
Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 11/05

R. Mirzavand Boroujeni, J. ter Maten, T. Beelen,
W. Schilders, A. Abdipour

Robust periodic steady state analysis of autonomous
oscillators based on generalized eigenvalues

April 2011

http://www.math.uni-wuppertal.de



Robust periodic steady state analysis of
autonomous oscillators based on generalized
eigenvalues

R. Mirzavand Boroujeni, J. ter Maten, T. Beelen, W. Schilders, and A. Abdipour

Abstract In this paper, we present a new gauge technique for the Newton Raphson
method to solve the periodic steady state (PSS) analysis of free-running oscillators
in the time domain. To find the frequency a new equation is added to the system of
equations. Our equation combines a generalized eigenvector with the time derivative
of the solution. It is dynamically updated within each Newton-Raphson iteration.
The method is applied to an analytic benchmark problem and to an LC oscillator. It
provides better convergence properties than when using the popular phase-shift con-
dition. It also does not need additional information about the solution. The method
can also easily be implemented within the Harmonic Balance framework.

1 Introduction

Designing an oscillator requires a Periodic-Steady State (PSS) analysis. The PSS
solution can be found by long time integration, starting from perturbing the DC-
solution. It is needed for phase noise analysis [2]. Time integration is robust (it al-

R. Mirzavand Boroujeni, E.J.W. ter Maten, W.H.A. Schilders
CASA group, Department of Mathematics and Computer Science, Eindhoven University of Tech-
nology, 5600 MB Eindhoven, The Netherlands, e-mail: {R.Mirzavand.Boroujeni,E.J.
W.ter.Maten,W.H.A.schilders}@tue.nl

R. Mirzavand Boroujeni, A. Abdipour
Electrical Engineering Department, Amirkabir University of Technology, 15875-4413 Tehran,
Iran, e-mail: {RMirzavand,Abdipour}@aut.ac.ir

E.J.W. ter Maten, T.G.J. Beelen
NXP Semiconductors, High Tech Campus 46, 5656 AE Eindhoven, The Netherlands, e-mail:
{Jan.ter.Maten,Theo.G.J.Beelen}@nxp.com

E.J.W. ter Maten
Bergische Universität Wuppertal, Fachbereich C, Wicküler Park, Bendahler Str. 29, D-42285 Wup-
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ways works: the DC-solution is an unstable PSS solution), but the convergence can
be very slow. Therefore dedicated solution methods have been presented based in
time-domain, frequency-domain or by hybrid circuit-state representations [1,7, 11].
In these methods the period T or the frequency f is an additional unknown. To
make the solution unique an additional equation, like a phase-shift condition, is
added [3, 5, 8]. The overall system of equations is solved by a Newton-Raphson
method that needs initial estimates for the solution as well as for T (or f ).
This paper presents a Newton-Raphson based method with a dynamic additional
condition to find the PSS solution of a free-running oscillator in the time domain.
Here generalized eigenvectors of the linearized circuit equations and the time deriva-
tive at each time step provide a new robust gauge equation for the Newton-Raphson
equations. The method is applied to an analytic benchmark problem and to an LC
oscillator. The efficiency of the method is verified through numerical experiments.
It provides better convergence properties than when using the popular phase-shift
condition. It also does not need additional information about the solution.

2 The autonomous oscillator problem

The PSS problem for autonomous circuits on one overall period T is defined as a
system of Differential-Algebraic Equations (DAEs) in the following form,

dq(x)
dt

+ j(x) = 0 ∈ Rn, (1)

x(0) = x(T ), (2)

where x = x(t) ∈ Rn and T are unknown; q and j are known functions of x. In
the above autonomous circuit, there is a non-trivial PSS solution in the absence of
sources. Here the period T (or the frequency f = 1/T ) is unknown and is determined
by the system. By transforming the simulation time interval [0,T ] to the standard
interval [0,1], f enters the above equations as a parameter

f
dq(x)

dt
+ j(x) = 0. (3)

