
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and
Computational Mathematics (IMACM)

Preprint BUW-IMACM 11/11

Birgit Jacob, Kirsten Morris

Second-Order Systems with Acceleration

Measurements

June 2011

http://www2.math.uni-wuppertal.de/ fa/jacob/
http://www.math.uwaterloo.ca/ kmorris/



Second-Order Systems with
Acceleration Measurements

Birgit Jacob, Kirsten Morris∗

Abstract

Accelerometers are often used to measure the output of second-
order systems, such as structural vibrations. Conditions under which
these systems are well-posed are obtained. We also establish condi-
tions under which these systems have minimum-phase transfer func-
tions.

Keywords: Accelerometers, second-order systems, well-posed systems,
partial differential equations, control, systems theory, infinite-dimensional
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1 Introduction

Many physical systems are modelled by partial differential equations that
include second-order derivatives with respect to time. Formally,

Mz̈(t) + Aoz(t) +Dż(t) = Bou(t) (1)

where z(t) depends also on a spatial variable. Flexible structures, acoustic
waves in cavities as well as coupled acoustic-structure systems are examples
of systems modelled by equations of this type. A number of different types
of measurement of these systems are possible.
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straße 20, 42119 Wuppertal, Germany, jacob@math.uni-wuppertal.de. Kirsten Mor-
ris is with the Department of Applied Mathematics, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, kmorris@uwaterloo.ca.



In [2] the well-posedness of a coupled structural-acoustic system with
several different choices of measurement is established. In [32, 34] an abstract
class of second-order systems similar to (1) but with D = 1

2
BoB

∗
o is examined.

In [34], this system with output y(t) = −B∗o ż(t) + u(t) was shown to be
well-posed (actually, conservative). More general damping operators and
measurements for the abstract class (1) were considered in [17]. The control
system with velocity measurements y(t) = B∗o ż(t) and certain assumptions
on the damping operator was shown to be well-posed. It was shown in [17]
that the control system with position measurements y(t) = B∗oz(t) instead
of velocity measurements is also well-posed.

The primary focus of this paper is acceleration measurements. Accelerom-
eters are a very popular choice of sensor for second-order systems in many
situations; see, for example [20, 25] and the references therein. In this paper
we consider the well-posedness of second-order systems (1) with acceleration
measurements

y(t) = Coz̈(t). (2)

Conditions under which these systems are well-posed are established. The
damping operator is not restricted to D = 1

2
BoB

∗
o and more general out-

puts than Co = B∗o are considered. We obtain a representation for the
input/output map and transfer function for the situation where the control
system may not be well-posed. We provide several examples to show that in
general (1) with acceleration measurements (2) is not well-posed.

We develop a model for acceleration measurements that, instead of (2),
incorporates a model for the micro-electrical-mechanical systems (MEMS)
devices used to measure acceleration. With this more complex model, the
control system is in general well-posed with a natural choice of state space.
We then provide conditions for the control system to be minimum-phase.

2 Framework

We will use the following notations throughout this article. We denote by
L(X, Y ) the set of linear, bounded operators from the Hilbert space X to
the Hilbert space Y .

The notation H2(X), and H∞(X), where X is a Hilbert space, indicates
the usual Hardy spaces of X-valued functions on C0, the open half plane with
Re s > 0. IfX := C we write for simplicityH2, andH∞. The space of matrix-
valued functions H∞(Cm×m) will be indicated by M(H∞). The Lebesgue
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space L2(0, t0;X) is the space of strongly measurable, square integrable X-
valued functions on the interval (0, t0), 0 < t0 ≤ ∞, and H2(0, t0;X) is the
Sobolev space of X-valued functions on the interval (0, t0) that have weak
second derivatives.

We study second-order systems of the form (1), and we make the following
assumptions throughout this paper, which are similar to those in [17].

(A0) The mass operator M is a self-adjoint bounded linear positive-
definite operator on a Hilbert space H with inner product 〈·, ·〉 with the
property that there exists m > 0 such that 〈Mz, z〉 ≥ m〈z, z〉 for all z ∈ H.

(A1) The stiffness operator Ao : D(Ao) ⊂ H → H is a self-adjoint,
positive-definite linear operator on H such that zero is in the resolvent set
of Ao. Here D(Ao) denotes the domain of Ao. Since Ao is self-adjoint and

positive-definite, A
1
2
o is well-defined. The Hilbert space H 1

2
is defined as

follows: H 1
2

= D(A
1
2
o ) with the norm induced by

〈x, z〉H 1
2

= 〈A
1
2
o x,A

1
2
o z〉H , x, z ∈ H 1

2

and H− 1
2

= H∗1
2

. Here the duality is taken with respect to the pivot space

H, that is, H− 1
2

is the completion of H with respect to the norm ‖z‖H− 1
2

=

‖A−
1
2

o z‖H . Thus Ao extends to Ao : H 1
2
→ H− 1

2
. We use the same notation

Ao to denote this extension.
We denote the duality pairing on H− 1

2
×H 1

2
by 〈·, ·〉H− 1

2
×H 1

2

. Note that

for (z′, z) ∈ H ×H 1
2

we have 〈z′, z〉H− 1
2
×H 1

2

= 〈z′, z〉H .
(A2 i) The control operator Bo ∈ L(U,H− 1

2
), where U is a finite-dimen-

sional Hilbert space.
(A2 ii) The damping operator D : H 1

2
→ H− 1

2
is linear, bounded and

nonnegative, that is,

〈A−1/2
o DA−1/2

o z, z〉 ≥ 0, z ∈ H.

Assumption (A0) implies that M has a positive definite square root M
1
2 .

Defining z̃ = M
1
2 z, we can rewrite the system (1) as

¨̃z(t) +M
1
2AoM

− 1
2 z̃(t) +M

1
2DM− 1

2 ˙̃z(t) = M
1
2Bou(t). (3)

The operators M
1
2AoM

− 1
2 , M

1
2Bo and M

1
2DM− 1

2 also satisfy (A1)-(A2) and
so without loss of generality we will assume that the operator M has been
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absorbed into the definition of z and consider systems of the form

z̈(t) + Aoz(t) +Dż(t) = Bou(t). (4)

These assumptions, although stated abstractly, are satisfied by the systems
that typically arise in applications, as the following examples illustrate.

