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Abstract. This chapter is concerned with the derivation and numerical testing of discrete

transparent boundary conditions (DTBCs) for stationary multiband effective mass approximations

(MEMAs). We analyze the continuous problem and introduce transparent boundary conditions

(TBCs). The discretization of the differential equations is done with the help of finite difference

schemes. A fully discrete approach is used in order to develop DTBCs that are completely reflection-

free. The analytical and discrete dispersion relations are analyzed in depth and the limitations of the

numerical computations are shown. We extend the results of earlier works on DTBCs for the scalar

Schrödinger equation by alternative finite difference schemes. The introduced schemes and their

corresponding DTBCs are tested numerically on an example with single barrier potential. The d-

band k·p-model is introduced as most general MEMA. We derive DTBCs for the d-band k·p-model

and test our results on a quantum well nanostructure.

1 Introduction

Partial differential equations (PDEs) arise in a wide field of physical problems and often

they are posed on unbounded domains. In order to compute a numerical solution to these

PDEs one requires a finite computational domain. Usually, this is done by introducing

artificial boundary conditions. If the solution of the unbounded domain restricted to the

computational domain equals the approximate solution when using the artificial bound-

ary conditions, then these boundary conditions are called transparent boundary conditions

(TBCs).

TBCs of time-dependent Schrödinger equations have been discussed extensively, see for

example the review by Antoine et. al. [1]. It has been shown that a fully discrete approach in

deriving these TBCs, yielding so-called discrete transparent boundary conditions (DTBCs),

implies significant numerical advantages. On the other hand, an ad-hoc discretization of

the continuous TBCs can result in unphysical reflections at the TBCs and may influence the

stability of the numerical scheme [3]. Moreover, this discrete approach was successfully

applied to general Schrödinger-type equations [2, 10, 11].
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DTBCs for systems of time-dependent Schrödinger equations were developed in [28,

29]. For stationary Schrödinger equations, however, DTBCs have only been developed in

the scalar case [4].

The discretization of the differential equations is done using finite differences schemes.

For an alternative approach using the finite element method the reader is referred to [22]

and the references therein.

In this chapter we will directly consider the general d-band k ·p-model. An analysis

of particular MEMAs such as the two-band Kane-model and two-band k ·p-model can be

found in [7] and [13].

This chapter is organized as follows: In Section 2 we will summarize the results of the

stationary scalar case and extend it to some alternative discretizations. We will compare

the dispersion relations of these schemes and their numerical results when applied to a

single barrier potential. After that, we will derive DTBCs for the general d-band k ·p-

model in Section 3. The DTBCs are tested using a quantum well structure. Finally, we will

summarize our work in Section 4 and discuss future research topics.

2 Single-Band Effective Mass Approximations –

The Scalar Schrödinger Equation

We start with the stationary linear Schrödinger equation for the wave function ψ(x)

Hψ = Eψ, x ∈ R, (1)

where E denotes the energy of the electron and H is the Hamiltonian operator that reads

H = − ~
2

2m∗
d2

dx2
+ V (x), (2)

with the reduced Planck constant ~, the effective massm∗ of the electron and the real-valued

potential energy profile V (x) of the electron at the position x.

A solution ψE(x) of the stationary linear Schrödinger equation (1) is called an energy

eigenstate with associated energy E.

We consider a semiconductor of length L connected to reservoirs at x = 0 and x = L.

Let us assume that the potential V (x) is constant in the reservoirs, i.e. we set V (x) = 0 if

x ≤ 0 and V (x) = VL if x ≥ L. Note that the assumption V (x) = 0 for x ≤ 0 means no

loss of generality since we are free to set the energetic zero point. Similarly, the assumption

that the left boundary is located at x = 0 is no loss of generality.

2.1 The Exterior Problem and the Quantum Mechanical Dispersion Relation

The exterior problem is concerned with the solution of the Schrödinger equation in the ex-

terior domains. By assumption, the potential V is constant in these domains and hence,
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Eq. (1) becomes a second order ordinary differential equation (ODE) with constant coeffi-

cients that reads

− ~
2

2m∗
d2

dx2
ψ = (E − V )ψ, x ∈ R. (3)

As shown in the basic theory on ODEs the solution of Eq. (3) takes the form

ψ(x) = ψ̂eikx, (4)

where ψ̂ ∈ C is an arbitrary constant and the complex wave vector k = k̂ + iǩ is the root

of the characteristic polynomial

~
2

2m∗k
2 = (E − V ) .

If we assume that the energy satisfies E > V , the wave vector k is real and reads

k = ±k̂ = ±
√

2m∗

~2
(E − V ). (5)

Note that the resulting waves of the form (4) are traveling. In classical physics the energy

condition E > V is always fulfilled since there can only exist particles with an energy

greater than the potential at that point. However, in quantum physics this is not the case and

therefore, we shall, in general, not require E > V inside the computational domain.

As can be seen from the quantum mechanical momentum operator in one dimension,

p = −i~ d
dx

, the expectation value of the momentum p of the wave ψ of amplitude 1 is

〈pψ, ψ〉 = ~k 〈ψ,ψ〉 = ~k. Hence, the expectation value of the momentum p is pro-

portional to the wave vector k. This means that a positive wave vector corresponds to a

positive momentum, i.e. a right-traveling wave, while a negative wave vector corresponds

to a negative momentum, i.e. a left-traveling wave.