Taking f as extra unknown, we need an extra equation to complete the system.
Usually one requires the additional constraint condition

cT x(tc)− c = 0, (4)

to provide a non-zero value for some vector c which makes the phase-shift unique.
For instance, one provides the value of a particular coordinate of x at some time tc.
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3 Newton procedure

We discretize [0,1] using equidistant time points ti = i∆ t for i = 0, . . . ,N with
N ∆ t = 1. Thus, t0 = 0, tN = 1. Let xi approximate x(ti) and X =

[
x0 · · · xN−1

]T .
We discretize (3) by applying Simpson’s Rule on the (overlapping) sub-intervals
[ti−1, ti+1], for i = 1, . . . ,N, yielding

Fi(X, f ) = f
q(xi+1)−q(xi−1)

2∆ t
+

j(xi−1)+4 j(xi)+ j(xi+1)

6
, i = 1, . . . ,N. (5)

For i = N−1 and i = N we apply the periodicity constraint xN = x0 and xN+1 = x1.
Let tc = tk′ for some k′ and redefine c to apply to X. We write qi = q(xi) and similarly
for ji. The Newton-Raphson method to solve the discrete systems becomes

Mk
[

Xk+1−Xk

f k+1− f k

]
=−

[
F(Xk, f k)
cT Xk− c

]
, (6)

in which Xk =
[

xk
0 · · · xk

N−1

]T and

F(X, f ) =


f q2−q0

2∆ t + j0+4 j1+j2
6

...
f q0−qN−2

2∆ t +
jN−2+4 jN−1+j0

6
f q1−qN−1

2∆ t +
jN−1+4 jN+j1

6

 , Mk =

[
Ak bk

cT δ

]
. (7)

Here

Ak =
∂F
∂x

∣∣∣∣
Xk, f k

= f k ·Ck +Gk, bk =
∂F
∂ f

∣∣∣∣
Xk, f k

, (8)

for suitable matrices C and G, that are composed by the local Jacobians Ci =
∂q
∂x

∣∣∣
x=xi

and Gi =
∂ j
∂x

∣∣∣
x=xi

and the discretization step size,

C = 1
2∆ t


−C0 0 C2 · · · 0

0 −C1 0 C3 · · · 0
...

. . .
. . .

. . .
...

C0 · · · 0 −CN−2 0
0 C1 · · · 0 0 −CN−1

 , G = 1
6


G0 4G1 G2 0 · · · 0
0 G1 4G2 G3 · · · 0
...

. . .
. . .

. . .
...

G0 · · · 0 GN−2 4GN−1
4G0 G1 · · · 0 0 GN−1

 .
(9)

Usually δ = 0 in (7). The matrix A becomes badly conditioned when the Newton
iterands converge. This is due to the fact that the time derivative of the PSS solution
solves the linearized homogeneous circuit equations when linearized at the PSS
solution. Hence when the discretization is exact this time derivative of the ultimate
PSS is in the kernel of A. Due to this conditioning problem the vectors b and c and
(scalar) value δ are really needed to make the matrix M non-singular (otherwise
one could use a Schur complement approach). b must have non-trivial components
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in Ker(A) and in Ker(AT ), both. A similar statement holds for c. Hence Ker(A) 6⊥
Ker(AT ).

4 Bordered matrices

Theorem 1. Let A+ be the Moore-Penrose inverse of A [6]. Define g, h, u, v, α by

g = A+b, h = c∗A+ (least squares approximations),
u = (I−AA+)b, v = c∗(I−A+A) (projection errors) ,
α = δ − c∗A+b.

Then g, h, u and v satisfy

A+ u = 0, vA+ = 0,
u+ A = 0, Av+ = 0, [(u+)T ∈ Ker(AT ), v+ ∈ Ker(A)],

hA+v = c∗, Ag+u = b,
vg = 0, hu = 0,

hAA+ = h, A+Ag = g, hAg = δ −α.

