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Abstract

Mathematical modelling of technical applications often yields systems of
differential algebraic equations. Uncertainties of physical parameters can
be considered by the introduction of random variables. A corresponding
uncertainty quantification requires to solve the stochastic model. We
focus on semi-explicit systems of nonlinear differential algebraic equations
with index 1. The stochastic model is solved using the expansion of
the generalised polynomial chaos. We investigate both the stochastic
collocation technique and the stochastic Galerkin method to determine
the unknown coefficient functions. In particular, we analyse the index
of the larger coupled systems, which result from the stochastic Galerkin
method. Numerical simulations of test examples are presented, where
the two approaches are compared with respect to their efficiency.

1 Introduction

In technical applications, mathematical modelling of dynamical systems often
results in differential algebraic equations (DAEs), i.e., a mixture of ordinary
differential equations (ODEs) and algebraic equations. For example, network
approaches yield large systems of DAEs corresponding to mechanical multibody
dynamics or electric circuits, see [4, 6, 8]. Systems of DAEs exhibit qualitatively
different properties than systems of ODEs. The index, which represents an inte-
ger number, indicates the level of the differences between a particular system of
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DAESs and a general system of ODEs. Several concepts for the definition of an in-
dex exist. Numerical methods for initial value problems of ODEs are transferred
into integrators for DAEs, where attention has to be paid also in dependence on
the index of the systems, see [2, 7].

We assume that uncertainties are inherent in some physical parameters of the
dynamical system. Corresponding parameters are replaced by random variables
to achieve an uncertainty quantification. The random-dependent system of DAEs
can be resolved by a quasi Monte-Carlo simulation, for example. Alternatively,
we consider techniques based on the expansions of the generalised polynomial
chaos (gPC), see [1, 5, 19]. The unknown coefficient functions can be determined
either via a stochastic collocation method or via the stochastic Galerkin approach,
see [17, 18]. Thereby, the stochastic Galerkin technique yields a larger coupled
system of DAEs satisfied by an approximation of the coefficient functions.

The gPC expansions have already been applied for the simulation of systems of
DAEs with random parameters in [11, 12, 13], where the focus is on periodic
boundary value problems. In case of linear systems of DAEs, the index of the
coupled systems of the stochastic Galerkin method is analysed in [14]. All index
concepts are equivalent for linear DAEs. In this article, we consider semi-explicit
systems of nonlinear DAEs with a differential index 1. For semi-explicit DAESs,
the differential index is 1 if and only if the perturbation index is 1, see [3]. It
is obvious that the index of the DAEs coincides within stochastic collocation
methods. We analyse the index of the larger coupled system of DAEs, which is
obtained by the stochastic Galerkin technique.

The approach of the stochastic collocation and the stochastic Galerkin method
are compared in this paper. On the one hand, the properties of the involved
systems of DAEs are analysed using the corresponding index. On the other hand,
numerical simulations of initial value problems are performed to investigate the
efficiency of each method, which is done by a comparison of both accuracy and
computational effort.

The paper is organised as follows. We introduce the random-dependent systems
of DAEs in Sect. 2. The stochastic collocation techniques and the stochastic
Galerkin method are outlined. We analyse the index of the coupled systems from
the Galerkin approach in Sect. 3. Numerical simulations of two test examples are
presented in Sect. 4, where the efficiency of both gPC techniques is compared.



2 Stochastic Modelling

In this section, we define the stochastic model and apply the expansions of the
generalised polynomial chaos for the corresponding solutions.

2.1 Problem Definition

We consider dynamical systems of the form

A(p)x(t,p) = f(t,x(t,p), ), (1)

where parameters p = (py, ..., pg) with p € Il C R? are involved. The solution
X : [to,t1] X I — RY depends on time as well as the parameters. In case of a
regular mass matrix (det(A(p)) # 0), the system (1) represents implicit ordinary
differential equations (ODEs). In case of a singular mass matrix (det(A(p)) = 0),
we obtain a system (1) of differential algebraic equations (DAEs). We consider
initial value problems

X(to, p) = Xo(P), (2)

where the initial values are allowed to depend on the parameters.

We assume that the parameters include some uncertainties. Consequently, we
substitute the parameters by random variables

p: Q=1 pw)=mWw),. .. ,pow))

defined on some probability space (€2, .4, ). We apply independent distributions
in this modelling, where a corresponding probability density function p: Il — R
is available. A random variable p can describe the perturbation of a physical
parameter r, i.e.,

F(w) = Ap(w) + 7o (3)

with constants A, 7y € R. Thus a standardised variable with (p) = 0 and (p?) =1
can be used in the modelling, whereas the information on A, ry is included in the
system (1). The solution x(¢, p) of the dynamical system (1) becomes a random
process depending on time as well as the random parameters. We are interested
in the key data of this random process like the expected value and the standard
deviation, for example. More sophisticated data may also be resolved.

We define the function spaces

LM, p) = {frHﬂR:/HIf(p)lkp(p) dp<oo}



for each integer k. Given a function f € L(II, p), we apply the notation

um»:[jmmpr (4)

for the corresponding expected value. For two functions f,g € L*(II,p), the
expected value (4) implies the inner product

<ﬂmwm>=ﬁy@mmm@wm. (5)

We employ this notation also to vector-valued functions and matrix-valued func-
tions by each component separately.