Example 2.1 (Euler-Bernoulli Beam) Consider a beam with a thin film of
piezoelectric polymer applied to one side. A spatially uniform voltage u(t) is
applied to the film to control the vibrations. Let z(r, t) denote the deflection
of the beam from its rigid body motion at time t and position r. Use of the
Euler-Bernoulli model for the beam deflection and the Kelvin-Voigt damping
model leads to [4, 9]:

∂2z

∂t2
+

∂2

∂r2

[
E
∂2z

∂r2
+ Cd

∂3z

∂r2∂t

]
= 0, r ∈ (0, 1), t > 0 (5)

where E and Cd are positive physical constants. Assuming the beam to be
clamped at r = 0 and free at r = 1, we obtain the boundary conditions, for
some constant c,

z(0, t) = 0, ∂z
∂r
|r=0 = 0,[

E ∂2z
∂r2

+ Cd
∂3z
∂r2∂t

]
r=1

= cu(t),
[
E ∂3z
∂r3

+ Cd
∂4z
∂r3∂t

]
r=1

= 0.
(6)

Assumptions (A1)-(A2) are satisfied with H = L2(0, 1) and

H 1
2

=
{
z ∈ H2(0, 1) : z(0) = z′(0) = 0

}
with inner product 〈z, v〉H 1

2

= E〈z′′, v′′〉.

Example 2.2 (Vibrations in a bounded connected region with boundary damp-
ing) Consider vibrations in a bounded connected region Ω with boundary Γ.
The vibrations are controlled via a control u on part of the boundary, Γ1

[15, 21, 27, 34]. The region Ω ⊂ Rn has a Lipschitz boundary Γ, where
Γ = Γ0 ∪ Γ1 and Γ0, Γ1 are disjoint open subsets of Γ with both Γ0 and Γ1

not empty and Γ1 is such that the interior sphere condition holds at least for
one point in Γ1. The partial differential equation describing the system is

z̈ = ∇2z, Ω× (0,∞),
z(x, 0) = z0, ż(x, 0) = z1, Ω,
z(x, t) = 0, Γ0 × (0,∞),
∂z(x,t)
∂n

+ d(x)2ż(x, t) = b(x)u(t), Γ1 × (0,∞),

(7)
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We also assume that b, d ∈ C(Γ1) ⊂ L2(Γ1) with infx∈Γ1 d(x) > 0 and b not
identically zero.

We have H = L2(Ω). Defining

H1
Γ0

(Ω) = {g ∈ H1(Ω) | g|Γ0 = 0},

H 1
2

= H1
Γ0

(Ω) and the inner product on H 1
2

is (∇f,∇g). It is shown in [17]

that this system satisfies assumptions (A1)-(A2).

The control system (4) is equivalent to the following standard first-order
equation

ẋ(t) = Ax(t) +Bu(t) (8)

where A : D(A) ⊂ H 1
2
×H → H 1

2
×H and B : U → H 1

2
×H− 1

2
are given by

A =

[
0 I
−Ao −D

]
, B =

[
0
Bo

]
, (9)

where
D(A) =

{
[ zw ] ∈ H 1

2
×H 1

2
| Aoz +Dw ∈ H

}
.

The following theorem is well known, see e.g. [5], [6], [11], [16] , [23], or [34].

Theorem 2.3 The operator A is the generator of a strongly continuous
semigroup (T (t))t≥0 of contractions on the state space H 1

2
×H.

This guarantees that the spectrum of A is contained in the closed left half
plane of C. In [34] it is shown that 0 ∈ ρ(A). Otherwise, the spectrum of
A can be quite arbitrary [19]. The generator associated with the system in
Example 2.1 generates an exponentially stable semigroup while that in Ex-
ample 2.2 is only strongly stable. Some conditions on the damping operator
D under which the system is exponentially or strongly stable are listed in
[17].
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3 System theory

Distributed parameter systems theory is complicated by the fact that not
only is the state-space infinite-dimensional, but also the control operator B is
often not bounded into the state space. Similarly, in the case of velocity and
acceleration measurements, the observation operator is not bounded from
the state space. We will review some relevant systems theoretic concepts.
Throughout this section A, B and C denote arbitrary operators between
Hilbert spaces and not the specific operators introduced in Section 2. Denote
by U , X and Y Hilbert spaces. Let A : D(A) ⊂ X → X be the generator
of a strongly continuous semigroup (T (t))t≥0 on X, the state space. Let
W ⊂ X ⊂ V be Hilbert spaces with continuous dense injections such that
D(A) ⊂ W and the semigroup (T (t))t≥0 can be extended or restricted to a
strongly continuous semigroup on V or W , respectively. We will denote this
extension (restriction) again by (T (t))t≥0.

Consider for B ∈ L(U, V ) the following linear system

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = xo, (10)

where xo ∈ X and u ∈ L2
loc(0,∞;U). The operator T (t) defines the map

from initial condition to state, that is, for zero input u we have

x(t) = T (t)x(0). (11)

The boundedness of this map from X to X (or on W or V ) is implied by the
assumption that A generates a C0-semigroup.

The mild solution of (10),

x(t) := T (t)xo +

∫ t

0

T (t− s)Bu(s) ds, t ≥ 0, (12)

is well-defined on V . For u ∈ H2(0,∞;U), the mild solution x(t) is an
X-valued function. Define

Btu =

∫ t

0

T (t− s)Bu(s)ds. (13)

This operator is well-defined from H2(0,∞;U) to X. An operator B is an
admissible control operator for the semigroup (T (t))t≥0, if for every t > 0
there is a constant Mt > 0 such that for all u ∈ H2(0,∞;U),

‖Btu‖X ≤Mt‖u‖2
L2(0,∞;U).
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This allows us to extend Bt to a linear bounded operator from L2(0,∞;U)
to X. We call B an infinite-time admissible control operator if the above
inequality holds with Mt independent of t.

We now add an output to our system (10). Let C ∈ L(W,Y ). For initial
conditions x(0) = xo in D(A), T (t)xo ∈ D(A), and since D(A) ⊂ W , we can
define the output operator Ct : W → L2(0, t;Y ) by

(Ctxo)(s) = CT (s)xo, 0 ≤ s ≤ t.

The operator C ∈ L(W,Y ) is called an admissible observation operator for
the semigroup (T (t))t≥0, if for every t > 0 there is a constant Nt > 0 such
that for xo ∈ W , ∫ t

0

‖Ctxo‖2ds ≤ Nt‖xo‖2
X .

