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Abstract. This paper deals with the mathematical modeling and algorithms for the
problem of oil pollution. For solving this task we derive the adjoint problem for the
advection-diffusion equation describing the propagation of oil slick after an accident,
which we call the main problem. We prove a fundamental equality between the solu-
tions of the main and the adjoint problems. Based on this equality we propose a novel
method for the identification of the pollution source location and the accident time of
oil emission. This approach is illustrated on an example for an accident in the offshore
of the central part of the Vietnamese coast. Numerical simulations demonstrate the ef-
fectiveness of the proposed method. Besides, the method is verified for 1D model of
substance propagation.
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1. Introduction

In this work we study a mathematical model of oil spill processes in seas (arising from
tanker or offshore accidents, liquid waste, etc.), such as advection, turbulent diffusion,
surface spreading, evaporation, dissolution and emulsification. These processes may influ-
ence the transport of oil spill. There exist a wide range of research articles focused on the
surface movement of oil spills and describing the numerical simulation of oil spills in acci-
dents occurred in some seas [26]. However, a large part of mathematical investigations of
the used computational schemes is still almost open. Therefore, the first goal of this paper
is the analysis of numerical schemes for simulating oil spills in order to obtain accurate
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predictions of the movement and the fate of the spilled oil. This forecast gives an idea of
the oil spill impact and is crucial for properly designed clean-up recovery operations and
the protection of ecologically sensitive zones. After completing this task we shall obtain
good numerical schemes for predicting the oil slick at any time.

Another task, which may be even more important than the prediction of the oil pollu-
tion is the determination of the location, the time and the total power of oil emission if
an oil slick is detected. From mathematical point of view, this is an inverse problem and
it is more difficult than the direct problem of the prediction of oil pollution. Hence, the
second goal of this work is the elaboration of methods, and numerical schemes for solving
the above inverse problem.

Since the oil spilling heavily depends on the velocity of the wind and surface current,
the above direct and inverse problems of oil spill are posed under the assumption that the
wind and the flow fields in the sea are known. These data in sea may be collected from
experimental measurements or are obtained in the results of the problem of flow and wind.
Having in hand the data of sea flow and wind in the Vietnamese coast and sea (from the
Buro of Hydrology and Meteorology, Hanoi) we shall simulate the spreading of oil after
being discharged from a source and solve the inverse problem of determining the position,
the time and the power of the pollution emitter.

2. The 2D Oil Spill Problem

In this section we will give a brief introduction to the 2D mathematical model and
follow the notation of Skiba, cf. [23, 24]. Let r0 = (x0, y0) denote the location of an oil
tanker or oil platform. D is some two-dimensional open sea domain with boundary S. At
t = 0 the accident happens at the site r0 with a rate of oil spilling in unit time F(t) and
the oil slick thickness ϕ(r, t) on the sea surface at point r = (x , y) and time t > 0. The oil
slick propagation in D and time interval (0, T ) is described by the 2D advection-diffusion
equation

Lϕ ≡
∂ ϕ

∂ t
+ div(Uϕ) +σϕ−∇ ·µ∇ϕ = f (r, t), r ∈ D, t ∈ (0, T ), (2.1)

with the emission forcing function

f (r, t) = F(t)δ(r − r0), (2.2)

where µ(r, t) is the diffusion coefficient, ∇ is the two-dimensional gradient, and δ(r − r0)
is the Dirac mass at the accident point r0. The parameter σ ≥ 0 characterizes the decay
of ϕ(r, t) due to evaporation which is the most dominant weathering process during the
first several days [17]. The velocity U(r, t) = (u(r, t), v(r, t)) of the oil propagation is as-
sumed to be known. This velocity field can be calculated by using the climatic (seasonal or
monthly) sea surface currents and winds [8], or the real currents and winds from dynamic
models.
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In case the velocity field satisfies the continuity equation

