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Abstract

In this paper we construct infinitely many selfadjoint solutions of the
control algebraic Riccati equation using invariant subspaces of the asso-
ciated Hamiltonian. We do this under the assumption that the system
operator is normal and has compact inverse, and that the Hamiltonian
possesses a Riesz basis of invariant subspaces.
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1 Introduction

The algebraic Riccati equation

A∗X +XA−XBB∗X + C∗C = 0 (1)
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appears in many control problems. For instance, it is directly linked to the
solution of the linear quadratic optimal control problem. That is, the mini-
mal nonnegative solution of (1) determines the optimal cost, and −B∗X is the
optimal feedback, see e.g. [5, 6, 7, 21, 22].

Since it is a quadratic operator equation, (1) may possess infinitely many so-
lutions, even in the finite-dimensional case. A characterisation of all solutions of
the algebraic Riccati equation can be presented using the Hamiltonian operator
matrix

T =

(

A −BB∗

−C∗C −A∗

)

.

It is easy to see that X satisfies the algebraic Riccati equation if and only if its
graph subspace Γ(X) = R ( I

X ) is invariant under the Hamiltonian.
In the finite-dimensional setting this connection has led to a complete de-

scription of all solutions, see e.g. [3, 15, 17, 18]. In the infinite-dimensional
setting, only some results in this direction are known: Kuiper and Zwart [14]
studied the case where B and C are bounded and T is a Riesz-spectral op-
erator. They obtained a characterisation of all bounded solutions in terms of
the eigenvectors of T . Langer, Ran and van de Rotten [16] also studied the
case of bounded B,C and used the symmetry of T with respect to an indefinite
inner product to prove the existence of nonnegative and nonpositive solutions.
In [23, 25] these two approaches were combined and extended to the case that
BB∗ and C∗C are unbounded closed operators on the state space.

In this paper, we use the connection between invariant subspaces of T and
the Riccati equation (1) to construct infinitely many selfadjoint solutions under
the following conditions:

(a) A is a normal operator with compact resolvent on a Hilbert space H and
generates a C0-semigroup;

(b) B ∈ L(U,H−s), C ∈ L(Hs, Y ) with 0 ≤ s ≤ 1, where Hs ⊂ H ⊂ H−s are
the usual fractional domain spaces corresponding to A, and we consider
duality with respect to the pivot space H .

From (b) we see that BB∗, C∗C ∈ L(Hs, H−s). In particular, BB∗ and C∗C map
out of the state space H , and the Hamiltonian T is not of the class considered
in [23, 25]. We consider T as an unbounded operator on H × H with domain
of definition D(T ) = {v ∈ Hs × Hs | Tv ∈ H × H} and make the following
additional assumption:

(c) T as an operator on H ×H has a compact resolvent and admits a finitely
spectral Riesz basis of subspaces, i.e., a Riesz basis consisting of finite-
dimensional spectral subspaces.
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Such a Riesz basis exists for example if T admits a Riesz basis of generalised
eigenvectors. On the other hand, the concept of finitely spectral Riesz bases
of subspaces is more general as it allows for Hamiltonians whose (generalised)
eigenvectors are complete but do not form a Riesz basis. We use assumption
(c) to construct invariant subspaces of the Hamiltonian: For any σ ⊂ σ(T ) the
closed subspace Wσ generated by all generalised eigenvectors corresponding to
eigenvalues in σ is T -invariant.

In Theorem 4.6 we show that condition (c) holds if in addition to the as-
sumptions (a) and (b) we have that s < 1/2, C ∈ L(H, Y ), A generates an
analytic semigroup, and the eigenvalues of A satisfy suitable growth conditions.
The idea for the proof is to decompose T as

T = S +R, S =

(

A −BB∗

0 −A∗

)

, R =

(

0 0
−C∗C 0

)

. (2)

The generalised eigenvectors of S are given by explicit formulas and a theorem
of Bari implies that they form a Riesz basis. A perturbation result then yields
the Riesz basis for T .

Apart from the finitely spectral Riesz basis of subspaces, our main tool to
construct solutions of the Riccati equation are the two indefinite inner products
on H ×H given by

〈v|w〉 = (J1v|w) with J1 =

(

0 −iI
iI 0

)

,

[v|w] = (J2v|w) with J2 =

(

0 I
I 0

)

,

where (·|·) is the standard scalar product on H × H . The Hamiltonian is J1-
skew-symmetric, i.e. 〈Tv|w〉 = −〈v|Tw〉 for all v, w ∈ D(T ), and J2-dissipative,
Re[Tv|v] ≤ 0. These relations enable us to apply abstract results from [25] for
(skew-) symmetric and dissipative operators on indefinite inner product spaces:
The skew-symmetry of T implies that the spectrum σ(T ) is symmetric with
respect to the imaginary axis. If now σ(T ) ∩ iR = ∅ and σ ⊂ σ(T ) is skew-
conjugate, i.e., σ contains exactly one eigenvalue from each skew-conjugate pair
(λ,−λ) in σ(T ), then Wσ = W

〈⊥〉
σ . Here W

〈⊥〉
σ denotes the orthogonal com-

plement of Wσ with respect to 〈·|·〉. The dissipativity of T implies that, with
respect to [·|·], the subspace W+ = Wσ(T )∩C−

corresponding to the spectrum in
the left half-plane is nonnegative, while W− = Wσ(T )∩C+

is nonpositive.
Based on these results we prove Theorem 5.6 on the existence of solutions

of the Riccati equation: Suppose that the assumptions (a), (b) and (c) hold,
that the pair (A,B) is approximately controllable and that there are no non-
observable eigenvalues of A on iR. Then σ(T ) ∩ iR = ∅ and for every skew-
conjugate σ ⊂ σ(T ), the T -invariant subspace Wσ is the graph of a selfadjoint

3



operator X on H ,

Wσ = Γ(X) =
{

(

x
Xx

)

∣

∣

∣
x ∈ D(X)

}

;

in particular, X is a solution of (1). Moreover, the solution X+ corresponding
to W+ is nonnegative, X− is nonpositive.

In general, the solutions X will be unbounded. One consequence is that the
Riccati equation (1) is only formally satisfied; instead we have

A∗Xx+X(Ax− BB∗Xx) + C∗Cx = 0 for all x ∈ D,

where D is a dense subset of D(X). On the other hand, Theorem 7.4 yields the
existence of bounded solutions: If T has a Riesz basis of generalised eigenvectors
whose stable part is quadratically close to an orthonormal system, then X is
bounded whenever σ∩C+ is finite. In particular X+ is bounded then. We derive
a sufficient condition for the existence of such Riesz bases in Theorem 7.8.

The article is structured as follows: In Section 2 we recall the notions of Riesz
bases, Riesz bases of subspaces and finitely spectral Riesz bases of subspaces for
arbitrary operators on Hilbert spaces. We state the theorem of Bari on the
existence of Riesz bases, the invariance of the spaces Wσ, and a perturbation
result for finitely spectral Riesz bases of subspaces.

Section 3 contains the general assumptions (a), (b), (c) and the definition of
the Hamiltonian and the spaces Hs. In Section 4 we consider the special case
that C is bounded. We study the generalised eigenvectors of T and S, see (2),
and show that under additional conditions they form Riesz bases.

In Section 5 we then introduce the indefinite inner products 〈·|·〉 and [·|·],
show the J1-skew-symmetry and J2-dissipativity of T , derive the properties of
the spaces Wσ with respect to the inner products, and finally use this to con-
struct the solutions of the Riccati equation.

The controllability and observability conditions in Theorem 5.6 are actually
formulated as conditions on the eigenvectors of A with respect to kerB∗ and
kerC. In Section 6 we define suitable notions of controllability and observability
for non-admissible inputs and outputs, and we prove that in our setting they
can be reformulated in terms of the eigenvectors of A. Section 7 is devoted to
the existence of bounded solutions, and Section 8 finally contains an application
of our results to the one-dimensional heat equation with boundary control.

Let us give some remarks on the notation: We denote by N = {0, 1, 2, . . .}
the set of natural numbers including zero. C+ is the open right half-plane
and C− the open left half-plane of the complex plane. On a Hilbert space, we
write (x|y) for the scalar product of two vectors. By contrast, (x, y) is the pair
consisting of the two elements x and y, so (x, y) ∈ H × H for x, y ∈ H . For
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two normed spaces V and W , the set of bounded linear operators T : V → W
is denoted by L(V,W ), and L(V ) = L(V, V ).

2 Riesz bases of eigenvectors

Let us first recall the notions of Riesz bases and of Riesz bases of subspaces, see
e.g. [9, 25]. Let V be a separable Hilbert space. Recall that a sequence (vk)k∈N
in V is called complete if span{vk | k ∈ N} ⊂ V is dense. For a sequence of
subspaces (Vk)k∈N of V we denote by

∑

k∈N Vk = span
⋃

k∈N Vk the subspace
generated by the sequence (Vk)k∈N, i.e., the set of all finite sums of elements
from the Vk. We say that (Vk)k∈N is complete if

∑

k∈N Vk ⊂ V is dense.

Definition 2.1 (i) A sequence (vk)k∈N in V is called a Riesz basis of V if
there exists an isomorphism Φ ∈ L(V ) such that (Φvk)k∈N is an orthonor-
mal basis of V .

(ii) A sequence (Vk)k∈N of closed subspaces of V is called a Riesz basis of sub-
spaces of V if there exists an isomorphism Φ ∈ L(V ) such that (Φ(Vk))k∈N
is a complete sequence of pairwise orthogonal subspaces.