If the energy does not satisfy the condition E > V , the wave vector k is purely imagi-

nary and takes the form

k1,2 = ±iǩ = ±
√

2m∗

~2
(V − E). (6)

This wave vector yields evanescent waves (4).

If we apply the solution (4) to Eq. (3) we obtain

~
2k2

2m∗ ψ̂ = (E − V ) ψ̂.

Since we can neglect the trivial solution ψ ≡ 0, the energy E satisfies the quantum me-

chanical dispersion relation

E = E(k) = V +
~

2k2

2m∗ . (7)
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2.2 Transparent Boundary Conditions

In order to transform the Schrödinger equation (1) on the real line x ∈ R into an equivalent

system posed on the bounded domain (0, L) we introduce artificial boundary conditions

at x = 0 and x = L. Artificial boundary conditions that form a system whose solution

equals the solution of the unbounded problem on the domain (0, L) are called transparent

boundary conditions (TBCs).

In order to derive these TBCs we consider a plain wave of amplitude 1 with positive

momentum coming from −∞ and entering the computational domain from the left at x = 0

ψin = eik̂0x, x < 0, (8)

where k̂0 > 0 denotes the propagation coefficient, cf. (5) of the wave vector k in the left

exterior domain x ≤ 0, i.e. with V ≡ 0. The incoming wave (8) results in a reflected,

left-traveling wave

ψr = re−ik̂0x, x < 0, (9a)

with the reflection coefficient r, and a transmitted, right-traveling wave

ψt = teik̂Lx, x > L, (9b)

with the transmission coefficient t and the propagation coefficient ǩL > 0 of the wave

vector k in the right exterior domain x ≥ L, i.e. with V ≡ VL. The propagation coefficient

k̂L satisfies

k̂L =

√

k̂2
0 −

2m∗VL

~2
.

Thus, the solution in the left exterior domain has the form

ψ = ψin + ψr, x < 0, (10a)

and the solution in the right exterior domain is

ψ = ψt, x > L. (10b)

We know that the wave and its first derivative are continuous at the two boundaries,

cf. [14]. Hence, we can eliminate the reflection and transmission coefficients by comparing

Eq. (10a) and its first derivative at x = 0 as well as Eq. (10b) and its first derivative at

x = L.

The resulting boundary value problem (BVP) reads

− ~
2

2m∗ψxx + V (x)ψ = Eψ, 0 < x < L, (11a)

ψx(0) + ikψ (0) = 2ik̂0, (11b)

ψx(L) − i

√

k̂2
0 −

2m∗VL

~2
ψ (L) = 0. (11c)

Theorem 2.1 (Proposition 2.3 in [6]). Let V be in L∞(0, L) and real valued. Then the BVP

(11) has a unique solution ψ ∈W 2,∞(0, L).
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2.3 The Standard Discretization

After stating the BVP (11) and showing that it has a unique solution, we want to derive

techniques to solve it numerically and compute eigenstates for corresponding energies and

potentials. First let us set ~ = m∗ = 1 for the remainder of this section. We will in-

troduce finite difference schemes (FDS) to solve the BVP, using the uniform discretiza-

tion xj = jh, j = 0, . . . , J with L = Jh, of the computational domain (0, L) and

the approximation f(xj) ≈ fj of some function f defined in (0, L). In the sequel, we

will use the following finite difference quotient operators: the first order forward operator

Dfwd
h fj := (fj+1 − fj) /h, the first order backward operator Dbwd

h fj := (fj − fj−1) /h,

the second order centered operator Dcen
h fj := (fj+1 − fj−1) /2h and the standard second

order operator Dstd
h fj := (fj−1 − 2fj + fj+1) /h

2.

By applying the standard second order finite difference quotient operator we get the

second order standard FDS

−1

2
Dstd

h ψj + Vjψj = Eψj , j = 1, . . . , J − 1, (12)

for the Schrödinger equation (11) with Vj = V (xj) and the approximation ψj ≈ ψ (xj),
j = 0, . . . , J . We can rewrite Eq. (12) in the form

−ψj+1 + 2
(

1 − (E − Vj)h
2
)

ψj − ψj−1 = 0, j = 1, . . . , J − 1. (13)

This is a linear second order homogeneous difference equation with a spatially varying

coefficient Vj .

Now let us analyze the discrete exterior problem of the standard FDS. We will continue

with some constant potential V . The results of the exterior domains x ≤ 0 and x ≥ L can

later be derived by inserting the respective value of the potential in the results stated.

If V is constant, Eq. (13) is a linear second order difference equation with constant

coefficients and as shown in [16], Eq. (13) has a solution of the form

ψj = ψ̂hα
j = ψ̂he

ln(α)j = ψ̂he
(ln|α|+i arg(α))j = ψ̂he

ikhjh, (14)

with α ∈ C, cf. (4). We will call ψ̂h the discrete amplitude of the discrete wave ψj and

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) (15)

the discrete wave vector. By applying Eq. (14) to Eq. (13) we get

−αj+1 + 2(1 − (E − V )h2)αj − αj−1 = αj−1
(

α2 − 2
(

1 − (E − V )h2
)

α+ 1
)

= 0.