This allows us to extend the operator Ct to a linear bounded operator from
X to L2(0, t;Y ). We call C an infinite-time admissible observation operator
if the constant Nt is independent of t. Further information on admissible
control and observation can be found in [18, 35, 36].

For an input u ∈ H2
loc(0,∞;U) and x(0) = 0 the output y is given by

y(τ) = (Gtu)(τ), τ < t, (14)

where Gt is a linear operator from L2(0, t;U) to L2(0, t;Y ). Moreover, Gtu
is the convolution of the input u with a distribution g. We define G :
L2

loc(0,∞;U)→ L2
loc(0,∞;Y ) by

(Gu)(τ) := (Gtu)(τ), τ ≤ t.

The transfer function G of system (10), (14), which is an analytic L(U, Y )-
valued function on some right-half-plane {s ∈ C | Re s > µ}, can be defined
as the Laplace transform of g. Boundedness of Gt is equivalent to the bound-
edness of the transfer function G on some right-half-plane.

Definition 3.1 The system (10), (14) is well-posed on X if and only if the
four maps from input and initial condition to state and output defined by
T (t),Bt, Ct and Gt are bounded for some t > 0 (and hence every t > 0).

A control system is well-posed on some state-space if and only if the in-
put/output map Gt is bounded, or equivalently, the transfer function G is
bounded in some right-half-plane. For more information on well-posed linear
systems and transfer functions we refer the reader to [12] and [31].
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4 Well-posedness of Second-Order Systems

We now return to the specific class of second-order systems introduced in the
Section II.

(A3) There exists a constant β > 0 such that

〈Dz, z〉H− 1
2
×H 1

2

≥ β‖B∗oz‖2, z ∈ H 1
2
.

Theorem 4.1 ([17, Prop. 4.1]) If (A3) holds, then the control operator B
is infinite-time admissible.

This assumption is satisfied by many control systems; for instance Exam-
ples 2.1 and 2.2 [17]. However, if B is a bounded operator, then it is always
admissible, regardless of the extent of the damping D, so assumption (A3)
is sufficient but not necessary for the admissibility of B.

A measurement of the position Coz(t) where Co ∈ L(H 1
2
, Y ) and Y is a

finite-dimensional Hilbert space leads to the control system

z̈(t) + Aoz(t) +Dż(t) = Bou(t), y(t) = Coz(t). (15)

The control system (15) can be equivalently written as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cpx(t) :=
[
Co 0

]
x(t), (16)

where the operators A and B are given by (9). If B defined by (9) is an
admissible control operator for A, then the transfer function is the Laplace
transform of the distribution Gp defined by [7, pg. 7]

Gp(φ) = Cp

∫ ∞
0

T (r)Bφ(r)dr, φ ∈ C∞0 . (17)

The next result follows in a similar way to [17, Prop. 4.3] since [Co 0] is
a linear bounded operator from the state space H 1

2
×H to Y .

Theorem 4.2 For Re s > 0, we define V (s) ∈ L(H− 1
2
, H 1

2
) by V (s) = (s2I+

sD + A0)−1. Let B defined by (9) be an admissible control operator for Ao.
Then Gp(s) = CoV (s)Bo, the position measurement system (15) is well-posed
and the transfer function Gp is bounded on any right half plane Cα, α > 0.
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Consider velocity measurements by studying the system

z̈(t) + Aoz(t) +Dż(t) = Bou(t), y(t) = Coż(t), (18)

where Co ∈ L(H 1
2
, Y ) and Y is a finite-dimensional Hilbert space. The

system (18) is equivalent to

ẋ(t) = Ax(t) +Bu(t), y(t) = Cvx(t) :=
[

0 Co
]
x(t). (19)

where A and B are given by (9) and Cv : H 1
2
×H 1

2
→ Y .

Theorem 4.3 If B defined by (9) is an admissible control operator for A,
then the transfer function Gv of (18) is the Laplace transform of the distri-
bution Gv defined by

Gv(φ) = Cp

∫ ∞
0

T (r)B
d

dr
φ(r)dr

for φ ∈ C∞0 and its transfer function is

Gv(s) = sCoV (s)Bo, Re s > 0.

Moreover, for every α > 0 there exists a constant Mα > 0 such that ‖Gv(s)‖ ≤
Mα|s| for all s with Re s > α.

Proof: The formulae for the input/output map and the transfer function
follows in a similar way to the position measurement system. Since Gv(s) =
sGp(s) and ‖Gp(s)‖ is bounded in any right-half plane Re s > α for α > 0,
we obtain that ‖Gv(s)| ≤Mα|s| in the same half plane. �

Proposition 4.4 If assumption (A3) holds and ‖Coz‖ ≤ ‖B∗oz‖ for all z ∈
H 1

2
, then

1. The observation operator Cv is infinite-time admissible for the semi-
group generated by A.

2. The system (18) is well-posed.

3. The transfer function of (18) satisfies Gv ∈M(H∞).

Proof: This result is identical to that in [17, Prop. 4.1], except that the
condition Co = B∗o in [17, Prop. 4.1] is here generalized to ‖Coz‖ ≤ ‖B∗oz‖
for all z ∈ H 1

2
. Since the proof in [17] only requires this inequality, the result

is immediate. �
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5 Acceleration measurement systems

Consider acceleration measurements

z̈(t) + Aoz(t) +Dż(t) = Bou(t), y(t) = Coz̈(t). (20)

where Co ∈ L(H 1
2
, Y ) and Y is a finite-dimensional Hilbert space. If B is

admissible for the semigroup generated by A, then acceleration measurements
based on the definition (20) lead to a well-defined input/output map.

Theorem 5.1 [7, Thm. 2.1] Assume that the control operator B is admis-
sible for the semigroup generated by A. Then there exists a Laplace trans-
formable distribution

Ga(φ) =
[
Co 0

] ∫ ∞
0

T (σ)Bφ′′(σ) dσ, φ ∈ C∞0 , (21)

such that y = Ga ∗ u, u ∈ C∞0 , where y is given by (20).

Proposition 5.2 If B is an admissible control operator for A, then the
transfer function of the acceleration measurement system (20) is given by

Ga(s) = s2CoV (s)Bo, Re s > 0,

where V (s) is defined as in Theorem 4.2. For every α > 0 there exists a
constant Mα > 0 such that ‖Ga(s)‖ ≤Mα|s|2 for all Re s > α.