The sequence (vk)k∈N is a Riesz basis if and only if (vk)k∈N is complete and
there are constants m,M > 0 such that

m

n
∑

k=0

|αk|2 ≤
∥

∥

∥

∥

n
∑

k=0

αkvk

∥

∥

∥

∥

2

≤ M

n
∑

k=0

|αk|2, αk ∈ C, n ∈ N. (3)

Similarly, the sequence of closed subspaces (Vk)k∈N is a Riesz basis of subspaces
of V if and only if (Vk)k∈N is complete and there exist constants m,M > 0 such
that

m
n

∑

k=0

‖xk‖2 ≤
∥

∥

∥

n
∑

k=0

xk

∥

∥

∥

2

≤M
n

∑

k=0

‖xk‖2, xk ∈ Vk, n ∈ N. (4)

If (vk)k∈N is a Riesz basis of V , then every x ∈ V has a unique representation
x =

∑∞
k=0 αkvk, αk ∈ C, and the convergence of the series is unconditional.

Similarly, for a Riesz basis of subspaces (Vk)k∈N every x ∈ V has a unique
unconditional expansion x =

∑∞
k=0 xk, xk ∈ Vk.

It is clear that, if (vk)k∈N is a Riesz basis of V and Vj = span{vkj
, . . . , vkj+1−1},

0 = k0 < k1 < . . . , then (Vj)j∈N is a Riesz basis of finite-dimensional subspaces.
In the opposite direction, we have the following result:

Lemma 2.2 Let (Vj)j∈N be a Riesz basis of finite-dimensional subspaces of V .
For each j let (vj1, . . . , vjrj

) be a basis of Vj and Φj : Vj → Vj an isomorphism
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such that (Φjvjk)k=1,...,rj
is an orthonormal basis of Vj. Then (vjk)j∈N,k=1,...,rj

is
a Riesz basis of V if and only if

sup
j∈N ‖Φj‖ <∞, sup

j∈N ‖Φ−1
j ‖ <∞. (5)

Proof. If (5) holds, then the estimates

∥

∥

∥

rj
∑

k=1

αkvjk

∥

∥

∥

2

≤ ‖Φ−1
j ‖2

∥

∥

∥

rj
∑

k=1

αkΦjvjk

∥

∥

∥

2

= ‖Φ−1
j ‖2

rj
∑

k=1

|αk|2,

rj
∑

k=1

|αk|2 =
∥

∥

∥

rj
∑

k=1

αkΦjvjk

∥

∥

∥

2

≤ ‖Φj‖2
∥

∥

∥

rj
∑

k=1

αkvjk

∥

∥

∥

2

together with (4) imply (3). Obviously, (vjk)jk is complete and hence it is a
Riesz basis. On the other hand, if (vjk)jk is a Riesz basis, we have

∥

∥

∥
Φj

rj
∑

k=1

αkvjk

∥

∥

∥

2

=

rj
∑

k=1

|αk|2 ≤
1

m

∥

∥

∥

rj
∑

k=1

αkvjk

∥

∥

∥

2

,

∥

∥

∥
Φ−1

j

rj
∑

k=1

αkΦjvjk

∥

∥

∥

2

=
∥

∥

∥

rj
∑

k=1

αkvjk

∥

∥

∥

2

≤M

rj
∑

k=1

|αk|2 = M
∥

∥

∥

rj
∑

k=1

αkΦjvjk

∥

∥

∥

2

,

which yields (5). �

Theorem 2.3 (Bari [9, Theorem VI.2.3]) Let (ek)k∈N be an orthonormal
basis of V and let vk ∈ V be such that

(i) (vk)k∈N is quadratically close to (ek)k∈N, i.e.
∑∞

k=0 ‖vk − ek‖2 <∞,

(ii) (vk)k∈N is ω-linearly independent, i.e., for all αk ∈ C,
∑

k |αk|2 < ∞ we
have the implication

∞
∑

k=0

αkvk = 0 ⇒ αk = 0 ∀k.

Then (vk)k∈N is a Riesz basis of V .

For use in Section 7 we also need the following variant of Bari’s Theorem;
for yet another variant see [10, Lemma 1]. Note that we do not require (ek)k∈N
to be a basis.

Lemma 2.4 Let (ek)k∈N be an orthonormal system of V and let (vk)k∈N be
quadratically close to (ek)k∈N. Then there exists k0 ∈ N such that (vk)k≥k0

is a

Riesz basis of span{vk | k ≥ k0}.
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Proof. We extend (ek)k to an orthonormal basis (ek)k∈N ∪ (fk)k∈J of V with
J ⊂ N appropriate. Then we choose k0 ∈ N such that

∞
∑

k=k0

‖vk − ek‖2 < 1. (6)

Now we can define a linear operator T on V by setting Tfk = 0, Tek = 0 for
k < k0, and Tek = vk − ek for k ≥ k0. From (6) it is easy to see that T is
bounded with ‖T‖ < 1. Therefore I + T is an isomorphism and (I + T )ek = vk

for k ≥ k0, which proves the claim. �

Corollary 2.5 Let (vk)k∈N be a complete, ω-linearly independent sequence in
V . If there exists k1 ∈ N and an orthonormal system (ek)k≥k1

such that

∞
∑

k=k1

‖vk − ek‖2 <∞,

then (vk)k∈N is a Riesz basis of V .

Proof. By the previous lemma there exists k0 ≥ k1 such that (vk)k≥k0
is a

Riesz basis of U = span{vk | k ≥ k0}. Let W = span{v0, . . . , vk0−1}. Then
U ∩W = {0} by the ω-linearly independence of (vk)k. The completeness implies
that the algebraically direct sum U ⊕W ⊂ V is dense. Since U is closed and
W is finite dimensional, U ⊕W is also closed and hence U ⊕W = V . This in
turn implies that (vk)k∈N is a Riesz basis of V . �

Definition 2.6 Let T be a linear operator on V with compact resolvent. A
Riesz basis of subspaces (Vk)k∈N is called finitely spectral for T if

(i) all Vk are finite-dimensional, T -invariant, satisfy Vk ⊂ D(T ), and

(ii) the sets σ(T |Vk
) are pairwise disjoint.

In other words, a Riesz basis (Vk)k∈N is finitely spectral for T if and only if
the Vk are spectral subspaces corresponding to finite disjoint sets of eigenvalues
of T .

Let us denote by L(λ) the generalised eigenspace or root subspace of T
corresponding to an eigenvalue λ ∈ σp(T ), i.e.

L(λ) =
⋃

k∈Nker(T − λ)k.

We say that a sequence (x1, . . . , xn) in L(λ) is a Jordan chain if Tx1 = λx1 and
(T − λ)xk+1 = xk.

An example for the existence of a finitely spectral Riesz bases of subspaces
is the case that T admits a Riesz bases of generalised eigenvectors:
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Lemma 2.7 Let T have compact resolvent, and let λk be the pairwise distinct
eigenvalues of T .

(i) T admits a Riesz basis of generalised eigenvectors (vj)j∈N if and only if
(L(λk))k∈N is a finitely spectral Riesz basis of subspaces for T . In this case
we have

L(λk) = span{vj | vj ∈ L(λk)}.

(ii) If (Vk)k∈N is a finitely spectral Riesz basis of subspaces and almost all Vk

are eigenspaces, then T admits a Riesz basis of eigenvectors and finitely
many Jordan chains.

Proof. (i): Since T has a compact resolvent, all L(λk) are finite-dimensional,
each eigenvalue λk is isolated, and there exist the Riesz projections Pk onto
L(λk). If (vj)j∈N is a Riesz basis of generalised eigenvectors of T , we set

Vk = span{vj | j ∈ Nk} where Nk = {j ∈ N | vj ∈ L(λk)}.

Then the Nk are finite, pairwise disjoint, andN =
⋃

k Nk. Consequently (Vk)k∈N
is a Riesz basis of subspaces and Vk ⊂ L(λk). For x ∈ L(λk), the expansion
x =

∑

j∈N αjvj yields

x = Pkx =
∑

j∈Nk

αjvj .

Hence Vk = L(λk), and (Vk)k∈N is finitely spectral for T . If on the other hand
(L(λk))k∈N is a Riesz basis of subspaces, then the choice of an orthonormal basis
in each L(λk) yields the desired Riesz basis (vj)j∈N by Lemma 2.2.

(ii): We choose an orthonormal basis in each Vk that is an eigenspace. In the
finitely many remaining Vk, we have the Jordan canonical form of the restrictions
T |Vk

and may choose bases consisting of Jordan chains. In view of Lemma 2.2,
the collection of these bases is a Riesz basis. �

Remark 2.8 (i) Note that the Riesz basis (vj)j of Lemma 2.7(i) does not
necessarily consist of Jordan chains. We also remark that the conditions
in 2.7(i) are equivalent to T being a discrete spectral operator in the sense
of Dunford and Schwartz, see [8, 23].

(ii) The notion of a finitely spectral Riesz basis of subspaces is more general
than the one of a Riesz basis of generalised eigenvectors, see e.g. [25,
Example 3.7]. Moreover, in [25] finitely spectral Riesz bases of subspaces
are investigated without the assumption that T has a compact resolvent.
Instead, the weaker property that

∑

k Vk is a core for T is used.
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θj

rjl

rj,l+1Kjl

Kj,l+1

Figure 1: The location of the spectrum of S in Theorem 2.10

A finitely spectral Riesz basis of subspaces yields a representation of T with
respect to the subspaces Vk. Moreover, it implies the existence of T -invariant
subspaces associated with arbitrary subsets of the point spectrum:

Proposition 2.9 Let T have compact resolvent and a finitely spectral Riesz
basis of subspaces (Vk)k∈N. Then

D(T ) =

{

x =
∞

∑

k=0

xk

∣

∣

∣

∣

xk ∈ Vk,
∞

∑

k=0

‖Txk‖2 <∞
}

,

Tx =

∞
∑

k=0

Txk for x =

∞
∑

k=0

xk ∈ D(T ), xk ∈ Vk,

Vk =
∑

λ∈σ(T |Vk
)

L(λ).

