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Higher-Order Cosimulation of Field/Circuit Coupled Problems

Sebastian SchopsHerbert De Gersefy and Andreas Bartél

! Bergische Universitat Wuppertal, GauRstraRe 20, 4211pp&fdal, Germany
2 Katholieke Universiteit Leuven, Etienne Sabbelaan 53,0880rtrijk, Belgium

This paper discusses the weak coupling of nonlinear magnejaasistatic field models (e.g. of induction motors) to an egrnal electric network
model (e.g. of frequency converters). A piece-wise lineanductance (as lumped field model) is not sufficiently accurat if the magnetic field exhibits
strong eddy current effects. Here, we propose to represenhe field model in the circuit equations by a more complex surrgate model. It is fitted
by dynamic iteration ('waveform relaxation’) during the cosimulation procedure. We demonstrate the link between dynmaic iterations and the
achievable convergence order of the time integrator numedally.

Index Terms—Coupling circuits, Eddy currents, Iterative algorithms, Differential-equations, Convergence of numerical methosl.

|. INTRODUCTION ) )

OR field-circuit coupled models of electrical energy trans-
ducers, two general approaches are well established. A
first approach consists of extracting lumped parameters or Vop —c V¢
surrogate models from a field model and inserting these as a
netlist into a Spice-like circuit simulator. Then, time depent
phenomena (e.g. saturation, eddy currents, hysteregjgjree L
quite elaborated surrogate modeling. This is circumvebted Fig. 1. Tunnel diode oscillator with parametef = 0.05F, R = 0.59,
the second approach, monolithic coupling, where field arfep = 0-25V and diodeg(v) = —v, s.t. explicit time integration is feasible.
circuit model are solved together. This, however, necatest 2
specialized time integration and solving techniques.
We propose a particular synthesl|s, [1]. Based on commonly
definedtime windows and intermediateynchronization points,
the electric circuit model and the magnetic field model are
solved independently with a possibly different time stegnir
one to the next synchronization point. Intermediate sohsti
and on-the-fly calculated lumped parameters are exchariged a
the synchronization points. dynamic iteration, i.e., repeating
the time window with updated information, guarantees attigh 0 o e "
coupling between the subproblems. This approach is a true
two-way coupling and naturally enables different time step

and solution techniques for each subsystem. partial differential equation (PDE) model, the curlcurlueg

In this paper, we show that adapting the surrogate modgjn. Spatially discretized (e.g. by FEM.![3]), it reads:
and repeating the time window is necessary to realize a highe

order convergence of the overall time integration, in gattir K(a)a—Xi =0, (2)
when nonlinearities and motional effects are included. @herea is the line-integrated magnetic vector potentljis
classical operator splitting approach (e.g. Yanenko B}  the nonlinear curl-curl-reluctance matrix abdis the winding
without iterations only achieves a first order splittingG&/T fnction that describes the current distribution in the.cBis
[2]. We will show that a higher order time integration of,quctor model is excited by the current= (Vop — u1)/R.
the subproblems makes only sense when carrying out gl waveforms for the node voltages are given in Fig. 2.
accordingly chosen number of dynamic iterations. Solving [2) partially fora, we can extract the inductance

node voltages [V]

[

Fig. 2. Nodal voltages of the oscillator circuit shown in Fily

Il. BENCHMARK MODEL: OSCILLATOR L(a) ==X (K(a)) ' X

_Let us consider a simple oscillator circuit, see Fify. 1. Fapr insertion in [1). Doing so, we defined a two-way coupled
simplicity we describe here the circuit in minimal coord®®  system which will be explored in the next section.
i.e., in the electric voltages at the nodes 1 and 2:

R o1 1 [11. COSIMULATION
L—.(UQ— 1)7 U2——C(%p_ul)__g(u2)- 1) . . ..

(4) R The coupled systeni](I-2) reads in semi-explicit form as:
The inductancd. is described by a nonlinear magnetostatic

U =

u=f(u,L) and 0=g(u,L).