In this paper, we consider semi-explicit systems of DAEs, i.e., the dynamical
system (1) becomes

y'(t,p) = f(t,y(t,p),z(t,p),p)

B (6)
0 = g(ty(tp)ztp),p)

with the differential variables y : [to, ;] X II — R" and the algebraic variables
z : [to,t1] x II — RM=. The right-hand sides exhibit the dimensions f € R
and g € RY>. We assume that the right-hand sides are continuous or sufficiently
smooth if required.

A system of DAEs features different properties than a system of ODEs. The level
of these differences is characterised by the index of the system of DAEs, where
several index concepts exist, see [7]. We focus on semi-explicit systems (6) of
differential index 1 and perturbation index 1. In case of semi-explicit DAEs, the
differential index is 1 if and only if the perturbation index is 1. An equivalent
condition is that the Jacobian matrix % € RV=*N= ig regular, i.e.,

i (%) 41 .

for all involved solutions and parameters in each time point t € [to,t;]. If (7)
holds, then DAEs of the form (6) are also called Hessenberg DAEs of index 1.
Dynamical systems (1) with a constant mass matrix (A(p) = Ap) can be trans-
formed directly into an equivalent semi-explicit system (6) of the same dimension
(N, + N, = N) and the same index. Moreover, each system of the form (1) can
be converted into a corresponding semi-explicit system (6) with N, = N, = N
using y := x and z :=y’, where a higher index appears in general.

We specify an initial value problem via

y(to,P) = yo(P), z(to,P) = Zo(P) (8)



with predetermined parameter-dependent functions yg,zo. In case of semi-ex-
plicit systems (6) of index 1, the initial values (8) must satisfy the consistency
condition

g(to, yo(P);zo(P), p) = 0 (9)

for each p € II. Hence the initial values z, follow from the choice of the initial
values yo by the implicit function theorem. Even if the initial values yo are
independent of the parameters, the initial values zo depend on the parameters if
the function g does. Thus we consider parameter-dependent initial values (8) in
general. For semi-explicit DAEs of higher index, hidden consistency conditions
exist in addition to the algebraic constraints (9).

2.2 Generalised Polynomial Chaos

Considering random parameters, the stochastic model (6),(8) can be solved by a
(quasi) Monte-Carlo simulation, for example. Alternatively, we consider spectral
methods based on the polynomial chaos, see [5, 19]. We assume finite second mo-
ments of the components of the differential and algebraic variables corresponding
to a solution of the stochastic model (6),(8). It follows that the expansions

y(t, p(w)) = Zvi(t)@i(p(w)% z(t, p(w)) = Zwi(t)q%(p(w)) (10)

converge with respect to the norm of L*(IL, p) for each ¢ € [tg,t;]. The series
include orthogonal basis polynomials ®; : I — R. Thus let (®;®;) = ¢;; with
the Kronecker delta symbol. The basis polynomials follow from the probability
distributions of the random parameters, see [16]. Thereby, the multivariate basis
polynomials are just the products of corresponding univariate basis polynomi-
als. If all random parameters exhibit Gaussian distributions, then the traditional
homogeneous polynomial chaos appears. In case of non-Gaussian random param-
eters, we obtain the generalised polynomial chaos (gPC).

The coefficient functions v; : [tg, t1] — R and w; : [to, t;] — R are unknown
a priori. These time-dependent functions satisfy the equations

vi(t) = (y(t,p)®i(p)), wi(t) = (z(t, p)®i(p)). (11)
Assuming &y = 1, it follows vy = (y) and wo = (z).

In practice, the gPC expansions (10) have to be truncated. The resulting finite
approximations read

yM(t, p) = sz-(t)q%(p), zM(t,p) = ZWz(t)CI%(p) (12)



for some integer M. Often all basis polynomials up to a certain degree are chosen
in the finite sums. The coefficients in (12) yield approximations of the expected
value and the variance of the random process. Nevertheless, more sophisticated
quantities are also reproduced approximatively by this approach. For example, a
truncated series (12) represents a surrogate model, which can be used to compute
failure probabilities, cf. [9, 12].

2.3 Stochastic Collocation Techniques

We want to determine approximations of the coefficient functions involved in the
truncated gPC expansion (12). Due to the property (11), the unknown coefficient
functions represent evaluations of probabilistic integrals. Thus we achieve an
approximation of the coefficient functions by a quadrature formula. We choose

grid points pM, ..., p¥) € II in the domain of the parameters. It follows the
approximations
K K
vi(t) =Y i (pM)y (6, "), wit) =Y we®i(pM)a(t, p®).  (13)
k=1 k=1

For small numbers ) of parameters, a multivariate Gaussian quadrature can be
employed straightforward, because the grids are tensor products of the nodes of
the corresponding univariate Gaussian quadratures. For medium sized @), sparse
grids should be preferred. In case of large numbers ) of parameters, Monte-
Carlo simulations with pseudo random numbers or quasi Monte-Carlo methods
are applied. Examples for two random parameters (¢ = 2) with independent
standardised Gaussian distributions are shown in Figure 1.