For every σ ⊂ σp(T ), the subspace

Wσ =
∑

λ∈σ

L(λ) (7)

is T -invariant and (T − z)−1-invariant for every z ∈ ̺(T ).

Proof. See Proposition 3.5 and Corollaries 3.6 and 3.11 in [25]. �
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Theorem 2.10 Let S be an operator on V with compact resolvent and a Riesz
basis of Jordan chains. Suppose that almost all eigenvalues of S lie inside discs

Kjl =
{

λ ∈ C ∣

∣ |λ− eiθjrjl| ≤ α
}

, j = 1, . . . , n, l ∈ N,
see Figure 1, with 0 ≤ θj < 2π, α ≥ 0, and rjl ≥ 0 such that

lim
l→∞

rj,l+1 − rjl = ∞, j = 1, . . . , n.

Then for any R ∈ L(V ) the operator T = S + R has compact resolvent and
admits a finitely spectral Riesz basis of subspaces.

If moreover almost all eigenvalues of S are simple and almost all Kjl contain
exactly one eigenvalue, then T admits a Riesz basis of eigenvectors and finitely
many Jordan chains.

Proof. By Proposition 6.6 in [24] there exists an isomorphism Φ ∈ L(V ) such
that ΦSΦ−1 = S0 + R0 where S0 is normal with compact resolvent, R0 is
bounded, all eigenvalues of S0 lie on the line segments

Ljl =
{

eiθjx
∣

∣ rjl − α ≤ x ≤ rjl + α
}

, j = 1, . . . , n, l ∈ N.
Moreover for almost all pairs (j, l) the sums of the algebraic multiplicities of the
eigenvalues of S0 in Ljl and of S in Kjl, respectively, are the same. Theorem 6.2
in [24] now implies that

ΦTΦ−1 = S0 +R0 + ΦRΦ−1

has compact resolvent and a finitely spectral Riesz basis of subspaces (Vk)k∈N.
If we also have that almost all eigenvalues of S are simple and almost all Kjl

contain exactly one eigenvalue, then we even obtain that almost all Vk are one-
dimensional. Lemma 2.7 thus yields a Riesz basis of eigenvectors and finitely
many Jordan chains. Since Φ is an isomorphism, the same results hold for T .

�

3 The Hamiltonian

From now on we consider the following setting: Let A be the generator of a
C0-semigroup on a Hilbert space H such that A is normal and has a compact
resolvent. So there is an orthonormal basis (ek)k∈N of H consisting of eigenvec-
tors,

Aek = λkek, A∗ek = λkek,

and the eigenvalues satisfy supk Reλk <∞ and limk→∞ |λk| = ∞.
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Along with A we consider the usual fractional domain spaces Hs: For 0 ≤
s ≤ 1 let Hs = D((|A| + I)s) be equipped with the graph norm, and let H−s

be the completion of H with respect to the norm ‖(|A| + I)−s · ‖. Hence, as a
consequence of the spectral theorem for A,

Hs =
{

∑

k

αkek

∣

∣

∣

∑

k

|λk|2s|αk|2 <∞
}

, −1 ≤ s ≤ 1,

and an equivalent norm on Hs is given by

‖x‖2
s =

∑

k

(|λk| + 1)2s|αk|2, x =
∑

k

αkek ∈ Hs.

In particular Hs ⊂ Ht for 1 ≥ s ≥ t ≥ −1. The operators A,A∗ have bounded
extensions

A,A∗ : Hs → Hs−1, 0 ≤ s ≤ 1,

which we denote again by A,A∗. Similarly, the scalar product on H extends to
a sesquilinear form

(·|·)s,−s : Hs ×H−s → C.
Via this extension we can identify H−s with the dual space of Hs, i.e., H−s is
the dual of Hs with respect to the pivot space H .

Let us consider input and output operators B ∈ L(U,H−s), C ∈ L(Hs, Y )
with 0 ≤ s ≤ 1 and Hilbert spaces U, Y . Using duality with respect to H , we
have B∗ ∈ L(Hs, U), C∗ ∈ L(Y,H−s) and hence BB∗, C∗C ∈ L(Hs, H−s). The
Hamiltonian operator matrix is now

T =

(

A −BB∗

−C∗C −A∗

)

.

For v = (x, y) ∈ Hs ×Hs the product Tv ∈ H−1 ×H−1 is well defined,

T

(

x
y

)

=

(

Ax− BB∗y
−C∗Cx−A∗y

)

.

We want to consider T as an unbounded operator on H×H , that is, we consider
T with domain of definition

D(T ) = {v ∈ Hs ×Hs | Tv ∈ H ×H}.

Then D(T ) ⊂ H1−s × H1−s: e.g. Ax − BB∗y ∈ H and BB∗y ∈ H−s imply
Ax ∈ H−s and hence x ∈ H1−s.
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4 Eigenvectors of the Hamiltonian

In this section we derive conditions on B and C which imply that the Hamil-
tonian has a Riesz basis of generalised eigenvectors and hence also a finitely
spectral Riesz basis of subspaces.

In addition to the general setting, we assume here that B ∈ L(U,H−s) with
s < 1/2 and C ∈ L(H, Y ). We decompose the Hamiltonian as

T = S +R, S =

(

A −BB∗

0 −A∗

)

, R =

(

0 0
−C∗C 0

)

. (8)

Hence D(S) = D(T ), R ∈ L(H ×H).
For any λ ∈ C let us denote by (A− λ)+ the Moore-Penrose pseudoinverse

of A− λ:

(A− λ)+x =
∑

k∈N
λk 6=λ

1

λk − λ
(x|ek)ek.

For λ ∈ ̺(A) this is simply the resolvent (A − λ)+ = (A − λ)−1. Just as the
resolvent, the pseudoinverse admits extensions to the fractional power spaces
Hs, e.g.

(A− λ)+ : H−s → H1−s.

We have now explicit expressions for the (generalised) eigenvectors of S: Let

vk =

(

ek

0

)

, wk =

(

xk

ek

)

, xk = (A + λk)
+BB∗ek. (9)

Lemma 4.1 We have vk, wk ∈ D(S) and

Svk = λkvk, (S + λk)
2wk = 0.

Moreover

(S + λk)wk =

(

yk

0

)

where yk is the orthogonal projection of −BB∗ek onto ker(A+λk). In particular
Swk = −λkwk if −λk 6∈ σ(A).

Proof. First note that at least vk, wk ∈ H1−s × H1, and hence Svk, Swk ∈
H−1 ×H−1 are well defined. The first equation is immediate from Aek = λkek.
By definition of the pseudoinverse (A + λk)

+, I − (A + λk)(A + λk)
+ is the

orthogonal projection onto ker(A+ λk) and hence

(S + λk)wk =

(

(A+ λk)xk − BB∗ek

(−A∗ + λk)ek

)

=

(

yk

0

)

.

12



Consequently (S + λk)
2wk = 0. In particular we have Svk, Swk ∈ H × H and

thus vk, wk ∈ D(S). �

One consequence of the previous lemma is that for wk to be a proper gen-
eralised eigenvector of S, it is necessary that −λk ∈ σ(A), i.e. that A has the
skew-conjugate pair of eigenvalues (λk,−λk).

Lemma 4.2 S has a compact resolvent and σ(S) = σ(A) ∪ σ(−A∗).

Proof. The previous lemma implies λk,−λk ∈ σp(S) for all k, i.e. σ(A) ∪
σ(−A∗) ⊂ σp(S). On the other hand, let z ∈ ̺(A) ∩ ̺(−A∗) and consider

G =

(

(A− z)−1 −(A− z)−1BB∗(A∗ + z)−1

0 −(A∗ + z)−1

)

.

We aim to show that G is a compact operator on H × H and that it is the
inverse of S − z. The operator

Hs−1
(A−z)−1

−−−−−→ Hs
BB∗

−−→ H−s
(A∗+z)−1

−−−−−→ H1−s

is bounded. Since (A − z)−1 and (A∗ + z)−1 are compact as operators on H
and since the imbeddings H →֒ Hs−1 and H1−s →֒ H are also compact, G is a
compact operator on H ×H . Since R(G) ⊂ H1−s ×H1, the product SG is well
defined and we calculate

(S − z)G =

(

A− z −BB∗

0 −(A∗ + z)

)

G = IH×H

and G(S−z) = ID(S). Consequently, R(G) = D(S), z ∈ ̺(S) and (S−z)−1 = G.
We conclude that S has compact resolvent and σp(S) = σ(S) = σ(A)∪σ(−A∗).

�

Lemma 4.3 For z ∈ ̺(A), the resolvent (A − z)−1 considered as an operator
in L(H−s, H) has the norm

‖(A− z)−1‖L(H−s,H) = sup
k∈N (|λk| + 1)s

|λk − z| . (10)

Proof. For x =
∑

k αkek ∈ H−s we have

‖x‖2
−s =

∑

k

(|λk| + 1)−2s|αk|2.

13



Hence

‖(A− z)−1x‖2 =
∑

k

∣

∣

∣

αk

λk − z

∣

∣

∣

2

≤ sup
k

(|λk| + 1)2s

|λk − z|2 ‖x‖2
−s,

which implies the estimate “≤” in (10). Equality now follows from a consider-
ation of the cases x = ek. �

Let us now consider the situation that almost all eigenvalues λk of A lie in a
sector in the open left half-plane, i.e., that A generates an analytic semigroup.

Lemma 4.4 Suppose that almost all eigenvalues λk of A lie in a sector in the
open left half-plane. Then there exist k0 ∈ N, c0 ∈ R such that for k ≥ k0 we
have

|λk| ≥ 1, −λk 6∈ σ(A) and sup
j∈N (|λj| + 1)s

|λj + λk|
≤ c0

|λk|1−s
.