Manuscript submitted to IEEE. Corresponding author: SirasSchops . L . .
(e-mail: sch%eps@math_uni_WUppertaLde)p 9 P> The cosimulation is organized as a Gaul3-Seidel-scheme. The

time interval of interes{0, 7] is subdivided into a series of
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Fig. 3. Convergence plot of cosimulation with= 3 iterations per window increasing iterationg = 1, ..., 3 and methods of different order.

using constant extrapolation and cubic interpolation.

the reduction of the splitting error on a single window due
to additional iterations. The first order time integratiooed

not benefit from the additional iterations 2 and 3 because the

The circuit and field problems are sequentially solved osé¢ho,. : o X
. : . time discretization error dominates here (the analog asgum
windows [T;, T;+1]. The waveforms are exchanged iterativel . .
olds true for the second order approximation). Hence to

on each time window, i.e., the field problem is recomputed on : ;
a time window by using the new circuit waveforms etc. preserve the overall order, three iterations are only mianga

in combination with third order subproblem time integrator
uf ) = £+ LMy and 0= g(uFtY, LE+H), Furthermore less iterations will destroy the global cogeece
property, Fig[h. To achieve a prescribed temporal converge

b 141 and th al i 1 16 order, one needs to conscientiously select both the sulgmnob
nuMber, Se& ~.] and the special case- Lin [ J’_[ I time integration methods, the interpolation and the nunaber
Notice, the inductancd. = L(t) is now considered as a

; that d d ime instead of ¢ dK_ namic iterations. Approaches without iteration, e[g], [6],
wavetorm that gepencs on time instead ot CUrrents or magnedy, ;4 only be used in combination with first order integrato
vector potentials. This introduces splitting errors: orclea

. ind I h b V. The fi In practice the problem is more involved because each
time windows we solve the subsystems sgparate y. Ihe 'gﬁtbproblem may be described by a dynamical system (e.qg.
waveform ¢ = 0) is extrapolated from previous solutions.

the field part is magnetoquasistatic). Furthermore thelprod
are not formulated in minimal coordinates (e.g. the circuit
might me modeled by modified nodal analysis) and then the
¥osimulation might diverge, sekgl[8]. Then window iterasion
Ere even more important to guarantee stability and highderor

time windows:0 = T, < 17 < -+ < T, = T with
synchronization point§’; and window sized; = T;1 — 1.

where the superscript = 1,...,m denotes the iteration

IV. HIGHER ORDER COSIMULATION

In [2], [7] it has been shown that iterations are not onl
necessary for improving stability but also for fully explog
the accuracy of higher order time integration of the subpro
lems. For the given problem the splitting error decreases
O(H) with each dynamic iteration.

For the benchmark problent][1-2) both subsystems are
discretized with the same time step size= H,/4. This test ) ) ) )
case setting is chosen to demonstrate the error behavior fok€t US discuss the cosimulation of more complicated de-
our cubic spline interpolation described below. Thus theawa Vices, e.g. the induction machine depicted in Elg. 6. Thanex
forms on[T;, T;,1] are given as discrete values, e(é{cﬂ)(tj) ple necessnaltes to consider eddy gurrents, saturaltlorpmd
with ¢t; = T,+j- H;/4andj =0, ..., n; = 4. We solved the movement. Since these effects typically occur at diffetiemé

circuit problem by Runge-Kutta methods of orders 1, 2 arf@/es, we havenultirate behavior. The magnetoquasistatic
3. The continuous waveforms are recovered from the discr&i@de!l with circuit-coupling reads
values by cubic spline interpolation. This is necessarabse d

d
.« T o
single step methods compute their higher order approximsti Maa +Ka,f)a-Xi=0, X @ +Ri=v. (3

by evaluating the right-hand-side function at intermeglials ahove,a denotes the line-integrated magnetic vector po-
time instants and therefore the approximation order of thgntia|. R, i andv are the DC resistance matrix, currents and
interpolation should match the order of the time integlraatiovonage drops of the coils. Each column of the matKixis
For the cosimulation we applieth = 3 dy?amlc |terat|03ns a discretization of a winding functiodM is the conductivity
and used various window sizé$ = 5-107%, ..., 5- 107", matrix andK is the curl-curl-reluctivity matrix. For an elec-
The results are compared to a monolithic reference solutigiy) machine K additionally depends on the rotor angle

of high accuracy. As expected, the convergence order of t@qg'). This angle solves the motion equation
time integration error iSD(H?) wherep is the order of the

ccuracy. In the end one will use different time steps for the
¥ld and circuit subproblems to exploit multiratg} [4].