∇ ·U=
∂ u

∂ x
+
∂ v

∂ y
= 0, (2.3)

the advection-diffusion equation (2.1) is often written in the form [23]

∂ ϕ

∂ t
+U · ∇ϕ+σϕ−∇ ·µ∇ϕ = f (r, t), r ∈ D, t ∈ (0, T ). (2.4)

The initial condition at t = 0 is simply the absence of oil on the sea surface:

ϕ(r, 0) = 0, r ∈ D. (2.5)

To obtain a well-posed problem according to Hadamard [23] care is required in setting
conditions at the boundaries. Let Un be the projection of the velocity U on the outward
normal n to the boundary S. We divide S into the outflow part S+, where Un ≥ 0 (oil
flows out of the domain D), and the inflow part S− where Un < 0 (oil flows into D). The
boundary conditions for (2.1) are

µ
∂ ϕ

∂ n
− Unϕ = 0 at inflow boundary / coastline S−, (2.6)

µ
∂ ϕ

∂ n
= 0 at outflow boundary S+. (2.7)

By (2.6), the combined diffusive plus advective oil flow is absent at the inflow part S−, as
no oil flows into D from the outside where the water is free of oil. Condition (2.7) means
that at the boundary S+ (that includes the coastline with Un = 0), the diffusive oil flow is
small compared to the advective oil outflow µ∂ ϕ/∂ n from D.

In the non-diffusion limit (µ = 0), condition (2.6) is reduced to ϕ = 0 (there is no
oil on the inflow boundary), while (2.7) vanishes, as it must. Indeed, the pure advection
problem (µ= σ = 0) does not require conditions at the outflow boundary, since its solution
is predetermined by the method of the characteristics, cf. [10].

Remark 2.1. We note that condition (2.7) includes the coastline where Un = 0. In particular,
for a closed basin D everywhere bounded by the coastline, S− is empty and S = S+. Thus
equations (2.6) and (2.7) include the coastline condition and approach the correct boundary
conditions of the pure advection problem in the non-diffusion limit.

Another setting of boundary conditions, which is somewhat different from (2.6)–(2.7),
reads

ϕ = 0 at S−, (2.8)

∂ ϕ

∂ n
= 0 at S+1 ,

∂ ϕ

∂ n
= αϕ at S+2 , (2.9)

where S+1 is the actual outflow part (Un > 0), S+2 is the coastline part of the boundary
(Un = 0), and α≥ 0 is the absorption coefficient of the coastline.
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Next, we want to motivate some balance equations for this oil pollution problem that
yield some physical insights. First we integrate the 2D transport equation (2.1) in space
gives

∂

∂ t

∫

D

φ dr −
∫

D

∇U ·φ dr +

∫

D

σφ dr −
∫

S

(µ
∂

∂ n
φ − Unφ) dS = F(t), (2.10)

and using the inflow and outflow conditions (2.6) and (2.7) we see that any solution of
problem (2.1)–(2.7) satisfies the oil balance equation

∂

∂ t

∫

D

φ dr = F(t) +

∫

D

∇ · Uφ dr −
∫

D

σφ dr −
∫

S+
Unφ dS, (2.11)

that reduces to
∂

∂ t

∫

D

φ dr = F(t)−
∫

D

σφ dr −
∫

S+
Unφ dS. (2.12)

if the continuity equation (2.3) is fulfilled. Equation (2.12) describes the time evolution
of the total pollution concentration

∫

D
φ dr that increases due to the emission F > 0, see

(2.2), and decreases due to evaporation and the advective pollution transport across the
outflow boundary S+.