Proof. By assumption there exist k1 ∈ N, c1 ∈ R such that

k ≥ k1 ⇒ Reλk < 0, | Imλk| ≤ c1|Reλk|.

Hence

|λk| ≤
√

1 + c21 |Reλk| for k ≥ k1.

Moreover −λk ∈ σ(A), i.e. −λk = λj for some j is possible for at most finitely
many k. Let now r = max{|λ0|, . . . , |λk1−1|, 1} and choose k0 ≥ k1 such that
k ≥ k0 implies |λk| ≥ 2r and −λk 6∈ σ(A). For k ≥ k0 and j < k1 we then have

(|λj| + 1)s

|λj + λk|
≤ (r + 1)s

|λk| − |λj|
≤ (r + 1)s

|λk| − r
≤ 2(r + 1)s

|λk|
≤ 2(r + 1)s

(2r)s|λk|1−s
.

For the case j ≥ k1 we use the following estimate for τ ≥ 1:

sup
t≥0

(t+ 1)s

t+ τ
≤ 2s

τ 1−s
.

Indeed for 0 ≤ t ≤ τ we have

(t+ 1)s

t+ τ
≤ (τ + 1)s

τ
≤ 2sτ s

τ
,

and for t ≥ τ ,
(t+ 1)s

t+ τ
≤ 2sts

t
=

2s

t1−s
≤ 2s

τ 1−s
.
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Now for k ≥ k0, j ≥ k1 we obtain

(|λj | + 1)s

|λj + λk|
≤ (|λj| + 1)s

|Reλj + Reλk|
=

(|λj| + 1)s

|Reλj | + |Reλk|

≤
√

1 + c21
(|λj| + 1)s

|λj | + |λk|
≤

√

1 + c21
2s

|λk|1−s
.

�

Theorem 4.5 Suppose that almost all eigenvalues λk of A lie in a sector in the
open left half-plane and let B ∈ L(U,H−s) with s < 1/2. If

∞
∑

k=0
λk 6=0

1

|λk|2(1−2s)
<∞, (11)

then (vk, wk)k∈N given by (9) is a Riesz basis. Here all vk and almost all wk

are eigenvectors of S. Moreover, S admits a Riesz basis of eigenvectors and at
most finitely many Jordan chains of length at most 2.

Proof. To show that (vk, wk)k from (9) is a Riesz basis, we want to apply The-
orem 2.3 of Bari using the orthonormal basis

(

vk,

(

0
ek

)

)

k∈N
of H × H . Since (vk, wk)k∈N is obviously ω-linearly independent, it suffices to
show that ∞

∑

k=0

∥

∥

∥
wk −

(

0
ek

)

∥

∥

∥

2

=

∞
∑

k=0

‖xk‖2 <∞.

Let k0, c0 as in Lemma 4.4. For k ≥ k0 we have

‖xk‖ ≤ ‖(A+ λk)
−1‖L(H−s,H) ‖BB∗‖L(Hs,H−s) ‖ek‖s,

‖ek‖s = (|λk| + 1)s and, by the previous lemmas,

‖(A + λk)
−1‖L(H−s,H) = sup

j∈N (|λj| + 1)s

|λj + λk|
≤ c0

|λk|1−s
.

Therefore, using (11), we obtain

∑

k≥k0

‖xk‖2 ≤ c20 ‖BB∗‖2
∑

k≥k0

(|λk| + 1)2s

|λk|2(1−s)
≤ 22sc20 ‖BB∗‖2

∑

k≥k0

|λk|2s

|λk|2(1−s)
<∞.
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θj

rjl

rj,l+1

Kjl

Kj,l+1

Figure 2: The location of almost all eigenvalues of A in Theorem 4.6

Due to the sectoriality assumption on the λk, the spectrum σ(A) contains
at most finitely many skew-conjugate pairs of eigenvalues, and Lemma 4.1 thus
implies that almost all wk are eigenvectors. The final assertion is now a conse-
quence of Lemma 2.7: each generalised eigenspace L(λ) of S is spanned by some
vk, wk; hence almost all L(λ) are eigenspaces, and the remaining ones contain
Jordan chains of length at most two. �

Theorem 4.6 Let A generate an analytic semigroup, let B ∈ L(U,H−s) with
s < 1/2 and C ∈ L(H, Y ). Suppose that

∞
∑

k=0
λk 6=0

1

|λk|2(1−2s)
<∞

and that almost all λk lie inside discs

Kjl =
{

λ ∈ C ∣

∣ |λ− eiθjrjl| ≤ α
}

, j = 1, . . . , n, l ∈ N,
see Figure 2, where π/2 < θj < 3π/2, α ≥ 0, and rjl ≥ 0 such that

lim
l→∞

rj,l+1 − rjl = ∞, j = 1, . . . , n.

Then T has a compact resolvent and a finitely spectral Riesz basis of subspaces.
If moreover almost all eigenvalues of A are simple and almost all Kjl contain

exactly one eigenvalue of A, then T even has a Riesz basis of eigenvectors and
finitely many Jordan chains.
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Proof. This a direct application of Theorem 2.10 to T = S + R since S has
compact resolvent and a Riesz basis of Jordan chains and R ∈ L(H ×H). Note
that since σ(S) = {λk,−λk | k ∈ N}, almost all eigenvalues of S lie in the discs
Kjl and −K∗

jl = {−z̄ | z ∈ Kjl}. �

Remark 4.7 The assumptions of the previous theorem imply that B is an
admissible control operator, compare Proposition 6.1.

5 Solutions of the Riccati equation

We return to the general setting of Section 3, i.e. B ∈ L(U,H−s), C ∈ L(Hs, Y ),
0 ≤ s ≤ 1. Let T have compact resolvent and a finitely spectral Riesz basis of
subspaces.

As the main tool to prove the existence of solutions of the Riccati equation
we will use two indefinite inner products on H ×H , which are connected to the
Hamiltonian. Let

〈v|w〉 = (J1v|w) with J1 =

(

0 −iI
iI 0

)

,

[v|w] = (J2v|w) with J2 =

(

0 I
I 0

)

,

where (·|·) denotes the standard scalar product on H ×H . Since both J1 and
J2 are selfadjoint involutions, each of the two inner products 〈·|·〉 and [·|·] give
H × H the structure of a Krein space. We refer to [1, 4, 13] for more results
about Krein spaces.

Lemma 5.1 The Hamiltonian T is J1-skew-symmetric, i.e.

〈Tv|w〉 = −〈v|Tw〉 for all v, w ∈ D(T ),

and J2-dissipative, i.e. Re[Tv|v] ≤ 0 for all v ∈ D(T ). In fact

Re
[

T

(

x
y

)

∣

∣

∣

(

x
y

)

]

= −‖B∗y‖2
U − ‖Cx‖2

Y ≤ 0,

(

x
y

)

∈ D(T ). (12)

Proof. Let (x, y), (x̃, ỹ) ∈ D(T ). Then

x, y ∈ Hs, Ax, A∗y, BB∗y, C∗Cx ∈ H−s,

Ax−BB∗y, −C∗Cx− A∗y ∈ H,

17



and the same holds for x̃, ỹ. We can thus rearrange the indefinite inner product
using the extended scalar products (·|·)−s,s and (·|·)s,−s as follows:

〈

T

(

x
y

)

∣

∣

∣

(

x̃
ỹ

)

〉

=
〈

(

Ax− BB∗y
−C∗Cx−A∗y

)

∣

∣

∣

(

x̃
ỹ

)

〉

= i(Ax− BB∗y|ỹ) − i(−C∗Cx−A∗y|x̃)
= i(Ax|ỹ)−s,s − i(BB∗y|ỹ)−s,s + i(C∗Cx|x̃)−s,s + i(A∗y|x̃)−s,s

= i(x|A∗ỹ)s,−s − i(y|BB∗ỹ)s,−s + i(x|C∗Cx̃)s,−s + i(y|Ax̃)s,−s

= i(x|C∗Cx̃+ A∗ỹ) − i(y| − Ax̃+BB∗ỹ)

=
〈

(

x
y

)

∣

∣

∣

(

−Ax̃+BB∗ỹ
C∗Cx̃+ A∗ỹ

)

〉

= −
〈

(

x
y

)

∣

∣

∣
T

(

x̃
ỹ

)

〉

.

Similarly we obtain

[

T

(

x
y

)

∣

∣

∣

(

x
y

)

]

= (Ax−BB∗y|y) + (−C∗Cx−A∗y|x)

= (Ax|y)−s,s − (BB∗y|y)−s,s − (C∗Cx|x)−s,s − (A∗y|x)−s,s

= (Ax|y)−s,s − (B∗y|B∗y)U − (Cx|Cx)Y − (y|Ax)s,−s

and hence (12). �

As in the Hilbert space case, the adjoint of T with respect to the indefinite
inner product 〈·|·〉 is defined as the maximal operator T 〈∗〉 on H ×H such that

〈Tv|w〉 = 〈v|T 〈∗〉w〉 for all v ∈ D(T ), w ∈ D(T 〈∗〉).

Lemma 5.2 The Hamiltonian is J1-skew-selfadjoint, T = −T 〈∗〉, and its spec-
trum σ(T ) is symmetric with respect to the imaginary axis.

Moreover, we have σ(T ) ∩ iR = ∅ if and only if

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB∗ = {0} ∀t ∈ R. (13)

Proof. Since T has compact resolvent, there exist z,−z̄ ∈ ̺(T ). As in the
Hilbert space situation, this together with the J1-skew-symmetry of T implies
the J1-skew-selfadjointness. The general property λ ∈ σ(T ) ⇔ λ ∈ σ(T 〈∗〉) then
yields the claimed symmetry of σ(T ).