Each technique of the form (13) is called a stochastic collocation, see [10, 17, 18].
The nodes pV, ..., p) can be seen as collocation points. In each method of this
type, we have to solve K initial value problems (6),(8) of the original systems of
DAEs. Thereby, the numerical methods constructed for the deterministic initial
value problems of the DAEs are applied directly. Hence the stochastic collocation
approach is also called the non-intrusive method.

2.4 Stochastic Galerkin Method

Inserting the truncated gPC expansions (12) into the semi-explicit system (6)
yields the residuals

r,(t,p) = yM'(t,p) —£(t,y™)(t,p), z2M)(t,p), p),

(14)
r.(t,p) = glt,y™(t,p),z"(t,p),p).
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Figure 1: Examples for grids in stochastic collocation techniques with two inde-
pendent Gaussian random variables.



We want to determine the coefficient functions such that the residuals become
small in some sense. The Galerkin method requires the residuals to be orthogonal
with respect to the space of the applied basis polynomials, i.e.,

(ry.(t,p)®i(p)) =0 (15)

for | = 0,1,...,M and each t € [ty,t1]. Inserting the residuals (14) into the
inner products (15), basic calculations lead to a larger coupled system, where the
unknowns represent an approximation of the coefficient functions.

Definition 1 The coupled system of the stochastic Galerkin method correspond-
ing to the semi-explicit systems (6) reads

vi(t) = <(I)l<p) -f <t7 ZVz'<t)(I)z’(p)7 Zwi(t)q)i(p)a p>> (16)

0 = <‘I’l(p) '8 (t7 Zvi(t)fbi(p), Zwi(t)@i(p)ap>> (17)

i=0
forl=0,1,..., M.

Although an exact solution of (16),(17) is not identical to the exact coefficients
in (10), we apply the same symbols for convenience. The coupled system (16),(17)
represents a semi-explicit system of DAEs again due to the orthogonality of the
basis polynomials.

To obtain initial values for the coupled system (16),(17), the original initial val-
ues (8) can be expanded in the gPC. It follows

vi(to) = (yo(P)®i(P)),  Wi(to) = (zo(P)®:(P)) (18)

for [ =0,1,..., M. However, since approximations of the type (12) are used, it
holds g # 0 at the solution of the coupled system in general. Hence the algebraic
constraints (17) are not satisfied exactly, i.e., the straightforward choice (18) of
the initial values is inconsistent. Alternatively, just the differential variables v;(ty)
are computed via (18). We determine the algebraic variables w;(ty) by solving the
(M + 1)N, algebraic equations (17). Due to this construction, the initial values
are consistent provided that the semi-explicit system (16),(17) exhibits also the
index 1.

Solving the coupled system (16),(17) is also called the intrusive method. Given
the original semi-explicit systems (6) of some index I > 1 for all parameters,
we can solve the coupled system (16),(17) using the same numerical methods
provided that the coupled system inherits the index I. If the coupled system ex-
hibits a larger index, then disadvantages appear within the numerical simulation
in comparison to the solution of the original systems.
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3 Index Analysis

Let S := supp(p) = {p:p(p) #0} C II C RP We assume that a unique
solution of the initial value problem (6),(8) exists for each p € S. Consequently,
the Jacobian matrix g—i depends just on the choice of p for fixed ¢ € [ty,t;]. The
analysis of the index can be done for each ¢ separately. The index-1 property
is achieved for all ¢ € [to,t;] provided that the criteria hold for each t € [to,t1].
Hence we consider just a fixed t € [ty,?;1] in the following.

3.1 Jacobian Matrix in Coupled System

For the algebraic part (17) of the coupled system from the stochastic Galerkin
method, we use the abbreviation

G, = <(I)I(P) g <75> Zvi(t)cbi(p)v ZWi(t)(I)i(P)ap>> =0

=0

for l = 0,1,..., M. Consequently, the Jacobian matrix, which determines the
index-1 property of the coupled system, reads

g . aGl c R(M+1)N2X(M+1)Nz (19)
’ 8wk Lk '

This matrix consists of the minors

9G 0g [ — -

1

—— = (O(p)Pi(p) = | £, Y _vi(t)®i(p), > _wi(t)®i(p),p (20)
Owy, Oz =0 =0

for [,k =0,1,..., M. The derivation of the formula (20) is based on the assump-
tion that the differentiation and the probabilistic integration can be interchanged.
Thus we assume that the entries of the Jacobian matrix % are continuous in the
closed domain S. Let the probability density function p also be continuous in S.
If S is bounded, then it follows that the differentiation and the integration can
be interchanged. In case of unbounded S, further integrability conditions are

required to guarantee that formula (20) holds.

The condition det(G) # 0 is equivalent to the index-1 property of the coupled
system (16),(17). In contrast, the coupled system exhibits an index at least 2 for
det(G) = 0. An increase of the index represents a crucial drawback. Initial value
problems of index 1 are well-posed with respect to the dependence on perturbed
data. Initial value problems of index larger than 1 are, strictly speaking, ill-posed



with respect to the dependence on perturbed data, since the time derivative of
the perturbation enters the problem, see [7].