Since we neglect the trivial solution α = 0, we have

α2 − 2
(

1 − (E − V )h2
)

α+ 1 = 0,

which implies

(

α−
(

1 − (E − V )h2
))2

= (E − V )h2
(

(E − V )h2 − 2
)

. (16)
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If the energy E satisfies E > V , the right hand side of Eq. (16) is negative if the step

size h satisfies

h <

√

2

E − V
, (17)

and hence, the roots of Eq. (16) are complex and read

α1,2 = 1 − (E − V )h2 ± i
√

(E − V )h2 (2 − (E − V )h2). (18)

We find that

|α1,2| =
(

1 − (E − V )h2
)2

+ (E − V )h2
(

2 − (E − V )h2
)

= 1,

and thus, the discrete wave vector kh is real and takes the form

kh = ±k̂h = ±1

h
arg (α) = ±1

h
arccos

Reα

|α| = ±1

h
arccos

(

1 − (E − V )h2
)

, (19)

cf. (5). Note that we can neglect to add the term n2π
h

, n ∈ Z, to this formula since for any

n 6= 0 this term diverges for h → 0. On the other hand, we will see later that the discrete

wave vector kh as given in Eq. (19), i.e. with n = 0, tends to the analytical wave vector k
for h→ 0.

The wave vector kh = k̂h corresponds to

α1 = 1 − (E − V )h2 + i
√

(E − V )h2 (2 − (E − V )h2),

while kh = −k̂h is associated with

α2 = 1 − (E − V )h2 − i
√

(E − V )h2 (2 − (E − V )h2).

Hence, we get two traveling waves, ψj = αj
1 being right-traveling and ψj = αj

2 being

left-traveling.

The case

h ≥
√

2

E − V
,

results in a non-negative right hand side of Eq. (16) and thus, a complex conjugate pair of

purely imaginary wave vectors that give evanescent waves. However, this case is numeri-

cally not applicable since it defines a lower bound for the step size h.

On the other hand, if E ≤ V , the right hand side of Eq. (16) is also non-negative,

yielding a complex conjugate pair of purely imaginary wave vectors that give evanescent

waves. Let us recall the TBCs we derived in Section 2.2. We considered an incoming wave,

i.e. a traveling wave to enter the semiconductor at x = 0. Hence, the case E ≤ V is not

applicable either for the exterior domains since it leads to evanescent waves only.
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Now let us analyze the behavior of the discrete wave vector kh of the standard FDS for

h→ 0. To this end, we apply l’Hôpital’s rule to get

lim
h→0

kh = ± lim
h→0

k̂h = ± lim
h→0

1

h
arccos

(

1 − (E − V )h2
)

= ± lim
h→0

−2 (E − V )h
√

1 − (1 − (E − V )h2)2
= ±

√

2 (E − V ),

which equals the analytical wave vector (5) for ~ = m∗ = 1.

Note, that Eq. (19) defines the discrete dispersion relation. Finally, we will state this

relation in the reciprocal form. Recall the wave representation of the form ψj = ψ̂eikhjh

that implies ψj+1e
−ikh = ψj = ψj−1e

ikh. Applied to the difference equation (13), this

gives

−eikh + 2
(

1 − (E − V )h2
)

− e−ikh = 0,

which leads to

E = Estd
h (kh) = V +

1 − cos khh

h2
= V +

2

h2
sin2 khh

2
= V +

k2
hh

2
+ O(h2), (20)

compared to the continuous dispersion relation (7).

2.4 Discretization of the Transparent Boundary Conditions

Let us now introduce a finite difference discretization of the two Robin-type TBCs (11b)

and (11c). We apply the second order centered difference operator Dcen
h to ψ0 at the left

boundary and ψJ at the right boundary. Let k̂0 denote the analytical propagation coefficient

of a right-traveling wave in the left exterior domain x ≤ 0. Then the analytical propagation

coefficient of a right-traveling wave in the right exterior domain is

k̂L =

√

k̂2
0 − 2VL.

At the left boundary we have

ψ1 − ψ−1

2h
+ ik̂0ψ0 = 2ik̂0,

which implies

−ψ−1 + 2ik̂0hψ0 + ψ1 = 4ik̂0h. (21a)

On the other hand, discretizing the right TBC gives

ψJ+1 − ψJ−1

2h
= i

√

k̂2
0 − 2VLψJ ,

that can be expressed in the form

ψJ−1 + 2i

√

k̂2
0 − 2VLhψJ − ψJ+1 = 0. (21b)
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The two ghost points ψ−1 and ψJ+1 in Eq. (21) can be eliminated by subtracting the

FDS (13) of the Schrödinger equation (11a) at j = 0 and j = J . By using the identities

E = k̂2
0/2 and E − VL = k̂2

L/2 we get the two second order discretized TBCs

(

1

2
k̂2

0h
2 − 1 + ik̂0h

)

ψ0 + ψ1 = 2ik̂0h (22a)

and

ψJ−1 +

(

1

2

(

k̂2
0 − 2VL

)

h2 − 1 + i

√

k̂2
0 − 2VLh

)

ψJ = 0. (22b)

Existence and uniqueness of the solution of the numerical scheme together with the

discretized TBCs is shown in

Theorem 2.2 (Theorem 2.1 in [4]). Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be

given, and assume h < min
{
√

2
E
,
√

2
E−VL

}

. Then the discrete BVP (13) with the dis-

cretized TBCs (22) has a unique solution {ψj} , j = 0, . . . , J .