V. ELECTRICAL MACHINES AND MULTIRATE

subproblem time integrators (Figl 3). _ md_229 + )\ﬂg = f(a) (4)
Due to the sequential computation of solutions for the dt dt

subsystems, we introduce a splitting error. This error is-cowith mass moment of inertian, friction coefficient A and
trolled by the number of dynamic iterations. FIg. 4 showrce f.
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Fig. 5. Convergence plot of cosimulation with 3rd order gnégor using ) ) )
constant extrapolation (higher order accuracy is lostfior 3). smaller frequency. Here the magnetic saturation of a neafin

material (PDE model) depends on the supplied energy, which

A. Circuit Coupling by the Schur Compl t is related to the time integral of the applied voltagg)

The PDE [[B) can be solved (partially) far P(t) = jot v(s)ds.
a=K a0)Xi— K !a, G)Mg& The rel_evant nonlinea_r behavior_is described_ on the timkesca
dt of this integral even if the applied voltage is a much faster
and then inserted into the coupling equatigh (3): signal. In our example[[4], the integral is a step function
d (sampled at 20kHz), which approximates a cosine of 50Hz.

d . . " :
T (XTK‘l(a, )X i—-X"K(a,0)M Ea) +Ri=v. (5) From another point of view, quantities are often composites
~——

=L(a,f) =®Pcqay(a,0) V(t) = Vfast (t) —+ Vslow (t)v

This generalizes the Schur complement inductance exdractiof a fastv.s; and a slow parvg., and the governing time

If the lumped equationg{5) are updated at every time poirgte is given by ; typically either the amplitude of the fast
according to[(B), then they exactly describe all effectshef t signal max |¢s| < max |1son| IS negligible or the energy
field part needed within the circuit. This evaluation coméfw of the fast switching signabs.s:(¢) is evolving at a slower
additional cost and is not recommended within a strong cotime rate. In either case, the impact of the fast signal on the
pling. For a weak coupling as proposed here, this observatioonlinear effects can often be disregarded. This is alsul val

motivates a multirate time stepping technique. in thermal coupling([B], which is effective on a slower time
scale due to energy transport. Thus the field model fed by the
B. Cosimulation Essentials underlying slow signal will have the same effect as the fast

We simulate the circuit and field subproblems independen%’l\g/aveform’ but the time integration will need fewer time step

from each other on time windows using the cosimulation Since the underlying, driving waveforms (agi.) are
approach as described in Section Ill. The algorithm is awbplitypically not given or might by modified by additional cir¢ui

to the field-circuit coupled induction machine model. Thelements, we need a method to uncover these signals. Among
circuit subproblem is solved with given waveforms fo(t) Vvarious possibilities, we propose here a simple methoddbase
and 6(t) and delivers solutions foL(t), ®eqay(t) and f(t). on spline interpolation of the integrated voltage.

L(t) and®eqay(t) serve as inputs for the circuit model, whereas The known wavefornv () is integrated orf = [T}, T} 1].

f(t) serves as input for the equation of motion. It is importarty,;g corresponds to the discrete summationof;) (¢; € 7)

to recognize that the dependencieslofind ®.q4y (€.9. the weighted by with time step,: (rectangle rule)

angle ) become a dependence on timebecause of the

waveform relaxation approach, i.e., they are assumed to be Wy = Zl_ v(tj)h; (1=0,...,n,). (6)

known functions for the circuit problem. The computation of =1

field and circuit are successively solved in a dynamic iterat Now we define a cubic spline interpolatiddt) of (t+, ).