Secondly, to obtain an estimate for the L2-norm of the solution φ we multiply (2.1) by
2φ and integrate again

∂

∂ t

∫

D

φ2 dr −
∫

D

∇ · Uφ2 dr + 2

∫

D

(σφ2+µ|∇φ|2) dr

−
∫

S

(2φµ
∂

∂ n
φ − Unφ

2) dS = 2F(t)φ(r0, t), (2.13)

and with the boundary conditions (2.6) and (2.7) we obtain the integral equation

∂

∂ t

∫

D

φ2 dr −
∫

D

∇ · Uφ2 dr + 2

∫

D

(σφ2+µ|∇φ|2) dr

+

∫

S+
Unφ

2 dS−
∫

S−
Unφ

2 dS = 2F(t)φ(r0, t). (2.14)

Finally, if the continuity equation (2.3) is fulfilled (2.14) reduces to

∂

∂ t

∫

D

φ2 dr + 2

∫

D

(σφ2+µ|∇φ|2) dr

+

∫

S+
Unφ

2 dS−
∫

S−
Unφ

2 dS = 2F(t)φ(r0, t), (2.15)

where
∫

D
φ2 dr is the norm squared in Hilbert space L2(D) of square-integrable functions

in the domain D. If the oil spill from the damaged tanker has been stopped (F = 0), both

quantities
∫

D
φ dr and

∫ 2

D
φ dr decrease with respect to time.



Numerical Simulation of Oil Pollution Spills 5

3. The Adjoint Problem

It is well known that the adjoint equation approach [2, 6, 7, 12, 13, 20–22] is very use-
ful in problems of estimating pollution concentration in sensitive zones and optimization
problems of air pollution. In this work we shall use this approach for the problem of iden-
tification of the point source location and the time of accident causing oil pollution. We
refer to [1, 16] and the references therein for an overview of methods of pollution source
identification.

Using the Lagrange identity the adjoint problem for the main problem (2.1), (2.5), (2.6)
and (2.7) in the domain D and the time interval (0, T ) can be written as

L∗ϕ∗ ≡−
∂ ϕ∗

∂ t
−U · ∇φ∗+σφ∗−∇ ·µ∇φ∗ = p(r, t), (3.1)

ϕ∗(r, T ) = 0, (3.2)

µ
∂ ϕ∗

∂ n
+ Unϕ

∗ = 0 at S−, (3.3)

µ
∂ ϕ∗

∂ n
= 0 at S−. (3.4)

For the solutions of the main and adjoint problems there holds the Lagrange identity

(Lϕ,ϕ∗) = (L∗ϕ∗,ϕ), (3.5)

where we denote

(ϕ,ψ) =

∫ T

0

∫

D

ϕ(r, t)ψ(r, t) drd t.

Now, we introduce τ= T − t as the reversed time, and set ϕ∗(r, T −τ) = Φ∗(r,τ), p(r, T −
τ) = P(r,τ). Then the adjoint problem becomes

L∗−φ
∗ ≡

∂ φ∗

∂ τ
−U · ∇φ∗−∇ ·µ∇φ∗+σφ∗ = P(r,τ), (3.6)

φ∗ = 0 at τ= 0, (3.7)

µ
∂φ∗

∂ n
− (−Un)φ

∗ = 0 on S+ (inflow for −U), (3.8)

µ
∂φ∗

∂ n
= 0 on S− (outflow for −U), (3.9)

which is similar to the main problem with the reversed flow (−U). Now we derive an
important relation between the solutions of the main and the adjoint problems, which will
be useful later. For this purpose let us take

f (r, t) =Qδ(r − r0)δ(t − t0), (3.10)

p(r, t) =Qδ(r − r1)δ(Td − t), (3.11)
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where Q denotes the power of instantaneous source of oil spill, which is located at the
accident point r0 at the time t0 and at the point r1 at some later time Td , respectively.
Here we suppose that 0≤ t0 < Td ≤ T .