For the second assertion let first it ∈ σ(T ) ∩ iR and Tv = itv with v =
(x, y) ∈ D(T ). Then

(A− it)x−BB∗y = 0, −C∗Cx− (A∗ + it)y = 0, (14)
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and (12) implies

0 = Re(it[v|v]) = Re[Tv|v] = −‖B∗y‖2 − ‖Cx‖2.

Hence B∗y = 0, Cx = 0 and thus also (A − it)x = (A∗ + it)y = 0. If on the
other hand x ∈ ker(A− it)∩kerC and y ∈ ker(A∗ + it)∩kerB∗, then (14) holds
and implies v = (x, y) ∈ D(T ), Tv = itv. �

The symmetry of σ(T ) with respect to iR implies that for σ(T ) ∩ iR = ∅,
σ(T ) consists of skew-conjugate pairs of eigenvalues only. In this case we say
that a subset σ ⊂ σ(T ) is skew-conjugate if σ contains exactly one eigenvalue
from each pair, i.e., if we have the disjoint union

σ(T ) = σ ⊎−σ∗, where − σ∗ = {−λ | λ ∈ σ}.

A subspace W ⊂ H × H is called J1-nonnegative, -neutral, -nonpositive if
〈v|v〉 ≥ 0, = 0, ≤ 0 for all v ∈ W , respectively. The J1-orthogonal complement
of W is defined by

W 〈⊥〉 = {v ∈ H ×H | 〈v|w〉 = 0 for all w ∈ W}.

Then W is J1-neutral if and only if W ⊂W 〈⊥〉.

Proposition 5.3 Suppose that σ(T ) ∩ iR = ∅.

(i) For every skew-conjugate σ ⊂ σ(T ) the T -invariant subspace Wσ from (7)

satisfies Wσ = W
〈⊥〉
σ ; in particular Wσ is J1-neutral.

(ii) The subspace W+ = Wσ(T )∩C−
is J2-nonnegative, W− = Wσ(T )∩C+

is J2-
nonpositive.

Proof. Since T is a skew-symmetric operator in the Krein space associated with
〈·|·〉 and has a finitely spectral Riesz basis of subspaces, (i) is a direct conse-
quence of Theorem 5.3 together with Remark 5.8 in [25]. Similarly, in view of
the J2-dissipativity of T , (ii) follows from [25, Proposition 5.7]. �

Lemma 5.4 Suppose that

ker(A∗ − λ) ∩ kerB∗ = {0} ∀λ ∈ C. (15)

If the subspace W ⊂ H × H is J1-neutral and (T − z)−1-invariant for some
z ∈ ̺(T ), then W is the graph of some linear operator X on H,

W = Γ(X) =
{

(

x
Xx

)

∣

∣

∣
x ∈ D(X)

}

.
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Proof. Initially, we note two consequences of the assumption that both A and
T have a compact resolvent: First, the invariance of W under (T − z)−1 for one
z ∈ ̺(T ) implies the invariance for all z ∈ ̺(T ). Second, the spectra σ(A) and
σ(T ) are both discrete, and hence ̺(T )∩̺(A) contains a non-empty interval on
the imaginary axis.

To prove that W is a graph subspace, it suffices to show that (0, w) ∈ W
implies w = 0. So let (0, w) ∈W . For it ∈ ̺(T ) ∩ ̺(A) ∩ iR we set

(

x
y

)

= (T − it)−1

(

0
w

)

.

Then the invariance and neutrality of W imply that (x, y) ∈W and

0 =
〈

(

x
y

)

∣

∣

∣

(

0
w

)

〉

= i(x|w).

Now since

(A− it)x− BB∗y = 0, −C∗Cx− (A∗ + it)y = w,

we obtain

0 = (x| − C∗Cx− (A∗ + it)y) = −(x|C∗Cx)s,−s − (x|(A∗ + it)y)s,−s

= −‖Cx‖2
Y − ((A− it)x|y)−s,s = −‖Cx‖2

Y − (BB∗y|y)−s,s

= −‖Cx‖2
Y − ‖B∗y‖2

U .

So Cx = 0, B∗y = 0, −(A∗ + it)y = w, and therefore

B∗(A∗ + it)−1w = 0.

Let µj be the pairwise distinct eigenvalues of A and Pj the orthogonal projection
onto ker(A−µj). We have w =

∑∞
j=0wj with wj = Pjw and thus for any u ∈ U

and it ∈ ̺(T ) ∩ ̺(A) ∩ iR,

0 = (u|B∗(A∗ + it)−1w)U =

∞
∑

j=0

1

µj − it
(Bu|wj)−s,s. (16)

Now the series

f(z) =

∞
∑

j=0

1

µj − z
(Bu|wj)−s,s (17)

converges uniformly on compact subsets of ̺(A) since

1

|µj − z| |(Bu|wj)−s,s| ≤
1

|µj − z|‖PjBu‖−s‖wj‖s =
(|µj| + 1)s

|µj − z| ‖PjBu‖−s‖wj‖,
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supj(|µj| + 1)s|µj − z|−1 is bounded on compact subsets of ̺(A) and

∞
∑

j=0

‖PjBu‖−s‖wj‖ ≤
( ∞

∑

j=0

‖PjBu‖2
−s

)1/2( ∞
∑

j=0

‖wj‖2

)1/2

= ‖Bu‖−s‖w‖ <∞.

Hence f is analytic on ̺(A) and with the identity theorem we conclude from
(16) that f vanishes on ̺(A). Integrating (17) along a circle enclosing exactly
one µj, we thus obtain

0 = (Bu|wj)−s,s = (u|B∗wj)U

Since u was arbitrary, this implies B∗wj = 0. Along with wj ∈ ker(A− µj), our
assumption yields wj = 0 for all j and hence w = 0. �

Remark 5.5 In the next section, we will relate conditions on the eigenspaces
of A of the form (13) and (15) to controllability and observability concepts:

ker(A∗ − λ) ∩ kerB∗ = {0} ∀λ ∈ C
is equivalent to the approximate controllability of the pair (A,B).

ker(A− it) ∩ kerC = {0} ∀t ∈ R
means that there are no non-observable eigenvectors ofA corresponding to eigen-
values on iR.

Recall that for a closed operator X a subspace D ⊂ D(X) is called a core
for X if X|D = X. Let us denote by pr1 the projection onto the first component
of H ×H .

Theorem 5.6 Let B ∈ L(U,H−s), C ∈ L(Hs, Y ) with 0 ≤ s ≤ 1, let T have
compact resolvent and a finitely spectral Riesz basis of subspaces. Suppose that

ker(A− it) ∩ kerC = {0} ∀t ∈ R, (18)

ker(A∗ − λ) ∩ kerB∗ = {0} ∀λ ∈ C. (19)

Then we have:

(i) σ(T ) ∩ iR = ∅.

(ii) If σ ⊂ σ(T ) is skew-conjugate and Wσ is the T -invariant subspace from
(7), then Wσ = Γ(X) where X is a selfadjoint solution of the Riccati
equation

A∗Xx+X(Ax− BB∗Xx) + C∗Cx = 0 ∀x ∈ D,

and D = pr1(Γ(X) ∩ D(T )) is a core for X.
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(iii) The solution X+ corresponding to σ = σ(T ) ∩ C− is nonnegative, the
solution X− corresponding to σ(T ) ∩C+ is nonpositive.

Proof. We have σ(T ) ∩ iR = ∅ by Lemma 5.2. For σ ⊂ σ(T ) skew-conjugate,
first recall that by Proposition 2.9 Wσ is T -invariant and (T −z)−1-invariant for

every z ∈ ̺(T ). Proposition 5.3 implies that Wσ = W
〈∗〉
σ and Lemma 5.4 then

yields Wσ = Γ(X) with some operator X. Now Γ(X) = Γ(X)〈∗〉 implies that X
is selfadjoint, see e.g. [25, Lemma 6.2].

For x ∈ D, i.e. (x,Xx) ∈ Γ(X) ∩ D(T ), by the T -invariance of Γ(X) = Wσ

there exists y ∈ D(X) such that

T

(

x
Xx

)

=

(

y
Xy

)

⇒ Ax− BB∗Xx = y, −C∗Cx−A∗Xx = Xy

⇒ X(Ax−BB∗Xx) = −C∗Cx−A∗Xx.

Since
∑

λ∈σ L(λ) ⊂ Γ(X) is dense and
∑

λ∈σ L(λ) ⊂ D(T ), we have that Γ(X)∩
D(T ) ⊂ Γ(X) is dense too and hence D is a core for X.

Finally Γ(X+) is J2-nonnegative by Proposition 5.3, and this is clearly equiv-
alent to X+ being nonnegative. Similarly for X−. �

6 Controllability and observability concepts

Theorem 5.6 on the existence of solutions of the Riccati equation contains the
conditions (18), (19), which are in terms of the eigenspaces of A and the kernels
of B∗ and C. In this section we relate these conditions to controllability and
observability concepts. We consider again the general setting from Section 3:
A is normal with compact resolvent and generates a C0-semigroup T, B ∈
L(U,H−s), C ∈ L(Hs, Y ) with 0 ≤ s ≤ 1. Let us first look at admissibility.

Recall that the control operator B is called admissible if for one (and hence
for all) t0 > 0,

∫ t0

0

T(t)Bu(t) dt ∈ H ∀u ∈ L2([0, t0], U).

The observation operator C is called admissible if for one (and hence for all)
t0 > 0 there exists M > 0 such that

∫ t0

0

‖CT(t)x‖2
U dt ≤M‖x‖2 ∀x ∈ H1.
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Proposition 6.1 If T is analytic and s ≤ 1/2, then B and C are admissible
control and observation operators, respectively.

Note that these assumptions are satisfied in the context of Theorem 4.6.