Let us recall the discrete waves ψj = eik̂h,0jh in the left exterior domain j ≤ 0 and

ψj = eik̂h,Ljh in the right exterior domain j ≥ J . Suppose that they are solutions to the

difference scheme in a small vicinity of the two boundaries, i.e. j = 0, 1 and j = J − 1, J .

Then they should also satisfy the discretized TBCs (22). However, at the left boundary we

get

2ik̂0h =
(

Eh2 − 1 + ik̂0h
)

ψ0 + ψ1 =
(

Eh2 − 1 + ik̂0h
)

+ eik̂h,0h

=
(

Eh2 − 1 + ik̂0h
)

+
(

1 − Eh2 + i
√

2Eh2 − E2h4
)

= ik̂0h+ ik̂0h

√

1 − k̂2
0h

2/4 6= 2ik̂0h,

which is a contradiction. A similar contradiction can be found at the right boundary.

The reason is that the TBCs are based on the analytical solution as derived in Sec-

tion 2.1. The wave vector of the analytical solution, see Eq. (5), however, is different from

the discrete wave vector (19). Hence, the discretized TBCs model exterior domains whose

physical properties (i.e. wave vector and dispersion relation) are discretization of the an-

alytical properties. Inside the computational domain, however, we use the FDS (13) that

implies a discrete wave vector and a discrete dispersion relation. In other words, a wave

coming from −∞ and entering the semiconductor at x = 0 is refracted at the boundary

x = 0 as it comes from a media with the analytical dispersion relation and enters a media

with the discrete dispersion relation. This leads to spurious oscillations in the numerical

solution.

2.5 Discrete Transparent Boundary Conditions

In this section we will derive the discrete transparent boundary conditions (DTBCs) of the

single-band model. DTBCs are derived on a fully discrete level. This means that they are
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deduced with the help the discrete exterior solution as given in Eq. (14). We assume that

the discrete exterior solution holds in a small vicinity of the two boundaries. Consequently,

the refraction at the boundaries, resulting in spurious oscillations, vanishes completely.

Let us recall the right-traveling discrete wave ψj = eik̂hjh and the left-traveling discrete

wave ψj = e−ik̂hjh with discrete amplitude ψ̂h = 1. Let k̂h,0 denote the discrete wave

vector in the left exterior domain x ≤ 0, i.e. with V ≡ 0, and k̂h,L the discrete wave vector

in the right exterior domain x ≥ L, i.e. with V ≡ VL. We apply these discrete waves to the

reflection and transmission conditions (10) and consider that they hold in a small vicinity

of the two boundaries, i.e. j = 0, 1 and j = J − 1, J respectively. It yields

ψj = ψin
j + ψr

j = eik̂h,0xj + re−ik̂h,0xj , j = 0, 1,

and

ψj = ψt
j = teik̂h,Lxj , j = J − 1, J.

By eliminating the reflection and transmission coefficients we obtain the DTBCs

−ψ0e
−ik̂h,0h + ψ1 = 2i sin k̂h,0h, (23a)

and

ψJ−1e
ik̂h,Lh − ψJ = 0, (23b)

cf. the TBCs (11b) and (11c).

Let us recall the discretized TBCs (22). We expand the exponential function and the

sine function in the left DTBC (23a). Keeping terms up to second order gives

−
(

1 − ik̂h,0h− 1

2
k̂2

h,0h
2

)

ψ0 + ψ1 = 2ik̂h,0h.

If we replace the discrete wave vector k̂h,0 by the analytical wave vector k̂0 the above

equation becomes
(

1

2
k̂2

0h
2 − 1 + ik̂0h

)

ψ0 + ψ1 = 2ik̂0h,

which equals the left discretized TBC. Similarly, we can deduce the right discretized TBC

from the right DTBC.

Now we can reformulate Theorem 2.2 for the DTBCs.

Theorem 2.3 (Theorem 2.1 in [4]). Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be

given, and assume h < min
{
√

2
E
,
√

2
E−VL

, π

k̂h,0

, π

k̂h,L

}

. Then the discrete BVP (13) with

the DTBCs (23) has a unique solution {ψj} , j = 0, . . . , J .

2.6 Alternative Finite Difference Schemes

In this section we derive and compare alternative FDSs. Our aim is to improve the con-

vergence of the scheme or to develop schemes that solve the problem exactly if certain

conditions are fulfilled.
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2.6.1 The Numerov Discretization

We start with the so-called Numerov discretization [21] that is of higher order than the

standard discretization.

Let us consider the Schrödinger equation of the BVP (11), and let us rewrite it in the

form

ψxx = −2 (E − V (x))ψ, 0 < x < L. (24)

As before, we use the uniform grid xj = jh, j = 0, . . . , J with L = Jh. From Eq. (24)

together with the standard second order finite difference operator Dstd
h we find that

h2ψ
(iv)
j = h2 d2

dx2
ψxx (x)

∣

∣

∣

∣

x=xj

= h2

(

−2
d2

dx2
((E − V (x))ψ)

∣

∣

∣

∣

x=xj

)

= h2
(

−2Dstd
h ((E − Vj)ψj) + O

(

h2
)

)

= −2 (E − Vj+1)ψj+1 + 4 (E − Vj)ψj − 2 (E − Vj−1)ψj−1 + O
(

h4
)

.