Proposition 3.1. For the solution of the main problem and the adjoint problem there holds
the relation

φ∗(r0, T − t0) = ϕ(r1, Td), (3.12)

or
φ∗(r0,τ0) = ϕ(r1, Td). (3.13)

Proof. Indeed, we have

(Lϕ,ϕ∗) = ( f ,ϕ∗) =

∫ T

0

∫

D

Qδ(r − r0)δ(t − t0)ϕ
∗(r, t) drd t =Qϕ∗(r0, t0), (3.14)

(L∗ϕ,ϕ) = (p,ϕ) =

∫ T

0

∫

D

Qδ(r − r1)δ(Td − t)ϕ(r, t) drd t =Qϕ(r1, Td). (3.15)

Then from the Lagrange equality (3.5) it follows

ϕ∗(r0, t0) = ϕ(r1, Td).

This is the same as (3.12) or (3.13).

4. Numerical Schemes for the Main and Adjoint Problems

For solving the main and adjoint problems for advection-diffusion-reaction equation
there exists a large number of numerical schemes. Mainly, they are based on splitting
methods developed by Yanenko [27] and Marchuk [12]. These schemes are stable and
possess good approximation properties, but they may lead to solutions with negative values
that are meaningless. Therefore, it is desired to construct difference schemes that avoid
this defect. These difference schemes must ensure that if all initial and boundary conditions
are nonnegative, then the solution of the corresponding problem is nonnegative, too. The
difference schemes of this type are called monotone (or positive) ones (cf. [4, 5]). Below,
we present a monotone difference scheme for the main problem that was developed in [4]
and used later in [5]. Throughout this paper we shall use the standard difference notations
of Samarskii [19].

We begin with the consideration of the 1D parabolic problem

c(x , t)
∂ ϕ

∂ t
= Lϕ+ f (x , t), 0< x < 1, 0< t ≤ T,

ϕ(0, t) = µ1(t), ϕ(1, t) = µ2(t),

ϕ(x , 0) = ϕ0(x),

(4.1)
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where

Lϕ =
∂

∂ x
(k(x , t)

∂ ϕ

∂ x
) + r(x , t)

∂ ϕ

∂ x
− q(x , t)ϕ,

0< c1 ≤ k(x , t)≤ c2, c(x , t)≥ c1, q(x , t)≥ 0.
(4.2)

We will construct a difference scheme for this problem on the uniform grid

ωhτ =
n

x i = ih, t j = jτ, i = 0,1, . . . , N , j = 0, 1, . . . , J , h=
1

N
, τ=

T

J

o

.

First, we associate with the operator L a perturbation operator

L̃ϕ = χ
∂

∂ x
(k(x , t)

∂ ϕ

∂ x
) + r(x , t)

∂ ϕ

∂ x
− q(x , t)ϕ, (4.3)

where χ = 1/(1 + R), R = 0.5h|r|/k and approximate the later one by the difference
operator

Λ̃φ = χ(aφ x̄)x + b+a(+1)φx + b−aφ x̄ − dφ, (4.4)

where

b± = r̃±(x , t), a = k(x − 0.5h, t), d = q(x , t), a(+1)
i = ai+1,

r± =
r ± |r|

2
, r̃± =

r±

k
, φ x̄ =

φi −φi−1

h
, φx =

φi+1−φi

h
.

Next, the problem (4.1) is replaced by the difference scheme

c(x , t̄)φt = Λ̃( t̄)φ̂ + f , t̄ = t +τ/2,

φ(0, t) = µ1(t), y(1, t) = µ2(t),

φ(x , 0) = ϕ0(x).
(4.5)

This scheme has a truncation error of order O(h2 +τ) and is monotone. In this aspect the
Crank–Nicolson difference scheme for the problem (4.1) is not better than (4.5) although
it is of order O(h2 + τ2) because the Crank–Nicolson method is monotone only if τ/h2 ≤
1/(2 min k + hmax |r|). The same conclusion holds for the so–called optimal weighting
scheme of Wang and Lacroix [25].