We are now able to derive more detailed expressions for the generalized inverse of
a bordered matrix. See also [2, 3] and [4, 9] for cases where u = 0 or v = 0.

Theorem 2. Let

M =

[
A b
c∗ δ

]
, M̃ =

[
A u
v α

]
. (10)

Assume u 6= 0 and v 6= 0, then

M+ =

[
A+−gu+−v+ h−δ v+u+ v+

u+ 0

]
, M̃+ =

[
A+−α v+u+ v+

u+ 0

]
. (11)

The expression for M̃+ follows by checking the Moore-Penrose conditions [6]. For
M+ we note that, when δ = α + c∗g,

M =

(
I 0
h 1

)
M̃
(

I g
0 1

)
.

Hence

M+ =

(
I −g
0 1

)
M̃+

(
I 0
−h 1

)
.

Let Ker(A) = 〈a〉, Ker(AT ) = 〈aT 〉 (a and aT unit vectors) and let b ∈ 〈aT 〉 and
c ∈ 〈a〉. Then the most simple expressions appear because g = 0, h = 0, u = b,
v = c∗. Furthermore, there also is robustness in the sense that if we have other
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choices then the bordered matrix may still be non-singular. Note that the lower right
entries in M+ and M̃+ are zero (which may not happen for M or M̃).
For the bordered matrix Mk in (7) the choice of bk comes from the partial differen-
tiation with respect to the chosen additional unknown f . The choice of c depends
on the “gauge” equation that we add to the system. The matrix A is a matrix pencil,
hence a choice for a generalized (kernel) eigenvector is best here. As equation we
prefer the bi-orthogonality equation. This prevents all problems with determining
the location of the oscillation and the range of values of the PSS solution.

5 Using generalized eigenvalue methods

A proper dynamic expression within the loops for the vector c can increase the
convergence rate of the Newton method. Generalized eigenvalue methods for ma-
trix pencils are good candidates for obtaining a dynamic vector c to make M non-
singular. Applying these methods in each Newton iteration gives the eigentriples
(v,w,λ ) such that [λ f C+G]v = 0 and wT [λ f C+G] = 0. Generalized eigenvalue
methods are provided by the DPA (Dominant Pole Algorithm) and RQI (Raleigh
Quotient Iteration) [10]. Here a combination of these methods (SARQI) is used to
obtain a good accuracy and convergence rate.
The v and w have a bi-orthogonality relation with the matrix C, wT Cv = 1. In Sec-
tion 3 we observed that in the limit when the Newton approximations are close to
the exact solution, the right-hand side eigenvector v for the λ closest to 1 is close to
dX/dt (up to a normalisation factor). Hence by approximating the bi-orthogonality
relation by

wT ·C · dX
dt

∣∣∣∣
X=Xk

−1 = 0. (12)

we obtain a good choice for a dynamic gauge equation within each iteration of the
Newton method. To write (12) even in the form cT X−c = 0, we express dX/dt into
X. Spectral differentiation [12] provides dX/dt = D ·X with good accuracy using
some matrix D. This results in a choice cT = wT ·C ·D and c = 1.
We observe that we always can compare v with dX/dt for convergence. We may
even consider cT = vT . Additionally we can compare λ fold with f . We finally note
that spectral differentiation easily fits Harmonic Balance implementations.

6 Analytic benchmark oscillator

As an example, consider the analytic benchmark problem [7],

dy
dt = z+ ε

(
1−
√

y2 + z2
)

y,
dz
dt =−y+ ε

(
1−
√

y2 + z2
)

z.
(13)
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The fact that we can tune convergence speed with ε makes this particular problem
a suitable benchmark problem. For all ε the exact PSS solution of this problem is
y(t) = sin(t−tc), z(t) = cos(t−tc), where tc is some constant phase shift. The period
T = 2π . By defining r2 = y2 + z2, the system of equations (13) can be written in the
form of (1),

x =

[
y(t)
z(t)

]
, q =

[
y(t)
z(t)

]
, and j =

[
−ε (1− r)y− z
−ε (1− r)z+ y

]
.