Proof. Since B is admissible for T if and only if B∗ is an admissible observation
operator for the dual semigroup T∗, it suffices to check admissibility for C. Let
x ∈ Hs, x =

∑

k αkek. We have

∫ 1

0

‖CT(t)x‖2
U dt ≤ ‖C‖2

∫ 1

0

‖T(t)x‖2
s dt

and
‖T(t)x‖2

s =
∑

k

(|λk| + 1)2se2 Re λkt|αk|2.

Since T is analytic, there exists c ≥ 1 such that almost all eigenvalues λk satisfy

Reλk < 0, |λk| ≥ 1, |λk| ≤ c|Reλk|.

Then

(|λk| + 1)2s

∫ 1

0

e2Re λkt dt =
(|λk| + 1)2s

2|Reλk|
(1 − e2Re λk)

≤ c(|λk| + 1)2s

2|λk|
≤ 22s−1c|λk|2s−1 ≤ 22s−1c

where we used 2s− 1 ≤ 0. Consequently

M = sup
k∈N(|λk| + 1)2s

∫ 1

0

e2Re λkt dt <∞,

and we obtain
∫ 1

0

‖CT(t)x‖2
U dt ≤M‖C‖2‖x‖2.

�

Remark 6.2 For the reverse implication, the following result holds, see [19,
Theorem 1.4]: If B is admissible, then B ∈ L(U,H−s) for all s > 1/2. Note that
we do not get s = 1/2 here in general: Consider e.g. the case λk = −k2, U = C,
Bu = ub, and b =

∑

k k
1/2ek. Then B is admissible by the Carleson measure

criterion, and we have B ∈ L(U,H−s) ⇔ b ∈ H−s ⇔ s > 1/2.
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Since the only restriction on s in Theorem 5.6 is 0 ≤ s ≤ 1, we see that this
theorem allows for non-admissible operators B and C. Consequently, we will
now look at controllability and observability without the assumption that B or
C are admissible.

Let us consider the rescaled semigroup T0(t) = e−ωtT(t) with ω ≥ 0 such
that T0 is exponentially stable. We then have the input and output maps

Φ ∈ L(L2([0,∞[, U), H−1), Φu =

∫ ∞

0

T0(t)Bu(t) dt,

Ψ ∈ L(H1, L
2([0,∞[, Y )), (Ψx)(t) = CT0(t)x.

Definition 6.3 We say that

• (A,B) approximately controllable (in infinite time) if R(Φ) ⊂ H−1 is
dense,

• (A,C) is approximately observable (in infinite time) if ker Ψ = {0}.

We call ker Ψ the non-observable subspace.

It is clear that approximate controllability and observability are dual con-
cepts since the adjoint of Φ is

Φ∗ ∈ L(H1, L
2([0,∞[, U)), (Φ∗x)(t) = B∗T∗

0(t)x

and
R(Φ) ⊂ H−1 dense ⇔ ker Φ∗ = {0}.

In the literature, there are alternative definitions of approximate controlla-
bility and observability, both with and without the additional assumption of
admissibility. We will see in Remark 6.6 and Proposition 6.7 that in our setting
these alternative definitions coincide with Definition 6.3.

Proposition 6.4 The non-observable subspace is of the form

ker Ψ =
⊕

λ∈σ(A)

ker(A− λ) ∩ kerC,

as an orthogonal direct sum in H1.

Proof. Obviously, ker Ψ is a closed subspace of H1 and invariant under the
semigroup T0. Since A has a compact resolvent, σ(A) is discrete and ̺(A)
connected. Hence ker Ψ is also (A−z)−1-invariant for all z ∈ ̺(A). This implies

ker Ψ =
⊕

λ∈σ(A)

Nλ (20)
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with Nλ ⊂ ker(A − λ): Indeed if we set Nλ = Pλ(ker Ψ) where Pλ is the
orthogonal projection onto ker(A− λ), then “⊂” holds in (20). Moreover, since
Pλ is the Riesz projection corresponding to the eigenvalue λ of A, the (A−z)−1-
invariance of ker Ψ implies that Pλ(ker Ψ) ⊂ ker Ψ; thus also “⊃” in (20).

Now for x ∈ ker(A− λ) we have (Ψx)(t) = e(λ−ω)tCx and thus x ∈ ker Ψ if
and only if x ∈ kerC. Hence Nλ = ker(A− λ) ∩ kerC. �

Corollary 6.5 (A,B) is approximately controllable if and only if

ker(A∗ − λ) ∩ kerB∗ = {0} ∀λ ∈ σ(A∗).

(A,C) is approximately observable if and only if

ker(A− λ) ∩ kerC = {0} ∀λ ∈ σ(A).

Remark 6.6 If B and C are admissible, then R(Φ) ⊂ H and Ψ can be extended
to H , i.e.

Φ ∈ L(L2([0,∞[, U), H), Ψ ∈ L(H,L2([0,∞[, Y )).

In this case, a natural definition for approximate controllability and observ-
ability is that R(Φ) ⊂ H is dense and that ker Ψ = {0}, respectively, see e.g.
[20, Definition 6.5.1]. Now Proposition 6.4 and Corollary 6.5 also hold in this
setting, with H1 and Ψ replaced by H and Ψ, respectively. Consequently, the
controllability and observability concepts from Definition 6.3 coincide with the
ones in the admissible case.

Instead of the condition that R(Φ) ⊂ H−1 is dense, another possible con-
dition for approximate controllability is that R(Φ) ∩ H ⊂ H is dense. This
approach was used e.g. in [11]. We will show now that both conditions are
equivalent.

Proposition 6.7 (A,B) is approximately controllable if and only if

R(Φ) ∩H ⊂ H dense.

Proof. The implication “⇐” is clear since H ⊂ H−1 is dense. So let (A,B)
be approximately controllable. Then Φ(Cc([0,∞[, U)) ⊂ H−1 is dense, where
Cc([0,∞[, U) denotes the set of continuous, compactly supported functions from
[0,∞[ to U . Let A0 = A − ω be the generator of T0. So A0 − I : H → H−1 is
an isomorphism and thus

(A0 − I)−1Φ(Cc([0,∞[, U)) ⊂ H is dense.
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Let x = (A0 − I)−1Φu with u ∈ Cc([0,∞[, U) and set

v(t) = −e−t

∫ t

0

eτu(τ) dτ.

Then v ∈ C1([0,∞[, U) ∩ L2([0,∞[, U) and v̇ = −v − u. Consider the extrapo-
lation space H−2 and the corresponding extension A0 : H−1 → H−2. A straight-
forward computation shows that t 7→ T0(t)Bv(t) belongs to C1([0,∞[, H−2)
with

d

dt
T0(t)Bv(t) = A0T0(t)Bv(t) +T0(t)Bv̇(t).

Note here that T0(t)Bv(t) ∈ H−1 and so A0T0(t)Bv(t) ∈ H−2 in general.
Integrating the last equation, we obtain

0 = T0(t)Bv(t)
∣

∣

∞
0

=

∫ ∞

0

A0T0(t)Bv(t) dt+

∫ ∞

0

T0(t)Bv̇(t) dt

= (A0 − I)

∫ ∞

0

T0(t)Bv(t) dt−
∫ ∞

0

T0(t)Bu(t) dt

and hence Φv = (A0 − I)−1Φu = x. Consequently

(A0 − I)−1Φ(Cc([0,∞[, U)) ⊂ R(Φ),

which completes the proof. �

Remark 6.8 In the proof of the previous proposition we have not used our
assumption that the generator is normal and has a compact resolvent. The
equivalence of the two controllability conditions is thus general.

7 Boundedness of solutions

In Theorem 5.6 we proved the existence of selfadjoint, but not necessarily
bounded solutions of the Riccati equation. We will now show that under certain
additional assumptions some of these solutions are bounded. The key observa-
tion is the following lemma, which characterises when a subspace is the graph
of a linear operator, and when this operator is bounded.

Lemma 7.1 Let W ⊂ H ×H be a closed subspace.

(i) We have W = Γ(X) with a linear operator X : D(X) ⊂ H → H if and
only if

W ∩ {0} ×H = {0}. (21)
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(ii) We have W = Γ(X) with a bounded operator X ∈ L(H) if and only if

W ⊕ {0} ×H = H ×H. (22)

Proof. (i) is clear since W is a graph subspace if and only if (0, y) ∈W implies
y = 0. To prove (ii), let first W = Γ(X) with X ∈ L(H). For any x, y ∈ H we
have

(

x
y

)

=

(

x
Xx

)

+

(

0
y −Xx

)

.

Hence W + {0}×H = H ×H and in view of (i) this sum is also direct. On the
other hand, if (22) holds, then by (i) we have W = Γ(X) where X is a closed
operator since W is closed. Now for x ∈ H we get from (22) that

(

x
0

)

=

(

x
y

)

+

(

0
−y

)

with

(

x
y

)

∈W ;

in particular x ∈ D(X) and hence D(X) = H . The closed graph theorem thus
yields X ∈ L(H). �

Remark 7.2 The previous lemma is closely related to the notions of angular
subspaces and angular operators, see e.g. [2, §5.1]: If (22) holds, then W is said
to be angular with respect to the projection onto the first component of H×H .
The operator X is called the angular operator for W . For the relation between
angular subspaces and pairs of orthogonal projections, see e.g. [12, §3].

Corollary 7.3 Let X be a closed, densely defined operator on H. Suppose
there exists a Riesz basis (ϕk)k∈N of Γ(X), k0 ∈ N, and an orthonormal system
(fk)k≥k0

of H such that

∞
∑

k=k0

∥

∥

∥
ϕk −

(

fk

0

)

∥

∥

∥

2

<∞. (23)

Then X ∈ L(H).

Proof. Let (f̃k)k∈N be an orthonormal basis of H and consider

ψ1k =

(

fk

0

)

, ψ2k =

(

0

f̃k

)

.