Now we ask if the coupled system (16),(17) is of index 1 provided that the original
systems (6) exhibit the index 1. As a first minor result, we obtain the following
conclusion.

Theorem 1 If the matrix % does not depend on y,z,p and the semi-explicit

system (6) is of index 1, then the coupled system (16),(17) inherits the index 1.

Proof:

The differential variables and the algebraic variables depend on the parameters.
Due to the assumptions, the matrix % does not exhibit a dependence on the

parameters at all. Now the matrix % depends only on time. It follows

(@1(p)Dr(p)5E) = (Du(p)Dr(p)) 5.

Since the system of basis polynomials is orthonormal, we obtain
G = IM+1 ® %

with the identity matrix ;.1 and the Kronecker product of matrices. Hence the

matrix G is regular if and only if the matrix % is regular. U

Even if the algebraic constraints in (6) described by g include y,z, p, the ma-
trix % is independent of y,z,p in some cases, see the example in Sect. 4.2.

However, the assumption of Theorem 1 is often not given in practice.
In the following examinations, we will assume one of the following two properties.

Condition 1 The matrix % corresponding to the semi-explicit system (6) is
reqular for all p € S = supp(p).

Condition 2 The matriz g—f corresponding to the semi-explicit system (6) is
reqular for almost all p, i.e., allp € R C S for some measurable set R where
S\ R has probability zero.

Condition 1 and Condition 2 represent the index-1 property of the original sys-
tems for all parameters and almost all parameters, respectively.

In a stochastic collocation method, Condition 1 guarantees that all involved semi-
explicit systems (6) are of index 1. However, systems (6) of larger index may
appear if just the Condition 2 is valid.
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3.2 Counterexample

Neither Condition 1 nor Condition 2 is sufficient for the regularity of the matrix G
of the coupled system (16),(17). A corresponding counterexample exists already
in the case N, = 1 and a single parameter () = 1. This counterexample can be
embedded straightforward into examples with N, > 1 and/or @ > 1.

We define the algebraic part

g9(t,y, z,p) =p-z+u(y)
with an arbitrary function u : R — R. Since it holds

dg
aZ - p?

a corresponding system (6) is of index 1 for p # 0 and of index at least 2 for
p = 0. The matrix of the corresponding coupled system (16),(17) consists of the

entries
G = ((p®i(p)®w(P)))ik=0,1,....1-

Due to the orthogonality of the basis polynomials, the matrix G is tridiagonal.
We choose a symmetric probability density p(p) around the critical point p = 0.
The Condition 2 is always satisfied in this case. For example, we can apply a
Gaussian distribution with mean value p = 0, see Figure 2 (left). However, the
diagonal entries of G become zero. It follows that the matrix G has the property

=0 for even M,
det(9) { # (0 for odd M.

We recognise that there is no integer M, such that the coupled system is of
index 1 for all M > M,. Hence an improvement of the accuracy of the gPC by
increasing M does not omit this behaviour.

Moreover, we can choose a uniform distribution corresponding to the domain
S = [-b,—a] U a,b] for some 0 < a < b, see Figure 2 (right). It follows a
symmetric probability density function again. Now the stronger Condition 1
is satisfied. Yet the matrix G is singular for even M again. The critical point
52 = p = 0 is not within the support of the probability density function. However,
this critical point is situated in the convex hull of the support. We will reconsider
this quality in Sect. 3.5.

The above counterexample also indicates that problems with respect to the in-
dex may appear in a stochastic collocation if Condition 2 is satisfied but not
Condition 1. We suppose a Gaussian distribution with mean value p = 0. If
we apply a Gauss-Hermite quadrature in the stochastic collocation method, then
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Figure 2: Special cases of probability density function p in counterexample: Gaus-
sian distribution (left) and uniform distribution corresponding to the union of two
disjoint intervals (right).

the critical point p = 0 is a node of this quadrature scheme in case of an odd
number of nodes. It follows that a semi-explicit system (6) of index at least 2 has
to be solved in the stochastic collocation, although almost all systems exhibit the
index 1.

3.3 Limit Case of Small Variances

In this subsection, we apply a slightly different notation for the semi-explicit
system (6) using physical parameters in the form (3). It follows the system

yvi(t,p) = f(t,ya(t,p),zA(t,P), AP + 10)

(21)
0 = g(t,y,\(t,p);ZA(tap)a/\P+r0)

depending on some A\ € R. Similar modification have to be done within the
initial values (8). For A = 0, the system (21) becomes deterministic and involves
the constant reference parameters ro. We assume that the index of the system of
DAEs is 1 in case of the reference parameters. For A # 0, a random perturbation
appears. Using fixed random variables p, the variance of the physical input
parameters vanishes in the limit case A — 0.