Proof: Theorem 5.1 implies the representation (21). Since the semigroup
generated by A is a contraction, for any Re s > 0, the transfer function Ga(s)
is given by the Laplace transform of the distribution Ga, yielding

Ga(s) =
[
Co 0

] ∫ ∞
0

T (r)B
d2

dr2
e−srdr

= s2
[
Co 0

]
(sI − A)−1B.

Since
[
Co 0

]
(sI − A)−1B = CoV (s)Bo [17, Prop. 3.7], the expression for

the transfer function Ga follows. As A generates a contraction semigroup,
the resolvent (sI−A)−1 is bounded on every half plane Re s > α with α > 0,
and this implies the norm estimate of the transfer function. �

The following result now follows from Proposition 4.4.
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Corollary 5.3 If Property (A3) is satisfied and ‖Coz‖ ≤ ‖B∗oz‖ for all z ∈
H 1

2
, then there exists a constant M > 0 such that ‖Ga(s)‖ ≤M |s| for every

s in the right half plane.

The following examples illustrates that in general, Ga is not bounded on
some right half plane.
Example 2.1 cont. Consider the clamped-free beam with control u(t) applied
via a voltage to a thin film of piezoelectric polymer. Suppose

y(t) =
∂3z

∂t2∂r
(1, t).

Assumptions (A1)-(A3) are satisfied and the transfer function is well-defined
(Proposition 5.2). Moreover, A generates an analytic semigroup. By direct
calculation from the partial differential equation and boundary conditions,

Ga(s) = −c2m(s)2 cos(m(s)) sinh(m(s)) + sin(m(s)) cosh(m(s))

1 + cos(m(s)) cosh(m(s))
,

m(s)4 = − s2

E + Cds
.

Since

lim
s→+∞
s∈R

cos(m(s)) sinh(m(s)) + sin(m(s)) cosh(m(s))

1 + cos(m(s)) cosh(m(s))
= 1 + i,

it follows that the transfer function Ga is unbounded on every right half
plane.

If the transfer function is unbounded in every right-half-plane, then the
input/output map is not bounded from L2(0, t;U) to L2(0, t;Y ) for any t > 0
and the system is not well-posed on any state-space. However, we have
the following positive result, see also [7, Thm. 3.2] for a similar result that
assumes Bo is bounded into a smaller space.

Theorem 5.4 Let C0 indicate the closed right-half-plane, that is, the set of
all s ∈ C with Re s ≥ 0. If Bo ∈ L(U,H), Co ∈ L(H, Y ) and A generates a
bounded analytic semigroup, then the transfer function Ga of (20) is analytic
on a half-plane containing C0 and bounded on C0. Thus, the acceleration
measurement system (20) is well-posed.

11



Proof: We have

Ga(s) = s2CoV (s)Bo

= s
[

0 Co
]

(sI − A)−1B.

Since A generates a bounded analytic semigroup and (sI − A)−1 is analytic
on a right-half-plane containing C0 [26] and so the transfer function Ga is
analytic on this same half-plane. Also, we have for every s in the closed right
half plane ‖s(sI−A)−1‖L(H 1

2
×H) ≤M, for some constant M > 0 independent

of s. Since Bo ∈ L(U,H), B ∈ L(U,H 1
2
×H) and

[
0 Co

]
∈ L(H 1

2
×H,Y ),

the transfer function Ga is bounded on the closed right half plane and the
result follows. �

The following example shows that, unfortunately, if the semigroup is not
analytic, the transfer function Ga(s) may be unbounded in every right-half-
plane, even if Bo ∈ L(U,H).

Example 5.5 Let H be an infinite-dimensional Hilbert space with orthonor-
mal basis {en}n∈N. We define the operators Ao : D(Ao) ⊂ H → H and
D ∈ L(H) by

Aoz :=
∞∑
n=1

n4〈z, en〉en, z ∈ D(Ao),

D(Ao) := {z ∈ H |
∑
n∈N

n8|〈z, en〉|2 <∞},

Dz :=
∞∑
n=1

〈z, en〉en.

Further, we choose C∗o = Bo ∈ L(R, H 1
2
) such that bn := 〈Bo, en〉 = n−3/4 for

n ∈ N. An easy calculation shows that

|Ga(n
1/4 + in2)| ≥ n4

∣∣∣∣∣
∞∑
k=1

|bk|2

(n1/4 + in2)2 + (n1/4 + in2) + k4

∣∣∣∣∣
≥ n4

∣∣∣∣∣Im
∞∑
k=1

|bk|2

(n1/4 + in2)2 + (n1/4 + in2) + k4

∣∣∣∣∣
≥ n4 |bn|2n2+1/4

(n1/2 + n1/4)2 + (2n2+1/4 + n2)2
.
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Since this approaches n1/4

4
as n tends to ∞, the transfer function Ga is un-

bounded on every right half plane.

The concept of system nodes is an even more general concept of control
systems than well-posed systems [31]. It provides a framework for the study
of systems that may not be well-posed. However, the highly unbounded
nature of the observation means that in general, this control system is not
even a system node.

More importantly, an ill-posed system cannot be stabilized in any prac-
tical sense. If the resolvent of A contains the closed right-half plane, as is
common in applications, the corresponding transfer function will be analytic
on a region containing the closed right-half-plane. Thus, Ga(s) /∈ M(H∞)
(or Gv(s) /∈M(H∞)) indicates that

lim sup
|s|→∞
s∈C0

‖G(s)‖ =∞.

In [24, Thm. 8.5] it was shown that these systems are difficult to stabilize.
If there is an infinite unbounded sequence in the right-half-plane, the system
cannot be stabilized by a strictly proper regular controller (that is any real-
istic controller) in a manner that is robust with respect to time delays. Since
all practical control system contain small time delays, such systems cannot
be stabilized in any practical setting.

6 Accelerometers

In general, as illustrated by the examples in the preceding section, the acceler-
ation measurement system (20) is ill-posed. However, the sensors commonly
used to measure acceleration are micro-electro-mechanical system (MEMS).
The effective mass is suspended between two capacitors and the measured
voltage is proportional to the relative position of the mass - see, for example,
[8, 25, 30]. The response of the accelerometer is modelled by a second-order
system

mä(t) + ka(t) + dȧ(t) = F (t)

where F (t) is the effective force on the accelerometer due to the movement
of the structure to which it is attached.