(25)

On the other hand, the Taylor series

ψ(x±h) = ψ(x)±hψx(x)+
h2

2
ψxx(x)± h3

6
ψxxx(x)+

h4

24
ψ(iv)(x)± h5

96
ψ(v)(x)+O(h6)

gives

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψxx(x) +
h4

12
ψ(iv)(x) + O(h6),

which implies

h2ψ
(iv)
j =

12

h2
(ψj+1 − 2ψj + ψj−1) − 12 ψxx(x)|x=xj

+ O(h4).

If we apply Eq. (24) to the above equation we get

h2ψ
(iv)
j =

12

h2

(

ψj+1 − 2
(

1 − (E − Vj)h
2
)

ψj + ψj−1

)

+ O(h4). (26)

A comparison of Eqs. (25) and (26) gives the Numerov FDS

(

1 +
h2

6
(E − Vj+1)

)

ψj+1 − 2

(

1 − 5h2

6
(E − Vj)

)

ψj

+

(

1 +
h2

6
(E − Vj−1)

)

ψj−1 = 0, j = 1, . . . , J − 1. (27)

The Numerov FDS is of of fourth order if ψ ∈ C6(0, L) compared to second order accuracy

of the standard FDS if ψ ∈ C4(0, L).
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Now we will examine the discrete exterior problem of the Numerov FDS with V con-

stant. We want to determine a solution of the discrete exterior problem in order to apply the

DTBCs (23).

If V is constant Eq. (27) is a linear second order difference equation with constant

coefficients whose solution takes the form

ψj = ψ̂hα
j = ψ̂he

ikhjh, (28)

with α ∈ C. Again we will refer to ψ̂h as the discrete amplitude of the discrete wave ψj

and

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) (29)

as the discrete wave vector. Analogously to the standard FDS we get the discrete solution

α by applying Eq. (28) to Eq. (27). Under the assumption that E > V and the step size h
satisfies

h <
3√

E − V
, (30)

α is complex and reads

α1,2 = 1 − 6 (E − V )h2

6 + (E − V )h2
± i

√

24 (E − V )h2 (3 − (E − V )h2)

6 + (E − V )h2
. (31)

The modulus of α is

|α1,2| =

(

1 − 6 (E − V )h2

6 + (E − V )h2

)2

+
24 (E − V )h2

(

3 − (E − V )h2
)

(6 + (E − V )h2)2
= 1.

Thus, the discrete wave vector kh is real and takes the form

kh = ±k̂h = ±1

h
arg (α) = ±1

h
arccos

Reα

|α| = ±1

h
arccos

(

1 − 6 (E − V )h2

6 + (E − V )h2

)

,

(32)

Again we can neglect to add the term n2π
h

, n ∈ Z, to this formula since for any n 6= 0 this

term diverges for h→ 0. On the other hand, it is easy to show that the discrete wave vector

kh as given in Eq. (32), i.e. with n = 0, tends to the analytical wave vector k as given in

Eq. (5) for h→ 0 and ~ = m∗ = 1.

Hence, we get two traveling waves, the right-traveling wave ψj = αj
1 = eik̂hjh and the

left-traveling wave ψj = αj
2 = e−ik̂hjh.

On the other hand, if the step size h does not satisfy the step size restriction (30) or

the energy E does not satisfy the energy condition E > V , α is real and yields evanescent

waves.

Finally, we derive the discrete dispersion relation of the Numerov FDS in the same way

as for the standard FDS. The wave ψj = ψ̂eikhjh implies ψj+1e
−ikhh = ψj = ψj−1e

ikhh,

and hence, applied to the Numerov difference equation (27) we get

E = ENum
h (k) =

6

5 + cos khh

2

h2
sin2 khh

2
. (33)
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Now we will prove an analogon to Theorem 2.3.

Theorem 2.4. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and suppose

h < min

{

√

3

E
,

√

3

E − VL
,

√

6

|E − V1|
,

√

6

|E − VJ−1|
,
π

k̂h,0

,
π

k̂h,L

}

.

Then the discrete BVP (27) of the Numerov FDS with the DTBCs (23) has a unique solution

{ψj} , j = 0, . . . , J .

Proof. We show that for homogeneous DTBCs the discrete solution is zero at every grid

point. Therefore, let us introduce ϕj = σjψj with σj = 1 + h2

6 (E − Vj) ∈ R. Note that

σj > 0 for j = 0, 1, J − 1, J .

Now we can rewrite the Numerov FDS in the form

ϕj+1 − 2ϕj + ϕj−1 = −2h2 (E − Vj)ψj = −2h2 (E − Vj)σ
−1
j ϕj ,

or

Dstd
h ϕj = −2 (E − Vj)σ

−1
j ϕj .

The homogeneous left DTBC can be written in the form

−γ1ψ0 + ψ1 = −γ1σ
−1
0 ϕ0 + σ−1

1 ϕ1,

that reduces to

Dbwd
h ϕ1 =

(

γ1σ1σ
−1
0 − 1

)

ϕ0,

with γ1 = e−ik̂h,0h. On the other hand, the right DTBC is

ψJ−1 − γ2ψJ = σ−1
J−1ϕJ−1 − γ2σ

−1
J ϕJ ,

which becomes

Dbwd
h ϕJ =

(

γ−1
2 σJσ

−1
J−1 − 1

)

ϕJ−1,

with γ2 = e−ik̂h,Lh.

