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Initial conditions and robust Newton-Raphson
for Harmonic Balance analysis of free-running
oscillators

J. Virtanen, J. ter Maten, T. Beelen, M. Honkala, and M. Hulkkonen

Abstract Poor initial conditions for Harmonic Balance (HB) analysisof free-
running oscillators may lead to divergence of the direct Newton-Raphson method
or may prevent to find the solution within an optimization approach. We exploit
time integration to obtain estimates for the oscillation frequency and for the oscilla-
tor solution. It also provides an initialization of the probe voltage. Next we describe
new techniques from bordered matrices and eigenvalue methods to improve Newton
methods for Finite Difference techniques in the time domainas well as for Harmonic
Balance. The method gauges the phase shift automatically. No assumption about the
range of values of the Periodic Steady State solution is needed.

1 Introduction

A free-running oscillator is an autonomous circuit, which has only DC bias sources
connected to the circuit and, thus, no periodic excitation.During the time-domain
transient analysis of an oscillator, the oscillation starts by itself due to noise or
instability. Long start-up time implies long simulation time to get the Periodic
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Steady State (PSS) solution. Harmonic balance (HB) analysis is a frequency-domain
PSS method. HB is needed for (phase) noise simulations and ismore suitable for
frequency-dependent linear devices. It may converge faster to the PSS solution of a
free oscillator than the transient analysis. To enhance convergence one either mod-
ifies the HB equations or one applies artificial excitation. In addition, the oscilla-
tion frequency (the fundamental HB frequency), is unknown and one needs a gauge
equation and an initial estimate. Frequency domain methodsto estimate these can
be found in [1,3,6–8] (and their references).
We present two algorithms for oscillation frequency detection from transient data
and improve by (vector) extrapolation [10]. The initialization of the probe voltage
amplitude and of the HB solution are considered. Finally we describe new tech-
niques from bordered matrices and eigenvalue methods to improve the Newton
method for HB analysis.

2 Initializing HB Oscillator Analysis

The oscillator analysis in the APLAC simulator [2] utilizesa probe element and op-
timization techniques. Inside an optimization loop HB analysis is performed with
new values of the optimization variables, being the oscillation frequency,fosc, and
the oscillation amplitude,vosc. An artificial excitation probe, being a voltage source
in series with a non-zero resistor (to prevent an increase ofthe DAE-index), is con-
nected to the circuit. The goal of the optimization is to havea zero current through
the probe element. For a related procedure see [8]. The initial conditions for the op-
timization of fosc andvosc are obtained from transient analysis as described next.
Initially a (limited) transient analysis is run, followed by a Fourier transform (FFT)
to get an impression of the spectrum of the oscillator and of the solution. A spec-
tral line having the largest magnitude indicates the oscillation frequency. Depending
on the sampling rate, the actual oscillation frequency may be situated between the
sampled frequency points. Therefore, quadratic interpolation with three frequency
points around the maximum is used to determine a more accurate estimate for the
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Fig. 1 Left: Quadratic interpolation of the frequency from the spectrum. Right: Zero-crossing:
the x-markers connected with lines show the points used for interpolation.
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oscillation frequency, see Fig. 1 (left). An alternative, zero-crossing, method also
applies to transient simulation results. The period is determined from the zero cross-
ings in the waveform with the DC-value. Accuracy of the zero crossings is improved
by using linear inverse interpolation, see Fig. 1 (right). This can be generalized to
a Poincaré method [4, 5] that determines the next root of a (scalar) phase condition
s(x(t)) = (x(t),n)−α = 0 (i.e. solve bothx= xα [with constraintd(x(t),n)/dt> 0]
and t = tα ) and restarts the time integration att = tα with initial value xα

1. The
valuesxk+1 = F(xk) (for some functionF andk ≥ 0), determined in this way, ap-
proximate the boundary value used by the ultimate PSS solution. We accelerate by
vector extrapolation. Define recursivelyDk+1 = [Dk dk+1], with D0 = /0 (empty)
anddk+1 = xk+1− xk. ClearlyDk = Xk∆k for Xk = [x0 x1 . . . xk] and a difference
matrix ∆k. By a QR-decomposition we determine the rank ofDk+1 = Qk+1Rk+1,

with Qk+1 = [Qk qk+1] and Rk+1 =

[

Rk rk+1

0 αk+1

]