In [33] the connection of a finite-dimensional system to an infinite-dimen-
sional system is considered, but there both input and output occur through
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the finite-dimensional system. Also, the finite-dimensional system is only
connected to the infinite-dimensional system through external variables.

A common model is to regard the effective force on the accelerometer as
F (t) = Coz̈(t) where Co indicates the point of attachment of the accelerom-
eter and to define the output as y(t) = αa(t) for some constant α. The
corresponding transfer function is bounded on some right half plane, and
thus there exists a state-space such that the system is well-posed. Formally,
the corresponding equations are, with z = [ wa ],[

I 0
0 m

]
z̈(t) +

[
Ao 0
CoAo k

]
︸ ︷︷ ︸

Âo

z(t) +

[
D 0
CoD d

]
ż(t) =

[
Bo

CoBo

]
u(t).

Appropriate domains for the new stiffness and damping operators are needed.
The new “stiffness” operator, Âo, is not symmetric, nor is Re 〈Âoz, z〉 ≥ 0.
The new “damping” operator has similar problems. The input operator CoBo

will only be well-defined if the assumptions on Bo and Co are strengthened;
for instance if Bo is bounded on H. Putting these concerns aside, choosing

m = 1 and defining the state x̃ =
[
w a ẇ ż

]T
, we write the uncontrolled

system in first-order form, obtaining

˙̃x(t) =




0 0 I 0
0 0 0 1
−Ao 0 −D 0

0 −k 0 −d


︸ ︷︷ ︸

Â

+


0 0 0 0
0 0 0 0
0 0 0 0

−CoAo 0 −CoD 0


︸ ︷︷ ︸

P


x̃(t).

Define Aaug = Â + P . Since the operator P is bounded on D(Â2), Aaug
generates a strongly continuous semigroup on D(Aaug) = D(Â), see [14,

Corollary III.1.5]. This semigroup can be extended to [D(Â)]aug−1 which is the

completion of D(Â) with respect to the norm ‖(sI −Aaug)−1 · ‖. This is not
the natural state space H 1

2
×R×H ×R. Furthermore, not only are Co and

Bo restricted so that CoBo is well-defined, but also the control operator needs
to be admissible with respect to this state space.

These mathematical problems are reflecting the fact that this model is
not physically correct.

14



Although the accelerometer is small compared to the structure, there
is some coupling. The coupled system describing the interaction of such a
device with a structure will be derived using Hamilton’s Principle. In order
to simplify the exposition, the case of a single accelerometer is analyzed, that
is, U and Y are one-dimensional Hilbert spaces, and so Bo ∈ L(R, H− 1

2
) and

Co ∈ L(H 1
2
,R).

Theorem 6.1 Consider a general second-order system (4) with potential en-
ergy defined through a stiffness operator Ao as

Vstructure =
1

2
〈Aoz(t), z(t)〉H− 1

2
×H 1

2

where z(t) ∈ H 1
2

indicates the deflection of the structure and Ao satisfies

(A1). Assume also the kinetic energy of the structure is

T =
ρ

2
〈ż(t), ż(t)〉

where ρ > 0.
Let the real-valued function a(t) indicate the deflection of the mass in the

accelerometer mounted on the structure, with respect to the same frame as
z, and assume that the uncoupled accelerometer has mass m and potential
energy k

2
a(t)2 where k > 0 is the stiffness of the accelerometer.

Let the damping forces within the structure be described by Dż(t) where
D satisfies (A2ii). The damping force in the accelerometer is assumed pro-
portional to the relative velocity of the accelerometer mass: d(ȧ(t)−Coż(t)).
Also consider a control force on the structure Bou(t) where Bo ∈ L(R, H− 1

2
).

If the second-order system is coupled to the accelerometer so that Coz(t)
where Co ∈ L(H 1

2
,R) is the position of the structure where the accelerometer

is attached, then the following equations describe the dynamics of the coupled
system

mä(t)+k
(
a(t)− Coz(t)

)
+ d
(
ȧ(t)− Coż(t)

)
= 0,

ρz̈(t)+Aoz(t)+Dż(t)+kC∗o
(
Coz(t)−a(t)

)
+dC∗o

(
Coż(t)− ȧ(t)) = Bou(t).

(22)

Proof: The position of the accelerometer relative to the structure is a(t)−
Coz(t) so the total potential energy of the system is

V =
1

2
〈Aoz(t), z(t)〉H− 1

2
×H 1

2

+
k

2
(a(t)− Coz(t))2.
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The kinetic energy of the coupled system is

T =
ρ

2
〈ż(t), ż(t)〉+

m

2
(ȧ(t))2

where m is the accelerometer mass. The action integral A : C2([to, tf ];H 1
2
×

R)→ R is then

A(z, a)

=

∫ tf

to

T − V dt

=

∫ tf

to

ρ

2
〈ż(t), ż(t)〉− 1

2
〈Aoz(t), z(t)〉H− 1

2
×H 1

2

+
m

2
|ȧ(t)|2− k

2
|a(t)− Coz(t)|2dt.

The first variation (∆A(z, a))(h1, h2), or derivative, of this functional is
defined for

h1 ∈ C2(to, tf ;H 1
2
) with h1(to) = h1(tf ) = 0,

h2 ∈ C2(to, tf ) with h2(to) = h2(tf ) = 0,

and given by

(∆A(z, a))(h1, h2) (23)

=

∫ tf

to

ρ〈ż(t), ḣ1(t)〉 − 〈Aoz(t), h1(t)〉H− 1
2
×H 1

2

+mȧ(t)ḣ2(t)

−k(a(t)− Coz(t))(h2(t)− Coh1(t))dt

= −
∫ tf

to

〈ρz̈(t), h1(t)〉+ 〈Aoz(t), h1(t)〉H− 1
2
×H 1

2

+mä(t) · h2(t) (24)

+k(a(t)− Coz(t))h2(t)− k〈C∗o (a(t)− Coz(t)), h1(t)〉H− 1
2
×H 1

2

dt.