So (ψ1k)k≥k0
∪ (ψ2k)k∈N is an orthonormal system. From Lemma 7.1 we know

that Γ(X)∩{0}×H = {0}, which implies that (ϕk)k∈N ∪ (ψ2k)k∈N is ω-linearly
independent. Since X is densely defined, Γ(X) + {0} × H is dense in H × H .
Hence (ϕk)k∈N ∪ (ψ2k)k∈N is also complete. In view of (23), Corollary 2.5 now
shows that (ϕk)k∈N ∪ (ψ2k)k∈N is a Riesz basis of H ×H . This in turn implies
that Γ(X) ⊕ {0} ×H = H ×H and so X ∈ L(H) by Lemma 7.1. �
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Recall the main result of Theorem 5.6: For every skew-conjugate subset
σ ⊂ σ(T ), the T -invariant subspace Wσ given by (7) is the graph Wσ = Γ(X)
of a selfadjoint operator X and

A∗Xx+X(Ax− BB∗Xx) + C∗Cx = 0 ∀x ∈ D,

where D = pr1(Γ(X) ∩ D(T )) is a core for X.
Compared with Theorem 5.6, we now make the stronger assumption that the

Hamiltonian T has a Riesz basis (ϕk)k∈Z of generalised eigenvectors. Note here
that in Theorem 5.6 as well as in the following theorem we have σ(T )∩ iR = ∅.

Theorem 7.4 Let T have a compact resolvent and a Riesz basis of generalised
eigenvectors (ϕk)k∈Z, ordered such that all ϕk with k ≥ 0 correspond to the
spectrum in C− and all ϕk with k < 0 to C+. Suppose that there exists an
orthonormal system (fk)k≥k0

of H such that

∞
∑

k=k0

∥

∥

∥
ϕk −

(

fk

0

)

∥

∥

∥

2

<∞, (24)

and that

ker(A− it) ∩ kerC = {0} ∀t ∈ R,
ker(A∗ − λ) ∩ kerB∗ = {0} ∀λ ∈ C.

If σ ⊂ σ(T ) is skew-conjugate and such that σ ∩C+ is finite, then Wσ = Γ(X)
with X ∈ L(H) selfadjoint. Moreover the operator

AX : D(AX) ⊂ H → H, AXx = Ax−BB∗Xx, D(AX) = pr1(Γ(X)∩D(T )),

has a compact resolvent and spectrum σ(AX) = σ.

Proof. By Theorem 5.6 we have Wσ = Γ(X) with X selfadjoint. Moreover since
each L(λ) is spanned by some ϕk (see Lemma 2.7), there exists J ⊂ Z such that

Wσ = span{ϕk | k ∈ J}.
From the assumption that σ is skew-conjugate and σ ∩ C+ is finite, it follows
that there exists k1 ≥ 0 such that J1 = {k ∈ Z | k ≥ k1} ⊂ J and J \J1 is finite.
Using (24), we can thus apply Corollary 7.3 to obtain X ∈ L(H).

Consider now the isomorphism

Φ : H → Γ(X), x 7→
(

x
Xx

)

.

It is easy to see that Φ(D(AX)) = Γ(X)∩D(T ) = D(T |Γ(X)) and Φ−1T |Γ(X)Φ =
AX on D(AX). Consequently, AX has a compact resolvent since the same is
true for the restriction T |Γ(X). Moreover we have σ(AX) = σ(T |Γ(X)) = σ. �
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Remark 7.5 In the previous theorem, we have D(AX) 6= D(A) in general.
For example, this will be the case for the heat equation with boundary control
considered in the next section.

We conclude this section by deriving a sufficient condition for the existence
of a Riesz basis that satisfies the assumptions in Theorem 7.4.

Lemma 7.6 Let P,Q be two projections on a Hilbert space with ‖P − Q‖ < 1
and dimR(P ) = dimR(Q) = 1. If e ∈ R(P ), f ∈ R(Q) are such that ‖e‖ =
‖f‖ = 1 and (e|f) ≥ 0, then

‖e− f‖2 ≤ ‖P −Q‖2

1 − ‖P −Q‖ .

Proof. We have

‖Qe‖ ≥ ‖Pe‖ − ‖P −Q‖‖e‖ = 1 − ‖P −Q‖.

Since Qe = αf with α ∈ C, |α| = ‖Qe‖, we obtain

‖P −Q‖2 ≥ ‖Pe−Qe‖2 = 1 − 2 Re(Pe|Qe) + ‖Qe‖2

= 1 − 2 Re(α)(e|f) + ‖Qe‖2 ≥ 2‖Qe‖ − 2‖Qe‖(e|f)

≥
(

2 − 2(e|f)
)(

1 − ‖P −Q‖
)

.

Hence

‖e− f‖2 = 2 − 2(e|f) ≤ ‖P −Q‖2

1 − ‖P −Q‖ .

�

Lemma 7.7 Let S be an operator with compact resolvent and a Riesz basis of
Jordan chains. Then for every a > 1 there exists c ∈ R such that

‖(S − z)−1‖ ≤ c

dist(z, σ(S))
for dist(z, σ(S)) ≥ a.

Proof. Suppose that (vjk)j∈N,k=1...rj
is the Riesz basis where each (vj1, . . . , vjrj

)
is a Jordan chain of S for the eigenvalue λj . For

x =

n
∑

j=1

rj
∑

k=1

αjkvjk, βj =







αj1
...

αjrj






, Nj =











0 1 0
. . .

. . .

. . . 1
0 0











∈ Crj×rj ,
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we then have

‖(S − z)−1x‖2 ≤M
n

∑

j=1

‖(λj − z +Nj)
−1βj‖2,

where M is the constant corresponding to the Riesz basis and we use the Eu-
clidean norm on Crj . Since |λj − z| ≥ dist(z, σ(S)) ≥ a > 1, we have the
estimate

‖(λj − z +Nj)
−1‖ ≤

∞
∑

k=0

‖Nj‖k

|λj − z|k+1
=

1

|λj − z| − 1
≤ a

(a− 1)|λj − z| .

This yields

‖(S−z)−1x‖2 ≤ Ma2

(a− 1)2 dist(z, σ(S))2

n
∑

j=1

‖βj‖2 ≤ Ma2

m(a− 1)2 dist(z, σ(S))2
‖x‖2.

�

In Theorem 4.6 we proved the existence of a Riesz basis of generalised eigen-
vectors of the Hamiltonian T for the case that C is bounded. Under stronger
assumptions on the growth rate of the eigenvalues of A (formulated in terms
of the rjl), we will now show that the Riesz basis can be chosen such that it
satisfies assumption (24) in Theorem 7.4. Recall that (ek)k∈N is an orthonormal
basis of eigenvectors of A, Aek = λkek.

Theorem 7.8 Suppose that almost all λk lie inside discs

Kjl =
{

λ ∈ C ∣

∣ |λ− eiθjrjl| ≤ α
}

, j = 1, . . . , n, l ∈ N,
where π/2 < θj < 3π/2, α ≥ 0, and the rjl > 0 satisfy

r1−q
j,l+1 − r1−q

jl ≥ β,

∞
∑

l=0

1

r2q
jl

<∞

for some 0 < q < 1 and β > 0. Suppose also that almost all Kjl contain exactly
one λk, that B ∈ L(U,H−s) with s ≤ 1−q

2
and C ∈ L(H, Y ).

Then T has a compact resolvent and admits a Riesz basis (ϕk)k∈Z of eigen-
vectors and finitely many generalised eigenvectors. This basis can be chosen
such that all ϕk with k ≥ 0 correspond to the spectrum in C−, all ϕk with k < 0
to C+, and that there exists an orthonormal system (fk)k≥k0

of H with

∞
∑

k=k0

∥

∥

∥
ϕk −

(

fk

0

)

∥

∥

∥

2

<∞. (25)
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Proof. First observe that the conditions of Theorem 4.6 are satisfied: Since (rjl)l

converges monotonically increasing to infinity we have

rj,l+1 − rjl ≥ (r1−q
j,l+1 − r1−q

jl )rq
jl ≥ βrq

jl → ∞.

Moreover, if for large l, µjl is the eigenvalue of A contained in Kjl, then

|µjl| ≥ rjl − α ≥ rjl

2
for l ≥ l0,

and l0 large enough. Hence

∑

j=1...n
l≥l0

1

|µjl|2(1−2s)
≤ 22(1−2s)n

∑

l≥l0

1

r
2(1−2s)
jl

<∞

since 1 − 2s ≥ q. Consequently, T has a compact resolvent and a Riesz basis
(ϕk)k∈Z of eigenvectors and finitely many generalised eigenvectors.

Consider now the decomposition T = S +R from (8) and the discs

Djl =
{

λ ∈ C ∣

∣ |λ− eiθjrjl| ≤ 2drq
jl

}

where d =
β

4
.

Let ∂Djl be the positively oriented boundary of Djl. Our next step is to show
that

dist(∂Djl, σ(S)) ≥ drq
jl ∀l ≥ l0, (26)

where l0 is sufficiently large. Recall from Lemma 4.2 that σ(S) = σ(A)∪σ(−A∗)
and hence, with finitely many exceptions, the eigenvalues of S in C− are the
µjl. Let z ∈ ∂Djl. For large l we have the estimates

|z − µjl| ≥ |z − eiθjrjl| − |µjl − eiθjrjl| ≥ 2drq
jl − α ≥ drq

jl,

|z − µj,l+1| ≥ |eiθjrjl − eiθjrj,l+1| − |z − eiθjrjl| − |µj,l+1 − eiθjrj,l+1|
≥ (rj,l+1 − rjl) − 2drq

jl − α ≥
(

(r1−q
j,l+1 − r1−q

jl ) − 2d
)

rq
j,l+1 − α

≥ (β − 2d)rq
jl − α = 2drq

jl − α ≥ drq
jl,

|z − µj,l−1| ≥ (rjl − rj,l−1) − 2drq
jl − α ≥

(

(r1−q
jl − r1−q

j,l−1) − 2d
)

rq
l − α

≥ (β − 2d)rq
jl − α ≥ drq

jl.