The stochastic Galerkin method yields a corresponding coupled system with a
matrix G, now, cf. (19). We obtain the following result in the limit of small
variances, where the Kronecker product of matrices and the identity matrix I, 41
is involved. A subscript zero refers to the case A = 0 and not to the initial values
at {p now.
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Theorem 2 Assume that all functions within the matrix % are in L*(I1, p) and
Lipschitz-continuous with respect to'y,z as well as the parameters. The matrix Gy
in the stochastic Galerkin method for the system (21) satisfies

}\E% g)\ = IM+1 ® %(t7y0<t7p>7Z0(t7p>7r0) (22>

2
> =0, lim <
A—0

in an arbitrary vector norm || - ||.

provided that it holds

ZE\M) <t7 p) - Z0<t7 p)

2>:0(%)

lim <Hy§M) (t,p) — yo(t, p)

Proof:
In the following, we apply the abbreviation

F(t) = 35 (. yo(t. p). 2zo(t. p). Xo).
We rearrange the minors (20) of the matrix Gy to

gt = (Di(p)Pr(p)F (1))
+ (@i(p)@x(p) (Z(ty8" (1,0). 2" (1), AP+ 10) = F(1)) )

Using (®;®y) = 0,1, we write the complete matrix in the form
G(t) = 1 ® F(t) + R(1).

Let D = (d;;) € R¥=*"= be the matrix consisting of the differences %8 — I, which
is independent of [, k. The Cauchy-Schwarz inequality yields

(@irdy)| < 1/ (@707) /() < ¢ max () /().

i=0,1,...,
Without loss of generality, we apply the Euclidean vector norm || - |2 and the
consistent Frobenius matrix norm || -||.. The Lipschitz-continuity of the functions
in % allows for the conclusion

2 2
D)l < o ([0 = ol + [ =+ 1012

with a constant C; > 0. Using the assumptions of the theorem, it follows

;&%H@I@kD)H* =0

13



forall [,k =0,1,..., M. Thus we obtain

}\1{)% R(t) =0,

which implies the formula (22). O
We motivate the assumption (23) further. It holds

M M
Iy, p) = yo(t, p)I| < Iy (£, ) — yalt, )| + llya(t, P) — yolt, P)].

The first term on the right-hand side represents the error of the stochastic
Galerkin method. This error tends to zero in the norm L?(II, p), see (23), for
M — oo provided that the stochastic Galerkin method is convergent. However,
the constant C';, which appears in the proof of Theorem 2, depends on M. Hence
we do not achieve a condition uniformly for all M > M, with some sufficiently
large My. The second term on the right-hand side converges to zero for A — 0 if
the solution depends continuously on the physical parameters. The same discus-
sion applies to the algebraic part z.

Concerning the index of the corresponding systems of DAEs, we achieve the
following result.

Corollary 1 If the system (21) ezhibits index 1 in case of the reference physical
parameter ro (A = 0), then the coupled system (16),(17) inherits the index 1
for sufficiently small variance of the input random wvariables provided that the
assumptions of Theorem 2 are satisfied.

The results of Theorem 2 and Corollary 1 can be generalised straightforward to
the case of DAEs in Hessenberg form, see [7], with higher index, since the index
is characterised by the regularity of specific matrices.

The above conclusions do not contradict the results from Sect. 3.2. The coun-
terexample requires to choose a symmetric distribution around p = 0. Hence we
have to select 7o = 0 in this case, where the index-1 assumption is violated for
the corresponding system (21).

The concept applied in this subsection implies only an asymptotic statement. We
do not obtain a criterion on the index for fixed A # 0. Hence further investigations
are performed in the following subsections.

3.4 Dependence on Sign of Eigenvalues

A criterion for the index-1 property can be obtained by demanding that the signs
of the eigenvalues of the Jacobian matrix do not change. We investigate the scalar

14



case (N, = 1) first.

Theorem 3 If it holds % > 0 for almost all p or % < 0 for almost all p, then
the matriz G from (19) is positive or negative definite, respectively.

Proof:
Let u = (ug, uy,...,up)" € RM*1 and u # 0. It follows
M dg M dg
T = o,d,—= = D0, | =
ou = S (wZ) = (5 umom) )

{(£)2)

The latter probabilistic integral includes a non-negative polynomial. Due to
u # 0 and the linear independence of the basis polynomials, this polynomial is
not identical to zero. Thus the number of zeros of the polynomial is finite. We
obtain u'Gu > 0 for % >0 and u'Gu < 0 for % < 0. 0J

In both cases of the theorem, the coupled system (16),(17) inherits the index-1
property from the original systems (6). Moreover, the property is independent
of the choice of the subset of orthogonal basis polynomials. Theorem 3 does
not contradict the results of Sect. 3.2. The counterexample applies a symmetric
probability distribution around the critical point % = p = 0. Hence both positive
and negative values appear and the assumptions of Theorem 3 are not satisfied.

The results of the scalar case can be generalised to the multidimensional case
N, > 1 under additional assumptions.

Theorem 4 Let the matriz % be real diagonalisable in the form

og
oz
with a regular matriz U(t) € RY=*N= and a diagonal matriz D(t,p) including

the entries \;(t,p) fori =1,...,N,. If each eigenvalue \; is either positive or
negative for almost all p, then the matriz G from (19) is reqular.