For each (z, a) ∈ H2(to, tf ;H 1
2
× R), the operator ∆A(z, a) in (24) is well-

defined for (h1, h2) ∈ L2(to, tf ;H 1
2
×R). Since for each such (z, a) and (h1, h2),

|∆A(z, a)(h1, h2)| ≤M(‖h1‖L2(to,tf ;H 1
2

) + ‖h2‖L2(to,tf ;R)),

where M is independent of (h1, h2), ∆A(z, a) is a bounded linear functional
on L2(to, tf ;H 1

2
× R); that is, ∆A(z, a) can be regarded as an element of

L2(to, tf ;H− 1
2
× R).
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By Hamilton’s Principle, z, a are such that ∆A(z, a) = 0 for all (h1, h2).
Since h1 and h2 can be zero independently, this implies that if (z, a) is the
system dynamics, ∆A(z, a) is the zero functional. Using Fa to indicate other
forces on the accelerometer and Fz to indicate other forces on the structure
we obtain

mä(t) + k(a(t)− Coz(t)) = Fa(t), (25)

ρz̈(t) + Aoz(t) + kC∗o (Coz − a(t)) = Fz(t) (26)

where the first equation is understood in L2(to, tf ) and the second equation
in L2(to, tf ;H− 1

2
). Including the control and damping forces Fz(t) = Bou(t)−

Dż and Fa = d(Coż(t)− ȧ(t)) leads to (22). �

Notes:

1. The dual operator C∗o can be calculated as follows. For any v ∈ R the
Riesz representation theorem implies that there exists a unique g ∈ H 1

2

such that
〈g, φ〉 1

2
= v · (Coφ), ∀φ ∈ H 1

2
.

Let this define a map N : R→ H 1
2

by Nv = g. Equivalently,

〈Aog, φ〉H− 1
2
×H 1

2

= vCoφ, ∀φ ∈ H 1
2
.

Thus,
〈AoNv, φ〉H− 1

2
×H 1

2

= vCoφ, ∀φ ∈ H 1
2

which implies that C∗o = AoN .

2. If the structure is the clamped-free beam studied in Example 2.1, z(t)

is the beam deflection, H = L2(0, 1), with 〈w, v〉 =
∫ 1

0
w(x)v(x)dx,

H 1
2

= {z ∈ H2(0, 1); z(0) = z′(0) = 0},

and 〈Aow, v〉 = E

∫ 1

0

w′′(x)v′′(x)dx,

where E is the total beam elasticity. The potential energy of the beam
is

V =
E

2

∫ 1

0

w′′(x)w′′(x)dx =
1

2
〈Aow,w〉.

If the accelerometer is at x = xo, Cow = w(xo) and Co ∈ L(H 1
2
,R) is

implied by Sobolev’s Imbedding Theorem [1, Thm. 4.12].
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3. The effect of damping can be incorporated into the model by utilizing
an adjoint or mixed variational principle - see for example [3] and the
references therein.

The equations (22) form a description for a structure coupled to an ac-
celerometer. For accelerometer mass m = 0, we recover the original equation
(4). Since the accelerometer is several orders of magnitude smaller than the
structure, the deflection of the structure is not significantly changed by the
accelerometer.

The measurement is proportional to the relative deflection of the ac-
celerometer proof mass, that is, the output

y(t) = α(Coz(t)− a(t)), (27)

where α is a parameter. We will derive an expression for the transfer function
of this coupled system in terms of that of the original system, and show that,
except for high frequencies, this leads to an output that is close to the true
acceleration.

We first put the coupled system (22) into the standard second-order
framework (4) and show that, along with the measurement (27), it defines a
well-posed system. Defining H̃ = H × R and

z̃(t) =

[ √
ρz(t)√
ma(t)

]
,

we obtain

¨̃z(t) + Ãoz̃(t) + D̃ ˙̃z(t) =

[ 1√
ρ
Bo

0

]
u(t) (28)

where

Ão =

[
1
ρ
(Ao + kC∗oCo)

−k√
ρm
C∗o

−k√
ρm
Co

k
m

]
, D̃ =

[
1
ρ
(D + dC∗oCo)

−d√
ρm
C∗o

−d√
ρm
Co

d
m

]
,

(29)
with

D(Ão) =

{
(z, a) ∈ H 1

2
× R | 1

ρ
(Ao + kC∗oCo)z −

k
√
ρm

C∗oa ∈ H
}
,

D(D̃) =

{
(z, a) ∈ H 1

2
× R | 1

ρ
(D + dC∗oCo)z −

d
√
ρm

C∗oa ∈ H
}
.
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Theorem 6.2 Provided that

z̈(t) + Aoz(t) +Dż(t) = Bou(t)

satisfies assumptions (A1)-(A2), the second-order system with accelerometer
measurement system (28) satisfies the same assumptions with H̃ 1

2
= H 1

2
×

R and inner product 〈Ã
1
2
o z̃1, Ã

1
2
o z̃2〉. This inner product is equivalent to that

generated by A
1
2
o plus the norm of R. Thus,

Ã =

[
0 I

−Ão −D̃

]
(30)

generates a contraction semigroup on H 1
2
× R×H × R.

Proof: 〈Ãoz̃1, z̃2〉 = 〈z̃1, Ãoz̃2〉 for every z̃1, z̃2 ∈ D(Ão) implies that the
operator Ão is symmetric. Moreover, the operator Ão is surjective. For any
z̃ = (z, a) ∈ D(Ão),

〈Ãoz̃, z̃〉 = 〈Aoz, z〉+
k

ρ
|Coz|2 − 2(

√
k

m
a)(

√
k

ρ
Coz) +

k

m
|a|2.

Making use of Young’s inequality, for any 0 < ε < 1,

〈Ãoz̃, z̃〉 ≥ 〈Aoz, z〉+
k

ρ
(1− 1

ε
)|Coz|2 +

k

m
(1− ε)|a|2

≥ (1− k

ρ
(
1

ε
− 1)‖Co‖2)‖z‖2

H 1
2

+
k

m
(1− ε)|a|2.

Thus, by choosing ε sufficiently close to 1 we obtain M1 > 0 such that

〈Ãoz̃, z̃〉 ≥M1(〈Aoz, z〉+ |a|2).

In order to show that Ão is selfadjoint on H ×R it is sufficient to show that
D(Ão) is dense in H × R. Let (z̃, ã) ∈ H × R with

〈[ za ] , [ z̃ã ]〉 = 0, [ za ] ∈ D(Ão).

