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Multi-objective optimization of RF circuit blocks
via surrogate models and NBI and SPEA2
methods

L. De Tommasi, T.G.J. Beelen, M.F. Sevat, J. Rommes and E.J.W. ter Maten

Abstract Multi-objective optimization techniques can be categorized globally into
deterministic and evolutionary methods. Examples of such methods are the Normal
Boundary Intersection (NBI) method and the Strength ParetoEvolutionary Algo-
rithm (SPEA2), respectively. With both methods one explores trade-offs between
conflicting performances. Surrogate models can replace expensive circuit simula-
tions so enabling faster computation of circuit performances. As surrogate models
of behavioral parameters and performance outcomes, we consider look-up tables
with interpolation and Neural Network models.

1 Introduction: Multi-Objective Optimization Problem

The design parameters (input)x and performances, or performance parameters, (out-
put) f are assumed to be in the Design SpaceD and the Performance SpaceP,
respectively. We assume thatD is feasible, i.e., allx ∈ D satisfy the imposed con-
straints (reflected by inequalities for a functionc(x)). Also thef ∈ P can be con-
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strained (reflected by inequalities for a functiong(f)). We defineD andP by

D = {x ∈ R
m|c(x)≤ 0}, with c(x) ∈ R

q
,

P = {f ∈ R
n|∃x∈D f = f(x), g(f)≤ 0}, with g(f) ∈ R

p
.

The design problem is a multi-objective optimization problem, i.e. a constrained
simultaneous minimization of several performancesfk(x)

Minimizex ∈ D f(x) =







f1(x)
...

fn(x)






such thatg(f)≤ 0.

A simple single-objective optimization can be done by constrained minimizing a
weighted sum of performances

Minimizex ∈ D f (x) = ∑
i

ki · fi(x) such thatg(f)≤ 0.

Here obvious problems arise. The multi-objective problem admits multiple solu-
tions, whereas the single objective problem admits isolated solutions. No rigorous
criteria exist to choose the weights{ki}. In practice, several optimization runs (with
different{ki}) are needed to find a suitable solution of the design problem.More
basically, in general, there is no single designx ∈ D that can minimize all perfor-
mancesfk, k = 1, . . . ,n simultaneously. The set of solutions of the multi-objective
optimization problem are Pareto optimal, i.e. it is only possible to improve one
performance at the cost of others. This leads to the concept of ‘dominance’. Let
a,b ∈ R

n, thena = (a1, . . . ,an) dominatesb = (b1, . . . ,bn) if and only if

a ≺ b :⇔∀i∈{1,...,n}(ai ≤ bi)∧∃i∈{1,...,n}(ai < bi).

A performance vectorf⋆ is said to be Pareto-optimal if it is non-dominated within
P, i.e.¬∃f∈P [f ≺ f⋆]. The set of all Pareto-optimal points inP is called thePareto
Front of P. The corresponding set inD is called thePareto Source.

2 Surrogate Modeling

Recently several techniques emerged to compute the Pareto Front. The most obvi-
ous one deals with trade-off analysis from available data. Hence (in principle) no
new simulations are needed. The search for Pareto optimal points is done by apply-
ing non-dominated sorting. An efficient implementation by Yi Cao [2] is found on
the MATLAB central website (mex function).
An alternative is to performPerformance Space Exploration. Here one builds one
or more surrogate models, each of them derived by a set of circuit simulations (sam-
ples), starting from an initial design. With adaptive sampling the models are im-
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proved [10], which requires accessibility of a (circuit) simulator. The models can
be generated by several techniques (including look-up tables with interpolation and
neural network models). The approach can also be applied to derive symbolic mod-
els, that may include a new trade-off problem between Fitness (approximation error)
and Complexity [5]. In practice, in both cases, the number ofparameters is still re-
stricting (up to 6-10). Here interesting progress is derived using a nearly orthogonal
and space-filling Latin Hypercube [1,3].
Writing x = (x(1),x(2)) one may reduce the parameter dependency in the surrogate
modeling and consider behavioral parametersb = b(x(1)), followed by performance
computationsf = f(b,x(2)) using algebraic expressions. Error amplification fromb
to f may occur (see [7] for the IIP2 performance of a Low Noise Amplifier).
Clearly, when the surrogate models are available one can usethem in the forward
modeling in more cheaply generating additional data for improving trade-off anal-
ysis. However, the models can also be used in reverse modeling, i.e. in applying
them to dedicated Pareto Front methods like NBI (Normal Boundary Intersection
method [4,9]) and SPEA2 (Strength Pareto Evolutionary Algorithm 2 [11]).

3 NBI - Normal Boundary Intersection Method

Assumef =
(

f1(x)
f2(x)

)

: D −→ P. The Algorithm [4,9] looks like

1. Determine a minimizerx⋆k of eachfk(x). Let f⋆k = f(x⋆k). This is a global opti-
mization problem for eachfk(x) and critical for the next step. MATLABsfmin-
con.m allows nonlinear constraints. It implements alocal optimization proce-
dure: it starts from a user-specified point and may stop in a local minimum. More
robust wasdirect.m [8] which provides global optimization using Lipschitzian
optimization. It only allows domain boundary constraints.