. If |αk+1| ≤ ε we assume that

dk+1 ∈ Span(Qk) =Span(Dk), i.e. we we can writedk+1 =Qkrk+1 =DkR−1
k rk+1 =

∑k
p=1σpdp whereσ = (σ1, . . . ,σk)

T = R−1
k rk+1. Settingσk+1 = −1 we thus have

∑k+1
p=1σpdp = 0. This linear combination has a crucial application. If we express the

dn in terms of lower and higher order effects we observe that thesum of the lower
order effects nearly cancels. We assume thatσ1 6= 1, thatΦ = ∂F/∂x is uniformly
bounded and that also(I−Φ)−1 exists and is uniformly bounded. We summarize
some basic steps in Alg. 1. Starting with this valuey one generates iterandsyk

Algorithm 1 Algorithmic background for the accelerated Poincaré map method [5].
1: Denote the limit of the recursionxn+1 = F(xn) (n≥ 0) by x̃ = limn xn.
2: Let en = xn− x̃, thenen+1 = Φen+O(||en||

2). Thus||en+1||
2 = O(||en||

2) = O(||e0||
2).

3: For thedn mentioned above we havedn+1 = Φdn+O(||en−en−1||
2) = Φdn+O(||en−1||

2) =
Φdn +O(||e0||

2) (for n ≥ 1). This last 2-terms recursion makes the next steps a bit easier
to formulate than the more precise intermediate 3-terms recursion. Forn = 0 we haved1 =
x1−x0 = e1− e0 = (Φ − I)e0+O(||e0||

2), hencee0 = (Φ − I)−1d1+O(||e0||
2).

4: We have0 = ∑k+1
p=1 σpdp = ∑k+1

p=2σpΦ p−1d1 + σ1d1 +O(||e0||
2), hence∑k+1

p=1 σpΦ p−1d1 =

O(||e0||
2).

5: Let Ξ = (∑k+1
p=1 σp)x̃. We obtain ∑k+1

p=1 σpxp = ∑k+1
p=1 σp(x̃ + ep) = Ξ + ∑k+1

p=1 σpep =

Ξ +∑p+1
1 σpΦ p−1e1 +O(||e1||

2) = Ξ +∑p+1
1 σpΦ pe0 +O(||e0||

2) = Ξ +∑p+1
1 σpΦ p(Φ −

I)−1d1+O(||e0||
2) = Ξ +Φ(Φ − I)−1 ∑p+1

1 σpΦ p−1d1+O(||e0||
2) = Ξ +O(||e0||

2).
6: Finally y = ∑k+1

p=1σpxp/(∑k+1
p=1σp) is a higher order accurate approximation, with error

O(||e0||
2), or, taking the effectε into account, with errorO(||e0||

2)+O(ε).

with as next extrapolationz. The rowx,y,z, . . . converges super-linearly. Storing
thetk = tα easily provides the periodT = tk+1− tk. A final integration over one pe-
riod gives a time-domain solution from which an initial HB solution is obtained.
With n = ek one traces a particular unknown (this choice requires knowledge by the
designer about the location where the oscillation occurs).The phase condition can
be for a difference of a voltage or a zero condition for a current.

1 This method is used in Pstar, the in-house analog circuit simulator of NXP Semiconductors.
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3 VCO oscillator

The methods implemented in APLAC were tested with an industrial VCO circuit
that consists of 40 MOSFETS (modelled by BSIM3) and 80 (Juncap) diodes. The
expected results based on transient simulation arefosc= 3.25GHz andvosc= 1.25V,
while the initial values for the analysis were:fosc= 3.0GHz andvosc= 1.0V.
The circuit has been simulated using HB oscillator analysiswithout initialization
(old), and with FFT and zero crossing (ZeroC) initialization. Table 1 summarizes
the CPU times and the number of HB iterations obtained to reach the oscillator so-
lution ( fosc= 3.25GHz andvosc= 1.25V) as well as initial values offosc andvosc

for the HB based optimization – with the old method user-specified values are used
directly, and improved values are obtained using either FFTor ZeroC method.
A typical result of the Poincaré method for a Colpitts oscillator gives 3 outer iter-
ations (extrapolations) with 4, 3, 2 inner iterations, repectively, to build each time
a subspace in which extrapolation leads to an improved initial value for solution
and period (final error< 10−16). The zero crossing and the Poincaré method as-
sume that two successive crossings determine the period. This excludes situations
in which four or more crossings really determine the overallperiod.