There exists [ z1a1 ] ∈ D(Ão) with Ão [ z1a1 ] [ z̃ã ] and thus

〈[ z1a1 ] , Ão [ z1a1 ]〉 = 0,
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which implies (z̃, ã) = (0, 0). This shows D(Ão) = H×R and the selfadjoint-
ness of Ão. Also,

〈Ãoz̃, z̃〉 = 〈Aoz, z〉+ |

√
k

ρ
Coz −

√
k

m
a|2

≤ 〈Aoz, z〉+ 2
k

ρ
|Coz|2 + 2

k

m
|a|2

≤ M2(|z|2H 1
2

+ |a|2)

for some M2 > 0. It follows that the norm defined by Ã
1
2
o is equivalent to

‖z‖H 1
2

+ |a|. In a similar manner it can be shown that D̃ satisfies (A2 ii).

Finally,
[

1√
ρ
Bo

0

]
satisfied (A2 i). �

Theorem 6.3 If Ao has a compact resolvent and 〈Dz, z〉H− 1
2
×H 1

2

> 0 for

any eigenvector z of Ao, then iR is contained in the resolvent set of Ã and
Ã generates a strongly stable C0-semigroup.

Proof: Let H̃ 1
2

:= H 1
2
× R and H̃− 1

2
:= H− 1

2
× R. We will first show that

〈D̃z̃, z̃〉H̃− 1
2
×H̃− 1

2

= 0 and λz̃ = Ã0z̃ implies that z̃ = 0. Writing z̃ = (z, a),

〈D̃z̃, z̃〉H̃− 1
2
×H̃− 1

2

= 0 is equivalent to ([17, Rem 2.1])

1

ρ
(D + dC∗oCo)z −

d
√
ρm

C∗oa = 0 (31)

−d
√
ρm

Coz +
d

m
a = 0 (32)

where the first equation is in H− 1
2
. Applying C∗o to (32) we obtain that

C∗oa =

√
m

ρ
C∗oCoz. (33)

Substituting into (31), we obtain that

Dz = 0. (34)
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If also z̃ is an eigenfunction of Ão, corresponding to an eigenvalue λ, then

λz =
1

ρ
(Ao + kC∗oCo)z −

k
√
ρm

C∗oa.

Substituting in (33), we obtain that

λz =
1

ρ
Aoz.

This, together with (34) and the assumption that 〈Dz, z〉H− 1
2
×H 1

2

> 0 for any

eigenvector z of Ao implies that z = 0, and therefore z̃ = 0 by (32). Summa-
rizing, we have shown that 〈D̃z̃, z̃〉H̃− 1

2
×H̃− 1

2

> 0 for every eigenfunction z̃ of

Ão.
We now show that for some s ∈ ρ(Ão), the resolvent (sI − Ão)

−1 is a
compact operator. Choose s ∈ ρ(Ao) ∩ ρ(Ão). Define

Ae =

[
1
ρ
Ao 0

0 k
m

]
and write

(sI − Ão)−1 = (sI − Ae)−1 − (sI − Ae)−1F (sI − Ão)−1,

where

F :=

[
k
ρ
C∗oCo

−k√
ρm
C∗o

−k√
ρm
Co 0

]
.

By assumption, (sI−Ae)−1 is a compact operator on L(H×R, H×R) for any
s ∈ ρ(Ae). It is also a bounded operator from H− 1

2
×R to H ×R. Similarly,

(sI − Ão)−1 ∈ L(H ×R, H 1
2
×R). The operator F in the above expression is

in L(H 1
2
× R, H− 1

2
× R) and has finite-rank. It follows that (sI − Ão)−1 is a

compact operator.
This implies that the resolvent set of Ã includes the imaginary axis and

that Ã generates a strongly stable C0-semigroup on H ×R [11, Lemma 4.1,
Theorem 4.4]. �

Definition 6.4 A control system is regular if it is well-posed and if for some
E ∈ L(U, Y ), its transfer function G satisfies

lim
s→+∞,s∈R

G(s)u = Eu, u ∈ U.

The operator E is called the feedthrough operator of the system.
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It is known that position measurement systems are regular [17]. There is
no general result for the regularity of velocity measurement systems, although
results for particular systems have been obtained - see, for instance, [2].
However, the use of an accelerometer leads to a control system that is not
only well-posed, but also regular. This is shown in the following theorem.

Theorem 6.5 If (A3) is satisfied by the structure (4) then (A3) holds for
the coupled system with Ão defined in (29) and B̃o = [ Bo0 ]. The observation
operator defined by (27) is bounded from the state space H 1

2
× R × H × R

to R and the accelerometer control system (28) with measurement (27) is
well-posed on the state-space H 1

2
× R×H × R.

Defining

Gacc(s) =
αm

ms2 + ds+ k
,

and letting G̃a(s) indicate the transfer function of (28) with acceleration
measurement

y(t) =
[

1√
ρ
C0 0

]
¨̃z(t) = C0z̈(t), (35)

the transfer function of (27), (28) is

Gam(s) = Gacc(s)G̃a(s). (36)

Furthermore, the system is regular with zero feedthrough.
Proof: By assumption (A3) there exists a β > 0 such that

〈Dz, z〉H− 1
2
×H 1

2

≥ β‖B∗oz‖2, z ∈ H 1
2
.

Following the proof of Theorem 6.2 there exists a constant M1 > 0 such that

〈D̃z̃, z̃〉 ≥ M1〈Dz, z〉H− 1
2
×H 1

2

≥M1β‖B∗oz‖2

= M1β‖B̃∗o z̃‖2

for z̃ = (z, a) ∈ H 1
2
× R. Thus (A3) holds for Ão and B̃o. By Theorem 4.1

B̃ is an infinite-time admissible control operator for Ã. As the observation
operator defined by (27) is bounded from the state space H 1

2
×R×H×R to R,

the accelerometer control system (28) with measurement (27) is well-posed
on the state-space H 1

2
× R×H × R.
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Since B is an admissible control operator for Ã, Proposition 5.2 implies
that the system (28) with acceleration measurement (35) has a well-defined
transfer function G̃a(s) where G̃a(s) = s2G̃p(s) and Gp(s) is the transfer func-

tion associated with the position measurement
[

1√
ρ
C0 0

]
z̃(t) = C0z(t) of

(28). An easy calculation then shows that the transfer function of (28), (27)
is

Gam(s) =
αms2

ms2 + ds+ k
G̃p(s) (37)

= Gacc(s)G̃a(s).