We multiply the sum of the Numerov FDS for j = 1, . . . , J−1 by ϕ̄j , apply the discrete

analogon of the integration by parts rule and take the imaginary part to get

0 = −σ1σ
−1
0 Im γ1 |ϕ0|2 + σJσ

−1
J−1 Im γ−1

2 |ϕJ−1|2 ,

with

Im γ1 = − sin k̂h,0h < 0, h <
π

k̂h,0

,

and

Im γ−1
2 = − 1

|γ2|2
Im γ2 = sin k̂h,0h > 0, h <

π

k̂h,L

.
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Hence, we end up with the equation

0 = σ1σ
−1
0 sin k̂h,0h |ϕ0|2 + σJσJ−1 sin k̂h,Lh |ϕJ−1|2 .

Since σj > 0 for j = 0, 1, J − 1, J , the above equation implies |ϕ0|2 = |ϕJ−1|2 = 0.

Thus, ψ0 = ψJ−1 = 0 and by using the homogeneous DTBCs we get ψ1 = 0 and ψJ = 0.

Successively applying the Numerov FDS gives ψj = 0 for j = 0, . . . , J and hence, the

discrete solution vanishes at every grid point if the DTBCs are homogeneous. Thus, the

coefficient matrix of the system of linear equations formed by the discrete BVP and the two

DTBCs is regular. This implies that the discrete solution is unique.

2.6.2 The Mickens Discretization

We recall the Schrödinger equation (1)

ψxx + 2 (E − V (x))ψ = 0, 0 < x < L. (34)

Let us assume that the potential V (x) ≡ V is constant. As shown in Section 2.1 the

Schrödinger equation (34) yields a traveling wave if E > V and an evanescent wave other-

wise. Hence, in the case 2 (E − V ) ≡ c1 > 0, Eq. (34) has the solution

ψ (x) = a1 cos (
√
c1x) + b1 sin (

√
c1x) , (35a)

and if 2 (E − V ) ≡ −c2 < 0, Eq. (34) has the solution

ψ (x) = a2 cosh (
√
c2x) + b2 sinh (

√
c2x) , (35b)

where a1, a2, b1, b2 ∈ C are arbitrary constants. The Mickens nonstandard finite difference

discretization

ψj+1 − 2 cos (h
√
c1)ψj + ψj−1 = 0, j = 1, . . . , J − 1, (36a)

if E > V , and

ψj+1 − 2 cosh (h
√
c2)ψj + ψj−1 = 0, j = 1, . . . , J − 1, (36b)

if E ≤ V , is a so-called exact FDS of Eq. (34) with the solutions (35), cf. [17]. An FDS

is said to be exact if the numerical solution equals the analytical solution at the grid points,

see [15]. It is easy to see that if V is constant the difference equation (36a) has the solution

(35a) whereas the difference equation (36b) has the solution (35b). Therefore, the Mickens

FDS gives a numerical solution that is equal to the analytical solution at the grid points, in

other words, the Mickens FDS is exact.

Now we allow the potential V (x) to vary inside the computational domain (0, L). The

Mickens FDS (36) becomes

ψj+1 − 2Djψj + ψj−1 = 0, j = 1, . . . , J − 1, (37)
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with

Dj =















cos

(

h
√

2 (E − Vj)

)

, E > Vj ,

cosh

(

h
√

2 (Vj − E)

)

, E ≤ Vj .

While the Mickens FDS (37) is exact for a constant potential V it is formally of order O(h2)
if the potential V is not constant, cf. [9].

In order to use the DTBCs for the Mickens FDS (37) we have to determine a discrete

solution of the Mickens FDS in the exterior domains. The Mickens FDS is exact in the

exterior domains since the potential V is assumed to be constant in these domains. Hence,

the discrete solution is given by the analytical solution as derived in Section 2.1. The

discrete wave vector kh of the Mickens FDS is equal to the analytical wave vector k as

given in Eq. (5), and the discrete dispersion relation EMic
h (k̂) is equal to the analytical

dispersion relation (7).

Theorem 2.5. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and assume h <

min
{

π

k̂h,0

, π

k̂h,L

}

. Then the discrete BVP (36) of the Mickens FDS with the DTBCs (23) has

a unique solution {ψj} , j = 0, . . . , J .

Proof. Let us rewrite the Mickens FDS in the form

Dstd
h ψj = − 2

h2
(1 −Dj)ψj .

Since − 2
h2 (1 −Dj) ∈ R for all j = 1, . . . , J − 1, it becomes clear that this theorem is a

direct corollary of Theorem 2.3 and hence, the solution is unique.

2.6.3 The Numerov-Mickens Discretization

Chen et al. [9] combined the Numerov discretization with the Mickens discretization and

proposed the so-called combined Numerov-Mickens finite-difference scheme

(

1 +
h2

6
(E − Vj+1)

)

ψj+1 − 2Djψj +

(

1 +
h2

6
(E − Vj−1)

)

ψj−1 = 0, (38)

for j = 1, . . . , J − 1, with

Dj =















cos

(

h
√

2 (E − Vj)

)

, E > Vj ,

cosh

(

h
√

2 (Vj − E)

)

, E ≤ Vj .