Table 1 Number of HB iterations and CPU times, and user-specified (‘old’) or improved initial
values (‘FFT’, ‘ZeroC’) of fosc andvosc of the VCO circuit.

method HBITER CPU/s initial value offosc/GHz initial value ofvosc/V

old 2259 110.6 3.0 1.00
FFT 47 6.2 2.7 1.09
ZeroC 31 1.4 3.1 1.17

4 Newton Raphson

The Newton-Raphson method to solve the Harmonic Balance system becomes

Mk
[

Xk+1−Xk

f k+1− f k

]

=−

[

F(Xk, f k)
cTXk− c

]

, Mk =

[

Ak bk

cT δ

]

. (1)

Here

Ak =
∂F
∂x

∣

∣

∣

∣

Xk, f k
= Ω k ·Ck+Gk, bk =

∂F
∂ f

∣

∣

∣

∣

Xk, f k
, (2)

for suitable matricesC andG, that are composed by the local Jacobians and (dis-
crete) Fourier Transforms;Ω = diag(. . . , iωk, . . .), with ωk = φk( f k) (for some func-
tion φk). The last row in (1) corresponds with the phase equation; usually δ = 0. The
matrix A becomes badly conditioned when the Newton iterands converge. This is
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Fig. 2 LC oscillator: normalized corrections for solutions and frequency.

due to the fact that the time derivative of the PSS solution solves the linearized
homogeneous circuit equations when linearized at the PSS solution. Hence when
the discretization is exact this time derivative of the ultimate PSS is in the kernel
of A. This has led to study more carefully bordered matrices [1, 9] and general-
ized eigenvalue methods. In [9] the eigentriple(V,W,λ ) is determined such that
[λ f C+G]V= 0 andWT [λ f C+G] = 0 for theλ closest to 1. We approximate the
bi-orthogonality relation betweenV andW by WT ·C ·Ω ·X−1= 0, i.e. in (1) we
takecT = WT ·C ·Ω andc= 1. We may even considercT = VT .

5 LC oscillator

We consider anLC tank with a nonlinear resistor that is governed by the following
differential equations for the unknowns (v, i) [v being the nodal voltage;i being the
inductor current]

[

C 0
0 L

]

d
dt

[

v(t)
i(t)

]

+

[

1
R 1
0 −1

] [

v(t)
i(t)

]

+

[

Stanh(Gv(t)
S )

0

]

= 0 (3)

v(0) = v0, i(0) = i0. (4)

whereC, L andR are the capacitance, inductance and resistance, respectively. The
voltage controlled nonlinear resistor is defined by theSandG parameters. The val-
uesL = 0.53 nH,C = 1.33 pF,R= 250Ω , S= 1/R , andG= −1.1/Rcorrespond
with an oscillation frequency 6 GHz. Starting with initial conditionsT0 = 1.1×2π ,
v0(t) = sin(t), i0(t) = 0.2sin(t), andN = 101 (100 actual grid points), the PSS so-
lutions are obtained using the old phase-shift condition method and with the new
eigenvector gauge method. For both methods we determine themaximum of the
normalized correction of the solution and the normalized frequency correction

∆Xk
∣

∣

∣

Normalized
= ||Xk+1−Xk||∞/||Xk||∞, ∆ f k

∣

∣

∣

Normalized
= | f k+1− f k|/| f k|

during eachk-th Newton-Raphson iteration, which are presented in Fig. 2. A wrong
value in the old phase shift condition even prevents convergence for this method [9].
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6 Conclusion

Time domain initializations have been presented that enhance the convergence op-
tions for Harmonic Balance within an outer optimization approach and within a
direct Newton-Raphson procedure. One method exploits FFT techniques. A zero-
crossing technique was generalized to a Poincaré method. Here speed up by vector
extrapolation was based on Minimal Polynomial Extrapolation.
Finally, a new technique for the Newton-Raphson simulationof a free-running os-
cillator was presented. The generalized eigenvectors for the eigenvalue closest to 1
and the time derivative of the solution provide a robust gauge equation that is dy-
namically updated within each Newton-Raphson iteration. It was verified that the
new method has better convergence properties compared to the popular phase-shift
condition method and does not need additional information about the solution.

Acknowledgements This work was funded by the EU FP7/2008/ICT/214911 project ICESTARS.
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