For µj1l1 , j1 6= j, we get with ω = min{|θj − θj1|, π/2},

|z − µj1l1 | ≥ |eiθjrjl − eiθj1rj1l1 | − 2drq
jl − α ≥ sinω · rjl − 2drq

jl − α ≥ drq
jl,

again for large l. A similar estimate holds for |z − λ| with Reλ ≥ 0. Since
only finitely many λ ∈ σ(S) are not covered by one of the above cases, we have
indeed verified (26).
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From Theorem 4.5 we know that S has a Riesz basis of Jordan chains. By
Lemma 7.7 there exists c ∈ R such that

‖(S − z)−1‖ ≤ c

dist(z, σ(S))
, dist(z, σ(S)) ≥ 2.

Hence if dist(z, σ(S)) ≥ max{2, 2c‖R‖}, then

‖R(S − z)−1‖ ≤ c‖R‖
dist(z, σ(S))

≤ 1

2
;

with T − z = (I +R(S − z)−1)(S − z) this implies z ∈ ̺(T ) and

‖(T − z)−1‖ ≤
∥

∥

(

I +R(S − z)−1
)−1∥

∥‖(S − z)−1‖ ≤ 2c

dist(z, σ(S))
.

In particular, almost all eigenvalues of T in C− are contained in the discs Djl.
By (26), there exists l1 ≥ l0 such that dist(∂Djl, σ(S)) ≥ max{2, 2c‖R‖} for

l ≥ l1. Hence ∂Djl ⊂ ̺(T ), and we can form the Riesz projections

Pjl =
i

2π

∫

∂Djl

(T − z)−1 dz, Qjl =
i

2π

∫

∂Djl

(S − z)−1 dz.

Using the identity (T − z)−1 − (S − z)−1 = −(T − z)−1R(S − z)−1, we obtain

‖Pjl −Qjl‖ ≤ 1

2π

∫

∂Djl

‖(T − z)−1 − (S − z)−1‖ |dz|

≤ 1

2π

∫

∂Djl

‖(T − z)−1‖‖R(S − z)−1‖ |dz|

≤ 1

2π

∫

∂Djl

2c2‖R‖
dist(z, σ(S))2

|dz| ≤ 4c2‖R‖
drq

jl

.

In particular ‖Pjl−Qjl‖ < 1 for almost all pairs (j, l), which implies dimR(Pjl) =
dimR(Qjl), see e.g. [9, Lemma I.3.1]. Let us denote by ejl the eigenvector from
the basis (ek)k that corresponds to µjl, and let vjl = (ejl, 0) be the corresponding
eigenvector of S, Svjl = µjlvjl. By assumption we have σ(S) ∩Djl = {µjl} and
R(Qjl) = span{vjl} for almost all (j, l). Therefore there exist l2 ≥ l1 and c0 ∈ R
such that for l ≥ l2

‖Pjl −Qjl‖ ≤ c0
rq
jl

≤ 1

2
, R(Qjl) = span{vjl}, R(Pjl) = span{ϕjl},

where we choose ϕjl such that ‖ϕjl‖ = 1 and (ϕjl|vjl) ≥ 0. Lemma 7.6 then
yields

∑

j=1...n
l≥l2

‖ϕjl − vjl‖2 ≤
∑

j=1...n
l≥l2

‖Pjl −Qjl‖2

1 − ‖Pjl −Qjl‖
≤ 2c20

∑

j=1...n
l≥l2

1

r2q
jl

<∞.
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Consequently (25) holds if we choose (ϕk)k≥k0
to comprise all ϕjl with l ≥ l2,

(fk)k≥k0
to comprise the corresponding vjl, and ϕ0, . . . , ϕk0−1 to be the finitely

many remaining basis elements corresponding to the spectrum in C−. �

8 Application to the heat equation

We apply our theory to the one-dimensional heat equation with Neumann
boundary control. Consider the system

∂x

∂t
(ξ, t) =

∂2x

∂ξ2
(ξ, t), ξ ∈ [0, 1], t ≥ 0,

∂x

∂ξ
(0, t) = u(t), x(1, t) = 0, t ≥ 0,

x(ξ, 0) = x0(t).

Following [20, §10.2.1], we can rewrite this in the abstract form

ẋ = Ax+Bu on H = L2([0, 1]),

where

Ax =
d2x

dξ2
, D(A) =

{

x ∈ H2([0, 1])
∣

∣

∣

dx

dξ
(0) = x(1) = 0

}

,

B∗x = −x(0), B∗ ∈ L(H1, U), U = C.
For the observation, we choose any bounded C ∈ L(H, Y ).

The operator A is selfadjoint with compact resolvent. The eigenvalues and
an orthonormal basis of eigenvectors of A are given by

λk = −π2
(

k +
1

2

)2

, k = 0, 1, 2, . . . ,

ek(ξ) =
1√
2

cos

(

π
(

k +
1

2

)

ξ

)

.

In particular, A generates an exponentially stable analytic semigroup.
The operator B ∈ L(C, H−1) is of the form Bu = ub with some b ∈ H−1.

We expand b in the basis (ek)k∈N, b =
∑

k αkek with convergence in the norm
of H−1. Then

αk = (ek|b)1,−1 = B∗ek = −ek(0) = − 1√
2

and thus b = − 1√
2

∑∞
k=0 ek. Now

∞
∑

k=0

ek ∈ H−s ⇔
∞

∑

k=0

|λk|−2s <∞ ⇔
∞

∑

k=1

k−4s <∞ ⇔ s >
1

4
.
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Therefore B ∈ L(C, H−s) for all s > 1/4. In particular, B is admissible by
Proposition 6.1.

To show that the Hamiltonian T associated with the system (A,B,C) has
a compact resolvent and a finitely spectral Riesz basis of subspaces, we invoke
Theorem 7.8: We choose θ1 = π, α = 0 and

r1l = rl = π2
(

l +
1

2

)2

, l ≥ 0.

For 1/4 < q ≤ 1/2 we then have

r1−q
l+1 − r1−q

l ≥ (r
1/2
l+1 − r

1/2
l )r

1/2−q
l ≥ π

(π

2

)1−2q

= β,

and ∞
∑

l=1

1

r2q
l

≤
∞

∑

l=1

1

l4q
<∞.

We can thus apply the theorem for any s ≤ 1−q
2
< 3/8. In particular, the Riesz

basis condition (24) for the existence of bounded solutions is also satisfied.
Now we check that the controllability and observability conditions (18) and

(19) of Theorem 5.6 are fulfilled: Since A has no eigenvalues on the imaginary
axis, condition (18) is satisfied. From B∗ek = −1/

√
2 we obtain ek 6∈ kerB∗

and so (19) holds too. Therefore σ(T ) ∩ iR = ∅ and for every skew-conjugate
σ ⊂ σ(T ) we obtain a selfadjoint solution X of the Riccati equation

A∗Xx+X(Ax− BB∗Xx) + C∗Cx = 0, x ∈ D,

where D is a core for X. Moreover, Theorem 7.4 implies that the solutions for
the case where σ ∩C+ is finite are bounded and satisfy σ(AX) = σ.

Finally, we show for the case C = I that

D(AX) 6= D(A),

where D(AX) = D = pr1(Γ(X)∩D(T )). By construction in Theorem 5.6, Γ(X)
contains an eigenvector (x, y) 6= 0 of T ,

T

(

x
y

)

= λ

(

x
y

)

, i.e.

{

(A− λ)x− BB∗y = 0,

−x− (A+ λ)y = 0.

We show first that λ ∈ ̺(A): Indeed, if λ ∈ σ(A), then

BB∗y = (y|b)s,−sb = (A− λ)x ⊥ ker(A− λ)
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implies (y|b)s,−s = 0 since b 6⊥ ek for all k. But then (A− λ)x = 0, i.e. x = αek

and λ = λk for some k ∈ N, α ∈ C. Hence

y = −(A + λ)−1x =
−α
2λk

ek

and thus α(ek|b)s,−s = 0. This implies α = 0 and x = y = 0, a contradiction.
Now λ ∈ ̺(A) yields

x = (A− λ)−1BB∗y = (y|b)s,−s(A− λ)−1b.

If (y|b)s,−s = 0, then x = 0, (A + λ)y = 0 and y 6= 0, i.e. y = αek for
some k ∈ N and α 6= 0; we obtain 0 = α(ek|b)s,−s, a contradiction. Hence
(y|b)s,−s 6= 0. Consequently x 6∈ H1 = D(A) since b 6∈ H . (In fact b ∈ H−s and
x ∈ H1−s) Since x ∈ D(AX), we conclude D(AX) 6= D(A).
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[9] I. C. Gohberg, M. G. Krĕın. Introduction to the Theory of Linear Non-
selfadjoint Operators in Hilbert Space. American Mathematical Society,
Providence, 1969.

[10] B.-Z. Guo, R. Yu. The Riesz basis property of discrete operators and ap-
plication to a Euler-Bernoulli beam equation with boundary linear feedback
control. IMA J. Math. Control Inform., 18(2) (2001), 241–251.

[11] B. Jacob, J. R. Partington. On controllability of diagonal systems with one-
dimensional input space. Systems Control Lett., 55(4) (2006), 321–328.

[12] V. Kostrykin, K. A. Makarov, A. K. Motovilov. Existence and uniqueness
of solutions to the operator Riccati equation. A geometric approach. In
Advances in differential equations and mathematical physics (Birmingham,
AL, 2002), volume 327 of Contemp. Math., pages 181–198. Amer. Math.
Soc., Providence, 2003.
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