It can be shown that the Numerov-Mickens FDS (38) is of order O
(

h4
)

, just as the

Numerov FDS, and that it is an exact FDS if the potential V is constant, just as the Mickens

FDS, cf. [9].
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Let us now study the discrete exterior problem of the Numerov-Mickens FDS with a

constant potential V . If V is constant Eq. (38) is a linear second order difference equation

with constant coefficients whose solution takes the form

ψj = ψ̂hα
j = ψ̂he

ikhjh, (39)

with α ∈ C, the discrete amplitude ψj and the discrete wave vector

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) . (40)

By applying Eq. (39) to Eq. (38) and under the assumption that the energy E satisfies

E > V , α is complex and reads

α1,2 =
cos
(

h
√

2 (E − V )
)

1 + h2 (E − V ) /6
± i

√

√

√

√

1 −
cos2

(

h
√

2 (E − V )
)

(1 + h2 (E − V ) /6)2
. (41)

Note that the step size h has to satisfy

cos2
(

h
√

2 (E − V )
)

<
(

1 + h2 (E − V ) /6
)2
. (42)

But this condition is fulfilled for any step size h > 0 since the left hand side of Eq. (42) is

in [0, 1], while the right hand side is always greater than 1. It is easy to show that |α| = 1
and hence, the discrete wave vector kh of the Numerov-Mickens FDS is real and reads

kh = ±k̂h = ±1

h
arg (α) = ±1

h
arccos

Reα

|α| = ±1

h
arccos

cos
(

h
√

2 (E − V )
)

1 + h2 (E − V ) /6
. (43)

Again we shall neglect to add the term n2π
h

, n ∈ Z, to this formula since for any n 6= 0
this term diverges for h → 0. However, the limit for h → 0 of the discrete wave vector

kh as given in Eq. (43), i.e. with n = 0, is undefined. In fact, the discrete wave vector kh

does not converge to the analytical wave vector k and hence, the Numerov-Mickens FDS

does not converge for h → 0. Nevertheless, we will continue to analyze this FDS and

formulate DTBCs with the right-traveling wave ψj = αj
1 = eik̂jh and the left-traveling

wave ψj = αj
2 = e−ik̂jh.

An explicit formula of the discrete dispersion relation of the Numerov-Mickens FDS

cannot be derived. However, the discrete wave ψj = ψ̂eikhjh implies ψj+1e
−ikh = ψj =

ψj−1e
ikh. Applied to the difference equation (38) we get

cos

(

h
√

2
(

ENumMic
h − v

)

)

−
(

h2

6
cos kh

)

(

ENumMic
h − V

)

− cos kh = 0. (44)

By numerically evaluating Eq. (44) for h = 1/100 and V = 0 with the MATLAB procedure

fsolve using the tolerance 10−9, we obtain the discrete dispersion relation ENumMic
h as

shown in Fig. 1.

Although the bad numerical behavior has been illustrated we shall prove
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Theorem 2.6. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and assume

h < min

{√

6

|E − V1|
,

√

6

|E − VJ−1|
,
π

k̂h,0

,
π

k̂h,L

}

.

Then the discrete BVP (38) of the combined Numerov-Mickens FDS with the DTBCs (23)

has a unique solution {ψj} , j = 0, . . . , J .

Proof. Let us introduce ϕj = σjψj with σj = 1 + h2

6 (E − Vj) ∈ R. Note that σj > 0 for

j = 0, 1, J − 1, J .

We rewrite the Numerov-Mickens FDS in the form

Dstd
h ϕj = − 2

h2

(

1 − σ−1
j Dj

)

ϕj .

Since − 2
h2

(

1 − σ−1
j Dj

)

∈ R for all j = 1, . . . , J − 1, it becomes clear that this theorem

is a direct corollary of Theorem 2.4 and hence, the solution is unique.

2.6.4 Comparison of the Discrete Dispersion Relations

In the previous sections we introduced FDSs for the BVP (11) and derived the correspond-

ing discrete dispersion relations. Now we want to compare these discrete dispersion rela-

tions with the analytical quantum mechanical dispersion relation (7). Fig. 1 shows the an-

alytical and discrete dispersion relations for a step size h = 1/100 and a potential V = 0.

All discrete dispersion relations except the dispersion relation of the Mickens FDS are

periodic in the wave vector kh with the period 2π
h

≈ 628. We can see that for small values of

the wave vector, i.e. kh < 100, the dispersion relation of the Numerov FDS coincides with

the analytical dispersion relation for the used level of detail in Fig. 1, while the dispersion

relation of the combined Numerov-Mickens FDS differs significantly from the analytical

dispersion relation. Particularly, for E = 500, the value of the energy we used in our

examples, the error of the dispersion relation of the Numerov-Mickens FDS is greater than

of the other FDSs. This explains the significantly greater phase error of the Numerov-

Mickens FDS we observed in Section 2.6.3.

2.7 Numerical Example – The Single Barrier Potential

In this section we analyze the results of the four introduced FDSs in the case of a single

barrier potential. We consider a semiconductor of length L composed of two different

materials, e.g. GaAs (gallium arsenide) and AlGaAs (aluminium gallium arsenide), where

the latter is built between two parts of the first material. Let 0 < x1 < x2 < L and

let the domain [x1, x2) be composed of AlGaAs, while the two outer domains [0, x1) and

[x2, L] are composed of GaAs. V (x) = Ec(x) describes the band edge profile or the

variation of the conduction band edge of the semiconductor materials. We call V0 = ∆Ec =
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Figure 1: Analytical quantum mechanical dispersion relation E(k) (black), the discrete

dispersion relation of the standard discretization Estd
h (kh) (red), the discrete dispersion

relation of the Numerov discretization ENum
h (kh) (green) and the discrete dispersion rela-

tion of the combined Numerov-Mickens discretizationENumMic
h (kh) (magenta) for the step

size h = 1/100. Note that the discrete dispersion relation of the Mickens discretization

EMic
h (kh) coincides with the analytical quantum mechanical dispersion relation E(k).
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Ec|AlGaAs − Ec|GaAs band edge offset between the semiconductor materials or band edge

discontinuity of the material interface. The inner domain [x1, x2) is called quantum barrier

if its potential V (x) = Ec|AlGaAs is greater than the potential V (x) = Ec|GaAs of the outer

domains and quantum well if it is smaller.