in order to preserve the convergence order of the subproblg#is gives a smooth time-integrated voltage. The intetjpmia

time integrators at the time window level and in order t@notst;- should be chosen according to the dynamics of the

guarantee the stability of the overall time integrationgess. underlying (slow) waveform. E.g. the number of knots can
easily be estimated by a Fourier analysis or might by known

C. Multirate Dynamics of Nonlinear Effects beforehand. It is crucial that the spline is a good approkiona

Often the physical relevant time scales are not well sepl. ), because otherwise the energy balance will be vidlate

rated in the coupling variables. We imagine an inductionanot Finally, the cubic spline interpolation is differentiatedth
driven by a pulse-width-modulated voltage source, which igspect to time. This yields a slowly varying spline approx-
switching at 20kHz and carries a 50Hz signal, €f. [4]. Thenation vg,(t) of the underlying waveform. Obviously, the
circuit variables must be sampled on the fast scale, but thmooth signal requires a smaller number of time steps for
dynamics of the extracted inductance matrix is governethby trepresentation than the original fast switching signal.
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Fig. 7. Currents through induction machine during start-up Fig. 8. Convergence of higher order cosimulation for thebfgm from [2].

machine takes a couple of minutes while the computation
of the standard single-rate solution requires about 12h on a

The proposed scheme was implementedFinDES and  desktop PC (which serves here as reference solution).
OCS from the CoMSON project, for the meshidg i angl e

embedded iFEMMwas used,[[10],171]. Our implementation VI. CONCLUSIONS
supports nonlinear materials, eddy currents and motiori- Va Cosimulation was proven to be a flexible approach en-
ous time integrators are available. We report on two exaspl@bling different time steps for each subproblem (multiate
For the induction machine Figl 6, the explicit Euler method@io achieve a respective convergence order we demonstrated
was used for the equation of motion and the implicit Eulghat the number of iterations had to be carefully chosen.
method for the field and circuit equations. The field and nmotid=or field/circuit problems the time rate of the saturation is
equations are integrated with time steps16f-°s, 10~“s or driven by the delivered energy. This rendered the field in our
5-10~%s. The circuit including the lumped field model usedpplication as slower subsystem. For a fast cosimulatian, w
10~%s. The obtained currents are given in Higj. 7. Hence thiefined a coupling extracting the slower time scale by signal
number of time steps for the field problem were reduceskparation, i.e., the nonlinear field part for the lumped ehixd
from 400000 for a strong coupled monolithic approach to 8Qfpdated with an accordingly slower sample rate. A substhnti

D. Smulation of Motor and Transformer

for the cosimulation scheme. The nonlinear behavior of tmeduction of computation time has been achieved.

motor in the inrush current phase was computed by both a
strong and weak cosimulation approach. In the strong cduple
simulation, field and circuit equations were discretizeditme  [1]
steps ofl0~%s. The cosimulation uses constant window sizes
that match the step sizes of the field problem, iB5 10~ °s, 2]
10~%s and5 - 10~%s. One dynamic iterationn{ = 1) is
sufficient for this particular configuration because of timede 3
surrounding circuit and more generally because of the firét
order time integration.

The maximal relative errors occur at the time instant of*
maximal current, where a very high level of saturation is
reached. For the time step size10~*s the error is ca. 10%, [S]
while for step sizesl0~°s and10~“s the error is less than
5%. This is close to the expected time discretization emor f [g]
a signal switching at 20kHz. Furthermore the accuracy is in
the range of the typical measurement error for the nonline
material curve. A higher accuracy can always by achieved by
using smaller time steps or in the case of more complicated
circuits by additional iterations. (8]

To demonstrate this, our second example is a transformer
in a lowpass-filter circuit,[T4]. It was solved by a 5th orderl[®]
implicit Runge-Kutta scheme (RADAU5) for different itei@
numbers k = 1,...,4). The error behavior is given in Fig] 8.

In this particular example the gain per iteration®H?2). [10]
The computational efforts of the cosimulations are signifi-
cantly smaller than in the strong coupling: less time steplly [11]

less computational time, e.g. the cosimulation of the itidac
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