Starting with initial conditions T0 = 2.2π , y0(t) = 1.5sin(t +π/4), z0(t) = cos(t),
and N = 101 (100 actual time grid points), the PSS solution is obtained using the old
phase-shift condition method and the new eigenvector condition method. Figure 1
shows the initial guess and the PSS solution of y(t) for both methods when ε = 0.1.
For both methods we determine the maximum of the normalized correction of the
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 = 0.1 Fig. 1 Initial guess and PSS
solution of y(t) for different
methods when ε = 0.1.

solution and the normalized frequency correction

∆Xk
∣∣∣
Normalized

= ||Xk+1−Xk||∞/||Xk||∞, ∆ f k
∣∣∣
Normalized

= | f k+1− f k|/| f k|

during each k-th Newton-Raphson iteration; the results are presented in Fig. 2. The
better convergence behaviour of the new method is clearly observed. Although the
simulation time and memory usage of the old method with a good phase-shift condi-
tion are smaller than that of the new method, the former method does not converge
without enough information about x (see the curves with a × mark). Because of
the observed robustness on the non-singularity of Mk (Section 4), one may stop the
dynamic update of the gauge equation when the process starts converging.

7 LC oscillator

For many applications the free running oscillator can be modeled as an LC tank with
a nonlinear resistor that is governed by the following differential equations for the



Robust periodic steady state analysis of autonomous oscillators ... 7

 
 

2 4 6 8 10
10-15

10-10

10-5

100

 

 

X: 6
Y: 4.145e-006

Number of Iteration

M
ax

. N
or

m
al

ai
ze

d 
C

or
re

ct
io

n

X: 6
Y: 1.699e-008

Using Proper Phase Shift Condition
Using Wrong Phase Shift Condition
Using Generalized Eigenvectors

2 4 6 8 10
10

-15

10
-10

10
-5

10
0

 

 

X: 6
Y: 4.932e-007

Number of Iteration

N
or

m
al

ai
ze

d 
fr

eq
ue

nc
y 

co
rr

ec
tio

n

X: 6
Y: 3.413e-009

Using Proper Phase Shift Condition
Using Wrong Phase Shift Condition
Using Generalized Eigenvectors

Fig. 2 Maximum of the normalized correction and normalized frequency correction for each iter-
ation when ε = 0.1 for different methods.

unknowns v as the nodal voltage and i as the inductor current.[
C 0
0 L

] [
v(t)
i(t)

]
+

[ 1
R 1
0 −1

] [
v(t)
i(t)

]
+

[
S tanh(Gnv(t)

S )
0

]
= 0 (14)

v(0) = v0, i(0) = i0. (15)

where C, L and R are the capacitance, inductance and resistance, respectively. The
voltage controlled nonlinear resistor is defined by the S and Gn parameters. For ex-
ample, consider an oscillator designed for a frequency of 6 GHz with L = 0.53 nH,
C = 1.33 pF , R = 250 Ω , S = 1/R , and Gn = −1.1/R. Starting with initial con-
ditions T0 = 2.2π , v0(t) = sin(t), i0(t) = 0.2sin(t), and N = 101 (100 actual grid
points), the PSS solutions are obtained using the old phase-shift condition method
and with the new eigenvector gauge method. The comparisons of the methods using
the maximum of the normalized correction and the normalized frequency correc-
tion with respect to the iteration number k are presented in Fig. 3 showing similar
improvement as in the previous example.
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8 Conclusion

A new time-domain technique for the Newton-Raphson simulation of a free-running
oscillator was presented. The generalized eigenvectors for the eigenvalue closest to
1 and the time derivative of the solution provide a robust gauge equation that is
dynamically updated within each Newton-Raphson iteration. It was verified that the
new method has better convergence properties compared to the popular phase-shift
condition method and does not need additional information about the solution. The
gauge equation also easily fits a Harmonic Balance environment.
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