Since the position control system (28) with position measurement and
transfer function G̃p is regular with zero feedthrough [17, Prop. 4.3] the
transfer function Gam also satisfies

lim
x→∞

Gam(x) = 0

and the system is regular with zero feedthrough. �

It is clear from (36) that the difference between the transfer function of
the accelerometer Gacc and 1 determines the deviation of the measurement

from the actual acceleration. Defining ωn =
√

k
m

, ξ = d
2mωn

, and setting

α = ω2
n,

Gacc(s) =
1

s2

ω2
n

+ 2ξ s
ωn

+ 1
.

As illustrated in Figure 1, Gacc(s) ≈ 1 for |s| << ωn. Thus, at frequencies
sufficiently below the natural frequency ωn of the accelerometer, the rela-
tive position of the accelerometer is proportional to the acceleration of the
structure and the measurement y(t) provides an accurate measurement of
the structure’s acceleration.

7 Minimum-Phase behaviour

The term minimum-phase was first coined by Bode during his work on design
of feedback amplifiers [10]. The original concept is that a transfer function G
is minimum-phase if over all other transfer functions having the same mag-
nitude |G(ω)| as G, no other function has smaller phase. Every function in
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Figure 1: Frequency response Gacc(ıω) of a MEMS accelerometer with pa-
rameters m = 3.561 × 10−10kg, k = 571.5N/m and d = 6.254 × 10−6Ns/m

[30, Tables 3&4,D]. For this device, ωn =
√

k
m

= 1.267×106. For frequencies

ω < ωn/2.5rad/s, Gacc ≈ 1.
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H∞ has a factorization into a minimum-phase part (that contains the magni-
tude information) and an all-pass part (that contains the phase information
and any singular part). A stable rational function is minimum-phase if and
only if the function has no zeros in the open right-half-plane [13, sec. 6.2].
Minimum-phase functions are equivalent to the outer functions studied in
analytic function theory [28]. These functions correspond to operators that
have inverses defined on a dense subset of H2(U).

Definition 7.1 [28, page 94] For any function G ∈ M(H∞) define the op-
erator ΓG : H2(U) → H2(U) by ΓGf = Gf for any f ∈ H2(C0;U). The
function G is minimum-phase or outer if the range of ΓG is dense in H2(U).

This explains their importance in controller design- such a system has an
inverse defined on a dense subset of H2(U). This often facilitates controller
design and can lead to improved closed loop performance, as compared to
control of non-minimum-phase systems.

Theorem 7.2 [17, Thm. 5.9] Assume that Bo is injective, Co = B∗o , and
the resolvent set of A contains the imaginary axis. If, in addition, (A3) is
satisfied, then the transfer function Gp of the position measurement system
(16) and the transfer function Gv of the velocity measurement system (19)
are minimum-phase functions.

We are now in a position to show that under some weak assumptions the
transfer function of the accelerometer control system (28) is minimum-phase.

Theorem 7.3 Assume that Bo is injective, Co = B∗o , and the resolvent set
of Ã contains the imaginary axis. If, in addition, Bo and D satisfy (A3),
then the transfer function Gam of the accelerometer control system (27)-(28)
is a minimum-phase function.

Proof: Consider the coupled second-order system (28),

z̈(t) + Ãoz(t) + D̃ż(t) =

[ 1√
ρ
Bo

0

]
u(t)

where

Ão =

[
1
ρ
(Ao + kC∗oCo)

−k√
ρm
C∗o

−k√
ρm
Co

k
m

]
, D̃ =

[
1
ρ
(D + dC∗oCo)

−d√
ρm
C∗o

−d√
ρm
Co

d
m

]
.
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with output

y(t) =
[

1√
ρ
Co − 1√

m

]
and transfer function G̃p. Since the operator Ã has no spectrum on the
imaginary axis, G̃p is minimum-phase by Theorem 6.5 and Theorem 7.2.
Thus, by (37) Gam is minimum-phase. �

The assumption on Ã in the above theorem is satisfied, for instance, if
Ao has compact resolvent and 〈Dw,w〉 > 0 for any eigenfunction w of Ao
(Theorem 6.3).
Example 2.2 (cont.)) Consider vibrations of a plate or membrane that is
fixed on part of the boundary, as described in Example 2.2 . This system
satisfies assumptions (A3), as well as (A1)-(A2), Bo is injective [17]. In [17]
it is shown that if the position measurement is

y(t) =

∫
Γ1

b(x)z(x, t)dx,

which leads to y(t) = Coz(t) where Co = B∗o , then the system is well-posed
and minimum-phase. The corresponding velocity measurement y(t) = Coż(t)
also leads to a well-posed minimum-phase system. Suppose that an ac-
celerometer is used to measure the vibrations. Then the system is described
by

mä(t) + ka(t) + d(ȧ(t)− Coẇ(t))− kCow(t) = 0,
ρẅ(t)+Aow(t)+kC∗oCow(t)−dC∗o (ȧ(t)−Coẇ(t))+Dẇ(t)−kC∗oa(t) = Bou(t)

where m, d and k are the relevant accelerometer parameters. The output is

y(t) = α
(∫

Γ1

b(x)z(x, t)dx− a(t)
)

where α is a parameter. For frequencies within the bandwidth of the ac-
celerometer, y(t) is an accurate measurement of the acceleration. By Theo-
rems 6.5 and 7.3, this control system is well-posed and strictly proper. Fur-
thermore, the transfer function is a minimum-phase function.

8 Conclusions

Following a review and improvement on some existing results of the sys-
tems theory for position and velocity measurements of second-order systems,
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acceleration measurements are introduced. Unless Bo ∈ L(U,H) and the
semigroup generated by A is analytic, the transfer function Ga of an ac-
celerometer control system is in general not in M(H∞). These are quite
restrictive conditions.

However, the simple measurement y(t) = Coz̈(t) is a simplification for the
output of a second-order system with acceleration measurements. A model
describing the action of MEMS accelerometers typically used in practice was
developed using Hamilton’s Principle. It is shown that provided that the
position measurement system is well-posed, the control system with the po-
sition sensor replaced by an accelerometer is also well-posed. In fact, the
system is regular, and strictly proper. In the final section it is shown that
a second-order system with an accelerometer has a minimum-phase transfer
function under the same conditions that lead to a minimum-phase transfer
function for the corresponding position (and velocity) systems.
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