If instead of a Dirichlet boundary condition there are Robin boundary conditions posed
at the endpoints, for example,

�

αϕ+
∂ ϕ

∂ x

�

(1, t) = µ2(t),

then by using the difference boundary condition

αϕN +
yN+1− yN−1

2h
= µ2,
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we also obtain a monotone difference scheme for the corresponding differential problem.
Now, we consider the two–dimensional main problem (2.1), (2.5), (2.6) and (2.7). For

simplicity we suppose that the domain D is a parallelepiped [0, X ]×[0, Y ]. In order to con-
struct a difference scheme for this main problem we rewrite the equation in a convenient
form

∂ ϕ

∂ t
− (L1+ L2)ϕ = f in D× (0, T], (4.6)

where

L1ϕ =
∂

∂ x
(µ
∂ ϕ

∂ x
)− u

∂ ϕ

∂ x
,

L2ϕ =
∂

∂ y
(µ
∂ ϕ

∂ y
)− v

∂ ϕ

∂ y
−σϕ.

(4.7)

We employ on the domain D the uniform grid Dh = {x i = ih1, y j = jh2} and approximate
the above differential operators (4.7) by the following monotone difference operators

Λ̃1φ = χ
(x)µφ x̄ x − uφ x̄ ,

Λ̃2φ = χ
(y)µφ ȳ y − vφ ȳ −σφ,

where

χ(x) =
1

1+ R(x)
, R(x) =

h1u

2µ
,

χ(y) =
1

1+ R(y)
, R(y) =

h2v

2µ
.

Here, for simplicity we assume that µ= const.. Now we write the difference scheme for the
equation (4.6) with the boundary conditions for the case that the wind velocity is directed
from West-South. In this case the part of boundary S+ is the right and the top sides of the
rectangle D, and the part S− is the other sides of D.

φ l+1/2−φ l

τ
− Λ̃1φ

l+1/2 = 0, µ
φ

l+1/2
1 −φ l+1/2

−1

2h1
− Unφ

l+1/2
0 = 0, φ

l+1/2
I+1 −φ l+1/2

I−1 = 0,

φ l+1−φ l+1/2

τ
− Λ̃2φ

l+1 = f l+1, µ
φ l+1

1 −φ l+1
−1

2h2
− Unφ

l+1
0 = 0, φ l+1

J+1−φ
l+1
J−1 = 0,

l = 0, 1, . . .
(4.8)

Here, for brevity, we write only one space index for the computation direction, omitting
other index, for example φI stands for φI j .

Due to the monotonicity of each component difference scheme in (4.8) it is possible
to prove the positiveness of the solution of (4.8), its stability and the convergence order
O(h2+τ).
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Remark 4.1. Let us remark that in practice the two–dimensional continuity equation (2.3)
may be not satisfied although for incompressible fluid the three–dimensional continuity equa-
tion

∂ u

∂ x
+
∂ v

∂ y
+
∂ w

∂ z
= 0

always is valid. Moreover, due to the fact that in the surface layer of sea the vertical component
of velocity of flow decreases with the depth ∂ w/∂ z ≤ 0 then

ξ=
∂ u

∂ x
+
∂ v

∂ y
≥ 0.

In this case the term ξϕ will be added to the left side of the main equation (2.4) and a corre-
sponding term will be added to the difference scheme with the conservation of all properties.

5. A Method for the Identification of Location and Time of Oil Emission

Suppose that at some observation time Td an oil pollution plume Ω is detected. The
problem is to identify the location of the source of the oil plume and the time of the emis-
sion of oil. Here we assume that the pollution plume is generated by an accident from
tanker traffic. To the authors’ knowledge the research of mathematical methods for this
kind of problem are not published in literature although similar problems for groundwater
pollution is intensively studied (see, e.g. [14] and the references therein). In [14] follow-
ing the adjoint approach of Neupauer and Wilson [15] and in the terminology of location
probability density function the authors proposed a method for solving the groundwater
pollution problem based on a fundamental property of the forward and backward location
probability density functions, which is not proved analytically. The same method is also
used in [3] for the identification of contaminant point source in surface waters although
the authors of this work do not refer to [14].