Ut)D(t,p)U ()" (24)

Proof:

The minors of the matrix G can be written as

28— (Bu(p)Pk(P)E) = (2ui(p)2x(P)UM)D(L,P)UE))

= U(t) (2(p) () D(t,p)) U(t)™
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for [,k =0,1,..., M. We obtain the similarity transformation
G(t) = (I @U)G () (Ings @ UH)H).

The matrix G (t) consists of the minors

~

(G(1)1k = (Pi(p)Pr(pP)D(t, P)) -

Let B(p) = (®(p)®i(p)) € RMHUXM+D) " [t exists a specific permutation
matrix P € RM+DN-x(M+DN= ipdependent of ¢ such that the transformed matrix
exhibits a block diagonal structure with the minors

(PG)P)ii = (Mi(t, p)B(P))
fort=1,..., N,. The entries of each diagonal block are the same as in the matrix
of the coupled system for the case N, = 1 with \; instead of %. Theorem 3
implies that each diagonal block is positive or negative definite provided that
the eigenvalues \; do not change their signs. Since the regularity of a matrix is

~

invariant under permutations of rows and columns, it follows det(G(¢)) # 0 and
thus det(G(t)) # 0. O

The assumptions of Theorem 4 are relatively strong. Firstly, the Jacobian ma-

trix % has to be real diagonalisable, which excludes matrices with complex eigen-

values, for example. Secondly, the transformation matrices U are assumed to be

independent of the pagameters p. Nevertheless, both properties are given in case
g

of a diagonal matrix 2.

Concerning the index-1 property, we obtain the following implication.

Corollary 2 Let the assumptions of Theorem 4 be fulfilled. Moreover, let the
matriz % depend continuously on the parameters. If the domain S = supp(p)
1s path-connected, then Condition 1 implies an index of 1 for the coupled sys-

tem (16),(17).

Proof:

The assumption (24) yields

U(t)"'g(t,p)U(1) = D(t,p).
Hence the eigenvalues depend continuously on the parameters. Condition 1 im-
plies that each eigenvalue is non-zero for all p € S. It follows that an eigenvalue
does not change its sign. Otherwise, we obtain a path between two points in S,
where an eigenvalue zero appears on the path. Now Theorem 4 yields the index-1
property. [l

The counterexample of Sect. 3.2, where Condition 1 is satisfied, does not involve
a path-connected domain S. Furthermore, a convex domain is always path-
connected. We will retrieve this property in the next subsection.
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3.5 Criterion from Numerical Range

For a matrix C' € CV*¥ the numerical range
W(C):={uCu:ueC" uu=1}CC

represents a closed and convex set. The spectrum of C' is a subset of W(C'). We
define the numerical range of our random Jacobian matrix as

ﬁ/\(g—f) = {u"PBu:ueC", u*uzl,PES}:UW(g_g)' (25)

PES

This set is not necessarily closed or convex within C. However, the numeri-
cal range (25) is larger than required for our purposes. We apply an essential
numerical range introduced in [15].

Definition 2 Let B(z,¢) be the ball of radius € centered at z € C and

A(z,e) :={p € S: B(z,e) N W(Z) # 0} .

The essential numerical range of the random Jacobian matriz is

W(a—f) ::{ZGC:/A( )p(p)dp>0 foralle>0}.

In comparison to the numerical range (25), the definition of the essential numer-
ical range yields

W(5) W (5).

It follows

conv (W (%)) C conv </I/I7 (%)) (26)

for the convex hull of the sets.

Theorem 5 If0 ¢ conv <W (%)) holds, then the matriz G from (19) is reqular
for an arbitrary choice of an orthogonal basis.

Proof:

Theorem 2 in [15] implies that

—~

ec€)  coms (I ()
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holds for the spectrum of the gPC matrix G. If 0 ¢ conv (W (%)) is satisfied,
then it follows 0 ¢ spect(G) and the matrix G is regular. O

The essential numerical range may be difficult to determine. Applying the in-
clusion (26), we obtain the following criterion, which is often easier to verify
provided that it is fulfilled by the problem.

Corollary 3 If0 ¢ conv </VI7 (%)) holds, then the matriz G from (19) is reqular

for an arbitrary choice of an orthogonal basis.

We consider problems, where the original semi-explicit systems exhibit the index 1
for all p € S, see Condition 1. We conclude that zero is not in the spectrum of
g—i for all p € S. Yet this condition is not sufficient to guarantee 0 ¢ W (g—f) in
the case N, > 1.

For N, = 1, we obtain more potential for conclusions. The numerical range (25)
simplifies to

W (%) ={%:peS}CR. (27)

Consequently, Condition 1 of the original semi-explicit systems (6) implies the

property 0 ¢ W (%). Due to Theorem 5, we have to consider the convex hull

of the numerical range. However, the condition 0 ¢ conv (W (@)> is equivalent

0z
to % >n > 0or % < n < 0 provided that the partial derivative depends
continuously on the parameters. Since the assumption can be weakened using
the essential numerical range, the criterion becomes % > ( or % < 0. Therefore

we achieve the same conclusion as in Sect. 3.4.