2. Determine the straight lineL (convex hull of the individual minima) inP be-
tweenf⋆1 andf⋆2.

3. Determine the normaln to this line in direction of decreasingf. Next

• Original [9]: SelectN pointsfk = λkf⋆1+(1−λk)f⋆2, λk ∈ [0,1] onL .
• Modification: SelectN pointsxk = λkx⋆1+(1−λk)x⋆2, λk ∈ [0,1] onG , line

in D . For convexf we havefxk = f(xk)≺ fk =⇒ redefinefk = min(fk, fxk).

4. For eachfk determinepk ∈ P that maximizes the distancet alongn, starting in
fk. Without constraints thesepk are on the Pareto Front. We solve

max
(t,x)∈R×(D ∩ f−1(P))

t, subject to p(x) = F + tn,

whereF is a point of the convex hull of the individual minima. Note, that x
has to be feasible. Also these are global optimization problems, but less critical.
Here the starting point allows fmincon to provide good results. When during the
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maximization process a constraint inP is encountered this process is stopped,
say with performance vectorf̃. This does not necessarily mean thatf̃ is located
on the Pareto Front: there may be a vectorf̂ ≺ f̃ that also satisfies that constraint.
We apply a refinement procedure. Letx̃ ∈ D with f̃ = f̃(x̃). Next

• Determine four neighboring points̃xN , x̃E , x̃S, x̃W at a small distance from̃x
and calculatef(x̃K) (K =N,E,S,W ). Compare step 6 of the SPEA2 Algorithm
in Section 4.

• Replacẽf by the best performance vector (based on the dominance relation)
out of the set{f̃, f(x̃N), . . . , f(x̃W )}.

This still does not guarantee a point on the Pareto Front, it just gives an improve-
ment. In general a more sophisticated approach is needed.

4 SPEA2 - Strength Pareto Evolutionary Algorithm 2

The SPEA2 Algorithm [11] allows constraints both inD and inP. It looks like

• Initialize an internalI and and externalE set of points inP (last being approx-
imations of Pareto Front).

• Iteration loop

1. E c =copy(E ). U = I ∪E c.
2. Determine fitness of individuals inU [‘fitter’ when not dominated inP and

not too close to each other; impose constraints inP].
3. UpdateE with fittest individuals fromU .
4. Select individuals fromU , randomly based; ‘fitter’ points have a higher prob-

ability in being chosen.
5. Recombine selected individuals. This exploits convexity using a randomly

chosen weighting.
6. Mutate recombined individuals. By properly defining the probability density

function in mutating the result (f.i. after a gradient calculation) one can push
the convex hull inP to the Pareto front.

7. RepopulateI with mutated individuals.
8. Verify iteration termination criterion.

• OutputE as best approximation found to the source of the Pareto front.

5 Examples

A good testing example appeared to bep := f1(x,y) = x2+(y−1)2, q := f2(x,y) =
(x−2)2+ y2, for (x,y) ∈ [xL,xU ]× [yL,yU ] and(p,q) ∈ [pL, pU ]× [qL,qU ]. Observe
that f is convex. By considering the mapping of vertical and horizontal lines inD

into P one can obtain impressions of the Pareto Front to check the outcomes of the
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algorithms. One can also observe the effect of constraints.
A more realistic example is provided by a weakly nonlinear, narrowband Low Noise
Amplifier (LNA)

• Design parameters:x(1) = (W,L,Ls,Lm, f ,VGS).
• Extra circuit parametersx(2) = (Zs,Zl).
• Typical circuit performancesf = f(x(1),x(2)) = (P,Av,Γa, IIP2, IIP3,NF).

Zs
Lm

Ls

Zl

Vout

Vdd

Vs

Vgs W,L

LNA

Fig. 1 A weakly nonlinear,
narrowband , low noise am-
plifier (LNA) [6, 7]. Design
parameters:W,L are transis-
tor width and length;Ls,Lm

are inductances;VGS is the
gate-source bias voltage dif-
ference; f is the frequency.
Zs,Zl are the source and load
impedances. Performances:
power P, voltage gainAv,
input reflectionΓa, 2nd or-
der and 3rd order linearity
IIP2, IIP3, noise figureNF .

We considered reverse modeling using look-up table models vs analytic expressions,
both with constrained optimization.

• Normalized design constraints: 0<Wn < 1 and 0< Lmn < 0.6.
• Performance constraints:Av > 13 dB,Γa <−10 dB, min(IIP2, IIP3)> 0 dBm.
• (O1) MinimizeP and maximizeIIP3 and (O2) maximizeAv and maximizeIIP2.

For (O1) NBI and SPEA2 worked successfully using surrogate models based on
neural networks. For (O2) we used look-up table models. Herethe NBI method
(using fmincon) failed in finding a global minimum. Fig 2 shows the SPEA2 result.

6 Conclusions

Direct modeling of performances was more robust than modeling of intermediate
‘behavioral’ parameters. We considered look-up tables andapplied interpolation.
Also the size of tables was investigated. Neural network models were accurate, but
expensive in generating.
The NBI method was improved in several ways. DIRECT provideda robust global
optimizer for the start. Also the start of the directional optimization step was im-
proved. Without constraints it covers the whole Pareto front in nice detail. However,
with constraints, as above in (O2), still more work has to be done.
SPEA2 is more robust than NBI. Constraints can be applied on both design variables
and on performances (including those not involved in the trade-off). The results were
confirmed by considering a Low Noise Amplifier.
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Fig. 2 Pareto Front deter-
mined by SPEA2 for (O2).
This involved reverse model-
ing using look-up table mod-
els (100x100 meshpoints).
Here NBI (using fmincon)
failed in finding a global
minimum.
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