Remark 5.1. It should be mentioned that all the authors of the three above mentioned papers
only proposed method for solving the problem from technical point of view, and a rigorous
mathematical justification is absent there. Differently from these works, in this paper we
propose a method for simultaneous identification of a single point-source location and time of
oil emission, which is based on the above established relation (3.13).

Suppose that at the accident time t0 from the location r0 an oil emission with the
power Q happened, and at the observation time Td an oil plume Ω is detected. Let the oil
concentration in the pollution plume be denoted by ϕ(r, Td). It, of course, is the solution,
evaluated at this time, of the main problem (2.1), (2.5), (2.6) and (2.7) with f (r, t) defined
by (3.10). Now, let us take any k points r1, . . . , rk in the plume Ω and consider the adjoint
problem (3.6)–(3.9) with

P(r,τ) =Qδ(r − ri)δ(τ− (T − Td)). (5.1)

Then, by (3.13) we have
φ∗ri
(r0,τ0) = ϕ(ri , Td), (5.2)
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where we supply φ∗ with the subscript ri in order to indicate that it depends on ri due to
the right hand side of the adjoint equation given in the form (5.1). Now, setting

ϕ(ri , Td) = Ci i = 1, . . . , k (5.3)

we obtain the following

Proposition 5.1. All iso-contours φ∗ri
(r,τ0) = Ci , i = 1, . . . , k intersect at the point r0.

This proposition immediately follows from the relations (5.2) and (5.3).

Proposition 5.2. Let rmax be the point in the pollution plume with maximal concentration,
i.e., ϕ(rmax, Td) =maxr∈Ωϕ(r, Td). Then, the iso-contour φ∗rmax

(r,τ0) = ϕ(rmax, Td) shrinks
to a point r0.

Proof. Each point in the pollution plume corresponds to a contourφ∗ri
(r,τ0) = ϕ(ri , Td),

and due to the fact that oil spills and is transported from the point sources then the contour
corresponding to ri with the greater concentration will be smaller. Therefore, the contour
φ∗rmax

(r,τ0) = ϕ(rmax, Td) corresponding to the point rmax with maximal concentration is
smallest, i.e., is a point. This point is r0 because as was pointed in the previous proposition
the contour passes r0. Thus, the proposition is proved.

Except for the relations between the solution of the main and the adjoint problems
established above we shall deduce below a property of the solution of the adjoint problem,
which is also useful for identification of location and time of an accident in the case if the
mass of oil is conserved in the process of propagation.

For this purpose we consider the adjoint problem (3.1)–(3.4) with the right hand side
p(r, t) = δ(Td − t) or the problem (3.6)–(3.9) with P(r,τ) = δ(τ− (T − Td)).

Proposition 5.3. For the solution of the adjoint problem with the above right hand side there
holds the equality

φ∗(r0,τ0) = 1. (5.4)

Proof. Let ϕ(r, t) be the solution of the main problem with the right hand side given by
(3.10). Then as in the Proposition 3.1 we have

(Lϕ,ϕ∗) =Qϕ∗(r0, t0).

Meanwhile, we have in the new context

(L∗ϕ,ϕ) = (p,ϕ) =

∫ T

0

∫

D

δ(Td − t)ϕ(r, t) drd t =

∫

D

ϕ(r, Td) dr. (5.5)

Therefore, taking into account that the mass of oil is conserved, i.e.,
∫

Ω
ϕ(r, Td) dr =Q
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from the Lagrange identity we obtain ϕ∗(r0, t0) = 1 as the same as the required equality.

The above proposition gives a very simple method for determining the accident location
r0 and the accident time t0 = T − τ0 of oil emission. For this goal we have to solve the
adjoint problem only once for incremental τ j = j∆τ≤ T and for each τ j to search a point
r0, such that |φ∗(r0,τ j)− 1| ≤ TOL, where TOL is a some given tolerance, until a pair
(r0,τ j) is found.