The assumptions in Theorem 5 and Corollary 3 are relatively strong, since neither
Condition 1 nor Condition 2 are sufficient to guarantee these requirements in gen-
eral. Nevertheless, we have to demand this criterion due to the counterexample
in Sect. 3.2, since it holds

ogﬁ/\(%), 0 € conv (/W (%))

in case of a uniform distribution with S = [—b, —a] U [a, b], for example.

4 Test Examples

We apply a stochastic collocation technique as well as the stochastic Galerkin
method to two test problems now.
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4.1 First Example

As a benchmark, we employ a simple test example with N, = N, =1, i.e.,

y(t) = —(1+0.1p)y(t) + 2(t)° (28)
0 = —(1+01p)y(t) — 2(t)?
with two parameters pi, po. It holds
dg 2
9 = —3z(t)° <0 for all z(t) #0. (29)

Thus the index of the system (28) is 1 for arbitrary parameters provided that
z # 0. We specify the consistent initial values

y(0) =1, 2(0)=—3/1+0.1ps. (30)

The exact solution of the initial value problem (28),(30) reads

y(t) = e=GHOInF0IR)t oy — _3/(1 4 0.1py)y(t). (31)

If we arrange distributions of the random parameters with a bounded domain S
and sufficiently small values p;, po, then the problem satisfies Condition 1. Alter-
natively, we choose two independent Gaussian random variables with mean zero
and unit variance for pi,ps now. Both increasing and decreasing exponential
functions y appear, where the probability of a decreasing process is much higher.
Although the problem fulfils Condition 2 only, Theorem 3 guarantees that the
coupled system of the stochastic Galerkin approach exhibits index 1 due to the
property (29).

Since Gaussian distributions are considered, the gPC applies the Hermite poly-
nomials. We include all two-variate polynomials up to degree 3 in the truncated
series (12), which results in ten basis polynomials (M = 9). On the one hand,
a stochastic collocation yields approximations of the coefficient functions based
on a two-dimensional Gauss-Hermite quadrature with a grid of size 7 x 7. On
the other hand, the stochastic Galerkin method requires to solve the coupled
system (16),(17), where the probabilistic integrals in the right-hand sides are dis-
cretised using a Gauss-Hermite quadrature on a grid of size 7 x 7 again. Since
the right-hand side of (28) consists of polynomials, the evaluations of the prob-
abilistic integrals are exact except for roundoff errors in the stochastic Galerkin
technique.

We compute the solutions within the time interval [tg,¢;] = [0,10]. In each
method, the backward differentiation formula (BDF) of second order solves the
systems of DAEs, see [7]. Thereby, we apply a constant step size At = %.
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Figure 3: Expected values (left) and standard deviation (right) for differential
component y (solid line) and algebraic component z (dashed line).

Since both time integration and discretisation in probability space employ the
same schemes and grids, the number of right-hand side evaluations of the origi-
nal systems (28) is identical in both stochastic collocation and stochastic Galerkin
method. Just the linear algebra part of the Newton iterations within the implicit
time integration causes a computational overhead in the stochastic Galerkin tech-
nique. The computations have been performed in the software package MATLAB.
The CPU time of the collocation and the Galerkin method was 4.8 and 22.9, re-
spectively.

We illustrate the results of the stochastic collocation. Figure 3 shows the expected
values and the standard deviation of the stochastic processes. Furthermore, Fig-
ure 4 depicts the coefficient functions of the gPC expansions for higher degrees.
Remark that some coefficient functions coincide for the differential component y.
Table 1 illustrates the magnitude of the coefficient functions, where the maximum
value is calculated on the grid in time. We observe an exponential decay of the
coefficients, which is typical for the convergence of a gPC expansion in case of a
sufficiently smooth dependence on the random parameters.

To compare the accuracy of the stochastic collocation and the stochastic Galerkin
method, we compute a reference solution using the exact solutions (31) in a
stochastic collocation with a two-dimensional Gauss-Hermite quadrature on a
grid of size 14 x 14. Figure 5 visualises the maximum differences of the coefficient
functions with respect to the reference solution. It follows that the accuracy
coincides for the coefficients of lower degree, since the approximations of both
methods are nearly the same due to the identical discretisation schemes. How-
ever, the stochastic collocation results in a better accuracy for coefficients of
higher degree. This fact is surprising, since we omit numerical errors in the ap-
proximations of probabilistic integrals within the stochastic Galerkin method.
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degree 1 degree 2 degree 3

TErraaall.

Figure 4: Coefficient functions in gPC expansion for differential component y
(solid line) and algebraic component z (dashed line).

Table 1: Maximum values in time of coefficient functions in gPC expansion.

diff. comp. y alg. comp. z
degree 1 1.8-1072 3.2-1072
1.8-1072 1.8-1072
degree 2 9.7-1071 1.7-1073
1.4-1073 9.5.-107%
9.7-1074 9.6-1074
degree 3 7.0-107° 1.6-107%
1.2-107* 6.4-1075
1.2-1074 9.5-107°
7.0-107° 7.0-107°
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components components

Figure 5: Maximum differences in reference solution vs. st. Galerkin (circles)
and reference solution vs. st. collocation (crosses) for coefficient functions of
differential component (left) and algebraic component (right) — semilog. scale.

