Fig. 6. Induction machine: circuit and induction machine.

smaller frequency. Here the magnetic saturation of a nonlinear
material (PDE model) depends on the supplied energy, which
is related to the time integral of the applied voltagev(t)

ψ(t) =
∫ t

0
v(s)ds.

The relevant nonlinear behavior is described on the time scale
of this integral even if the applied voltage is a much faster
signal. In our example [4], the integral is a step function
(sampled at 20kHz), which approximates a cosine of 50Hz.
From another point of view, quantities are often composites

v(t) = vfast(t) + vslow(t),

of a fastvfast and a slow partvslow and the governing time
rate is given byvslow; typically either the amplitude of the fast
signal max |ψfast| ≪ max |ψslow| is negligible or the energy
of the fast switching signalvfast(t) is evolving at a slower
time rate. In either case, the impact of the fast signal on the
nonlinear effects can often be disregarded. This is also valid
in thermal coupling [9], which is effective on a slower time
scale due to energy transport. Thus the field model fed by the
underlying slow signal will have the same effect as the fast
waveform, but the time integration will need fewer time steps.

Since the underlying, driving waveforms (asvslow) are
typically not given or might by modified by additional circuit
elements, we need a method to uncover these signals. Among
various possibilities, we propose here a simple method based
on spline interpolation of the integrated voltage.

The known waveformv(t) is integrated onI = [Ti, Ti+1].
This corresponds to the discrete summation ofv(tj) (tj ∈ I)
weighted by with time stephj : (rectangle rule)

ψl :=
∑l

j=1
v(tj)hj (l = 0, . . . , ni). (6)

Now we define a cubic spline interpolatioñψ(t) of (tl∗ , ψl∗).
This gives a smooth time-integrated voltage. The interpolation
knots tl∗ should be chosen according to the dynamics of the
underlying (slow) waveform. E.g. the number of knots can
easily be estimated by a Fourier analysis or might by known
beforehand. It is crucial that the spline is a good approximation
of (6), because otherwise the energy balance will be violated.

Finally, the cubic spline interpolation is differentiatedwith
respect to time. This yields a slowly varying spline approx-
imation ṽslow(t) of the underlying waveform. Obviously, the
smooth signal requires a smaller number of time steps for
representation than the original fast switching signal.
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Fig. 7. Currents through induction machine during start-up

D. Simulation of Motor and Transformer

The proposed scheme was implemented inFIDES and
OCS from the CoMSON project, for the meshingTriangle
embedded inFEMM was used, [10], [11]. Our implementation
supports nonlinear materials, eddy currents and motion. Vari-
ous time integrators are available. We report on two examples.

For the induction machine Fig. 6, the explicit Euler method
was used for the equation of motion and the implicit Euler
method for the field and circuit equations. The field and motion
equations are integrated with time steps of10−5s, 10−4s or
5 · 10−4s. The circuit including the lumped field model used
10−6s. The obtained currents are given in Fig. 7. Hence the
number of time steps for the field problem were reduced
from 400000 for a strong coupled monolithic approach to 800
for the cosimulation scheme. The nonlinear behavior of the
motor in the inrush current phase was computed by both a
strong and weak cosimulation approach. In the strong coupled
simulation, field and circuit equations were discretized bytime
steps of10−6s. The cosimulation uses constant window sizes
that match the step sizes of the field problem, i.e.,H = 10−5s,
10−4s and 5 · 10−4s. One dynamic iteration (m = 1) is
sufficient for this particular configuration because of the simple
surrounding circuit and more generally because of the first
order time integration.

The maximal relative errors occur at the time instant of
maximal current, where a very high level of saturation is
reached. For the time step size5 · 10−4s the error is ca. 10%,
while for step sizes10−5s and10−4s the error is less than
5%. This is close to the expected time discretization error for
a signal switching at 20kHz. Furthermore the accuracy is in
the range of the typical measurement error for the nonlinear
material curve. A higher accuracy can always by achieved by
using smaller time steps or in the case of more complicated
circuits by additional iterations.

To demonstrate this, our second example is a transformer
in a lowpass-filter circuit, [4]. It was solved by a 5th order
implicit Runge-Kutta scheme (RADAU5) for different iteration
numbers (k = 1, . . . , 4). The error behavior is given in Fig. 8.
In this particular example the gain per iteration isO(H2).

The computational efforts of the cosimulations are signifi-
cantly smaller than in the strong coupling: less time steps yield
less computational time, e.g. the cosimulation of the induction
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Fig. 8. Convergence of higher order cosimulation for the problem from [4].

machine takes a couple of minutes while the computation
of the standard single-rate solution requires about 12h on a
desktop PC (which serves here as reference solution).

VI. CONCLUSIONS

Cosimulation was proven to be a flexible approach en-
abling different time steps for each subproblem (multirate).
To achieve a respective convergence order we demonstrated
that the number of iterations had to be carefully chosen.
For field/circuit problems the time rate of the saturation is
driven by the delivered energy. This rendered the field in our
application as slower subsystem. For a fast cosimulation, we
defined a coupling extracting the slower time scale by signal
separation, i.e., the nonlinear field part for the lumped model is
updated with an accordingly slower sample rate. A substantial
reduction of computation time has been achieved.
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