Now we consider a method for finding the location and the time of emission in the
general case with the use of Propositions 5.1 and 5.2. Here we assume that by monitoring
the pollution plume the total oil in the plume Q can be estimated, e.g. by using a modified
Fay-type spreading formula [9,11].

In the case if the center rmax of the pollution plume is found and the concentration
Cmax of oil at this point at the detected time Td is known then it is suffices to solve only one
adjoint problem (3.6)–(3.9) with the right hand side P(r,τ) =Qδ(r− rmax)(τ−(T−Td)).
At each time τ j after finding φ∗rmax

(r,τ j) we plot the contour φ∗rmax
(r,τ j) = Cmax until the

contour shrinks to a point. Due to Proposition 5.2 this point is the location r0 and the
corresponding time is the seeked accident time τ0.

Next we consider the situation when it is difficult to determine the center rmax of the
pollution plume, and instead of this we know the oil concentration Ci at the three points
ri , (i = 1, 2,3) in the observed pollution plume. In this case we have to solve three adjoint
problems (3.6)–(3.9) with the right hand side P(r,τ) =Qδ(r − ri)(τ− (T − Td)). At each
time τ j after finding φ∗ri

(r,τ j) we plot the contours φ∗ri
(r,τ j) = Ci until the three contours

will intersect in a point. Due to Proposition 5.1 this point is the seeked accident location
r0 and the corresponding accident time is τ0.

6. Numerical Results

Below we show the simulation results for an example for demonstrating the effective-
ness of the above stated method. The domain of the problem is the East Sea offshore of
the South of Central Part of Vietnam from the longitude 108◦E to 112◦E and latitude 10◦N
to 14◦N. Let a source of oil emission located at 113◦E , 13◦N with the power Q = 10000kg.
The solution of the main problem with known flow starting from 06:00 01th April 2011
is given in Figure 1. Here we take the diffusivity µ=3m2/s, the space grid of 201× 201
nodes and the time step τ= 300s.

In order to demonstrate the effectiveness of the method for identification of the location
and the time of the accident we perform the following steps

1. Take the center of the pollution plume as S1, and take 4 another points: S2 left, S3
right, S4 below and S5 upper S1 by 0.002 degrees. The colour of S1, S2, S3, S4, S5
are red, blue, green, magenta and cyan, respectively.

2. Calculate values of the concentration at these points at the time of observation Td =
60h from the main problem, i.e., ϕ(Si , Td). They are 24.715, 6.503, 7.404, 16.542,
15.420 kg/m3, respectively.



12 Quang A Dang, Matthias Ehrhardt, Gia Lich Tran and Duc Le

3. Solve the adjoint problems for r1 = Si .

4. Plot contours φ∗ri
(r,τ j) = ϕ(ri , Td), for τ j=6, 12,. . . ,60 h, where ϕ(r, t) is the solu-

tion of the main (forward) problem.

Figures 2–6 show the contours for τ j=12, 24, 36, 48, 60 h. The colours of the contours
are the same of the corresponding source points Si .

From the figures we see that after 60 hours the contour corresponding to S1 shrinks to
one single point, which is the source in the main problem, and all other contours intersect
in this point, i.e. the results of simulations completely confirm the theoretical results of the
previous section.

Below we present the results of a simulation when the diffusivity is very large µ2 =
3000m2/s. It is not real diffusivity but we perform the simulations only for the purpose of
verification of effectiveness of our proposed method. The concentration distribution of oil
after 60 hours is depicted in Figure 7, the contours after 42, 54 and 60 hours are given in
Figures 8-10.

Figure 1: Solution of the main problem with di�usivity µ1=3m2/s after 60h.
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Figure 2: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 12h.

Figure 3: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 24h.
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Figure 4: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 36h.

Figure 5: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 48h.



Numerical Simulation of Oil Pollution Spills 15

Figure 6: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 60h.

Figure 7: Solution of the main problem with di�usivity µ2=3000m2/s after 60h.
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Figure 8: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 42h for µ2.