The differences decrease exponentially in both techniques, since the magnitudes
of the exact coefficient functions also decrease exponentially, cf. Table 1.

4.2 Second Example

Mathematical modelling of electric circuits typically results in systems of DAEs,
see [6, 8]. We consider the electric circuit of a voltage controlled oscillator depicted
in Figure 6. A particular modelling yields the semi-explicit system

w(t) = %zc(t)
0 I

0 (32)
0

= 1t
= et

for the unknown node voltage v and the branch currents 1,1z, 2c. The index of
the system (32) is always equal to one. We arrange the physical parameters

) = (Go — Goo)Up tanh (#) ~ Goou(t)
)+ (t) +r(l)
C=10°F, L=10°H, Uy=1V, Go=—-01A/V, G =025A/V.

The solutions of initial value problems tend to a periodic limit cycle. Therefore
this example has been applied in [13] for the investigation of periodic boundary
value problems. Alternatively, we consider the initial value problem

u(0) =0V, 1(0)=01A, 2£(0)=0A, 1(0)=-0.1A4,

which represents a consistent choice for arbitrary parameters. Numerical simula-
tions are performed within the time interval [tg, ;] = [0s, 107%].
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Figure 6: Electric circuit of voltage controlled oscillator.

In the stochastic modelling, we replace the two deterministic parameters C, G
by the random parameters

C(p1) = C(1+0.01p1), Goo(p2) = Goo(1+0.01py)

with independent random variables p1, po both uniformly distributed in the inter-
val [—1,1]. Hence it holds C, G > 0 for all realisations of the random variables,
which is necessary to achieve physically reasonable systems (32). Both parame-
ters C' and G influence the frequency of the corresponding solutions.

The gPC expansions are based on the Legendre polynomials now. We use all
two-variate basis polynomials up to degree 3 in the truncated series (12) again
(M =9). Although the algebraic part of (32) includes a random parameter,
this example satisfies the assumptions of Theorem 1. Hence the coupled sys-
tem (16),(17) inherits the index-1 property in the stochastic Galerkin approach.
The stochastic collocation technique and the stochastic Galerkin method are ap-
plied in the same form as in the previous example. Gauss-Legendre quadrature
yields approximations of probabilistic integrals using a grid of size 4 x4 now. Time
integration is based on the BDF scheme of second order again with constant step
size At = 107%s.

Figure 7 and Figure 8 illustrate the expected values and standard deviations of
the components of the random process, which are reconstructed by the solutions
from the stochastic collocation method. Since solutions of the original system (32)
corresponding to different parameters exhibit different frequencies, the variances
increase in time. However, the variance does not tend to infinity but to a periodic
state indicating high uncertainties. Nevertheless, the order of the truncated gPC
expansions (12) has to be increased for larger times to guarantee sufficiently
accurate approximations, i.e., larger values M must be applied.

Using the software package MATLAB, the CPU times of the stochastic colloca-
tion and the stochastic Galerkin method were 3.2 and 40.64, respectively. To
compare the accuracy, we compute a reference solution via stochastic collocation
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Figure 7: Expected values (left) and standard deviation (right) of node voltage u
with unit [V] in oscillator.

Figure 8: Expected values (left) and standard deviation (right) of branch currents
17, (solid line), 1o (dashed line), 15 (dashed-dot line) with unit [A] in oscillator.
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Figure 9: Maximum differences in reference solution vs. st. Galerkin (circles)
and reference solution vs. st. collocation (crosses) for coefficient functions of gPC
expansion for the four components of the random process — semilog. scale.

including Gauss-Legendre quadrature on a grid of size 8 x 8 and time integra-
tion with step size At = 0.5 - 107%. Figure 9 shows the maximum differences
of the approximations with respect to the reference solution. We observe a good
agreement of the achieved accuracies within the stochastic collocation and the
stochastic Galerkin technique, which is caused by the application of the same
discretisation schemes again. However, the computational effort of the stochastic
Galerkin method is significantly larger due to the linear algebra part.

5 Conclusions

The approach of the generalised polynomial chaos has been applied to semi-
explicit systems of differential algebraic equations with index 1, which include
random parameters. Either a stochastic collocation technique or a stochastic
Galerkin method can be used to compute the unknown coefficient functions of the
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expansions. The presented results indicate that a stochastic collocation should
be preferred over the stochastic Galerkin approach. On the one hand, the theo-
retical investigations show that the index of the larger coupled system from the
Galerkin method can increase in comparison to the original systems of index 1.
On the other hand, the numerical simulations illustrate that the Galerkin method
requires a larger computational work due to the linear algebra part, whereas the
accuracy is nearly the same in both techniques. Nevertheless, the differences
with respect to the efficiency may become smaller in other types of problems.
For example, the linear algebra part can be negligible if the evaluations of the
functions in the original systems are expensive. We expect a similar behaviour in
both the theoretical properties and the numerical simulations for general systems
of differential algebraic equations with a possibly higher index.
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