Figure 9: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 54h for µ2.
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Figure 10: Contours φ∗Si
(r,τ j) = ϕ(Si , Td) for τ j = 60h for µ2.
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7. Remark on 1D case

Now we illustrate the idea and results obtained in the 2D model by an 1D advection-
diffusion equation, when we consider on the domain (a, b)× (0, T ) the equation

Lϕ ≡
∂ ϕ

∂ t
+
∂

∂ x
(Uϕ) +σϕ−µ

∂

∂ x
(µ
∂ ϕ

∂ x
) = f (x , t)

ϕ = 0, t = 0,

ϕ = 0, x = a,
∂ ϕ

∂ x
= 0, x = b

under the assumption that the velocity is axially directed. In this the adjoint problem in
backward time for the above main problem has the form

L∗−φ
∗ ≡

∂ φ∗

∂ τ
− U

∂ φ∗

∂ x
+σφ∗−µ

∂

∂ x
(µ
∂φ∗

∂ x
) = P(x ,τ)

φ∗ = 0, τ= 0,

φ∗ = 0, x = a, Uφ∗+µ
∂φ∗

∂ x
= 0, x = b.

By solving the main problem for the right hand side f (x , t) = δ(x)δ(t) on the interval
[-50, 50] with the diffusion coefficient µ = 0.1, the velocity u = 0.9, space grid of 301
nodes, time step ∆t = 0.5 we obtain the profiles of concentration of substance caused by
a point instantaneous source of the unit power located at x = 0, which are depicted in
Figure 11. At the moment t = 30 the profile of concentration is given in Figure 12.

Figure 11: Pro�les of concentration caused by a source at x = 0.

On this Figure 12 we see that the point with the maximal concentration is located at
rmax = 26.3. Take two other points r1 = 33 and r2 = 20. The concentration at these points
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Figure 12: Pro�le of concentration at the moment t = 30.

are 0.0817, 0.0395 and 0.0266, respectively. Now, putting the unit source at these points
and solve the corresponding adjoint problems we obtain the profiles of concentration as
depicted in Figures 13, 14.

Figure 13: Pro�le of concentration in adjoint mode for the source at r1.

In the 1D case the contours φ∗ri
(x , 30) = Ci , where Ci = ϕ(ri , 30) are the abscissa of

the points of intersection of the line y = Ci and the profiles y = φ∗ri
(x , 30). From the

Figure 16 we see that these contours meet at x = 0.
In addition to these three points we take now the two points r3 = 24, r4 = 30 and plot

the profiles y = φ∗ri
(x , 30) for all five points r1, r2, rmax, r3, r4 and define the contours

φ∗ri
(x , 30) = Ci = ϕ(ri , 30) (see Figure 17).
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Figure 14: Pro�le of concentration in adjoint mode for the source at r2.

Figure 15: Pro�le of concentration in adjoint mode for the source at rmax.

Once again we see that these contours meet at x = 0, which is the source location in
the main problem. Thus, all results that are proved and demonstrated in the 2D case are
verified in the 1D case.
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Figure 16: Contours φ∗ri
(x , 30) = Ci meet at x = 0.

Figure 17: Contours φ∗ri
(x , 30) = Ci meet at x = 0.
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Conclusion and Outlook

In this work we considered a mathematical model of oil spill resulting from a tanker
traffic accident and its numerical solution. For the solving the problem of identification of
the source of oil pollution we use adjoint method. A fundamental equality between the
solutions of the main and the adjoint problems was proved, and based on it a method for
the identification problem was proposed. Some numerical simulations demonstrated the
effectiveness of the method.

Future research directions will include error analysis of the method and applicability
of the method in the case of incomplete information of the total power of the source of
emission. The case of non-instantaneous source also be investigated.

Moreover, we will improve the coastline boundary conditions by including the shoreline
interaction. Since only a certain maximum volume of oil can be deposited at the shoreline,
we have consider different types of coastlines, cf. [18]
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