For simplicity we set Ec|GaAs = 0 and we assume that Ec|AlGaAs = 500, i.e. the

band edge offset is V0 = ∆Ec = 500 and we have a quantum barrier at x1 ≤ x < x2.

Furthermore, we set L = 1, x1 = 1/3 and x2 = 2/3.

2.7.1 Analytical Solution

For a single barrier potential the BVP (11) can be solved analytically. Assuming that a

right-traveling wave of amplitude ψ̂ = 1 enters the semiconductor at x = 0, the wave

function reads

ψ(x) =











ei
√

2Ex + re−i
√

2Ex, if x ∈ [0, x1),

aei
√

2(E−V0)x + be−i
√

2(E−V0)x, if x ∈ [x1, x2),

tei
√

2Ex, if x ∈ [x2, L].

(45)

The coefficients r, a, b and t can be determined by using the continuity argument of the

wave function and its first derivative at x = x1 and x = x2. For more details on the

computation of the analytical solution including formulas of the coefficients r, a, b and t
the interested reader is referred to [13].

Note that the solution of the so-called transfer-matrix method coincides with the ana-

lytical solution in the case of a single barrier potential, cf. [24].

Since we have three domains of the same length the step size h has to be of the form

h = 1
3n

with n = 1, 2, . . ., so that the discretized domains also have the same length.

Otherwise the FDSs would not solve the problem as stated above and the results would

differ significantly from the analytical solution.

2.7.2 Numerical Results – The L2-Error

In this section we present the numerical results of the introduced FDSs and show their

discrete L2-error. The evaluation of the discrete L2-error, however, is not straightforward

for a complex function. Since the numerical results of a stationary problem such as the

BVP (11) has an arbitrary phase, we have to optimize the L2-error with respect to a phase

offset ϕ ∈ [−π, π]. In other words we have to solve the nonlinear problem

∆ψmin
h = min

ϕ∈[−π,π]
∆ψh = min

ϕ∈[−π,π]

1

J + 1

√

√

√

√

J
∑

j=0

|ψ(xj) − ψh(xj)eiϕ|2, (46)

where ψ denotes the analytical solution and ψh is the numerical solution using the step

size h = 1/J . In order to evaluate the minimal L2-error ∆ψmin
h we discretize the domain

[−π, π] with a step size hϕ = 2π/1000 and analyze the L2-error ∆ψh at every grid point.
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In Fig. 2(a) the L2-errors ∆ψmin
h of the standard FDS and the combined Numerov-

Mickens FDS are plotted against the number of grid points J = 1/h for the resonance

energy E = Eresonance ≈ 544. The error of the Numerov FDS and the error of the Mickens

FDS coincide with the error of the standard discretization for the level of detail in Fig. 2(a).

For these three FDSs the L2-error is in O(h2). The L2-error of the combined Numerov-

Mickens FDS, however, is only in O(h).

Fig. 2(b) shows that the phase shift adjusted L2-errors of the Numerov FDS almost

coincides with the standard FDS and the Mickens FDS, i.e. the Numerov FDS turns out to

be not of higher order than the standard FDS and the Mickens FDS. Although the higher

order of the Numerov FDS is considered to be an advantage compared to the standard FDS

and the Mickens FDS, it is this property that leads to the observed error of the scheme. By

applying the identity

ψxx =

(

(

ψx

ψ

)

x

+

(

ψx

ψ

)2
)

ψ

to the Schrödinger equation (1) we get

(

ψx

ψ

)

x

+

(

ψx

ψ

)2

= V (x) − E. (47)

Under the assumption of the Numerov FDS, i.e. that the discretization is of fourth order, the

left hand side of Eq. (47) is second order differentiable. The right hand side, however, is

not second order differentiable as the potential V comprises two jump discontinuities at the

barrier’s ends. For the standard discretization, the left hand side of Eq. (47) is continuous

but not necessarily differentiable. Hence, the jump discontinuities of the potential also lead

to an error but we expect this error to be smaller than for the Numerov scheme.

An approach to improve the behavior of the Numerov FDS for a discontinuous potential

V is to use the standard FDS of the Schrödinger equation at the point of discontinuity of

the potential V and the Numerov FDS elsewhere. Although spurious oscillations due to

possible incompatibility of the two schemes cannot be observed, numerical testing shows

that the results cannot be improved significantly.

Before continuing with the multiband case, let us note that apart from the list of FDSs

we introduced in this section there are a plenty of FDSs that can be used for the station-

ary linear Schrödinger equation (1). However, the chosen FDSs demonstrate the principle

of using FDSs for the Schrödinger equation clearly. The reader is referred to Simos and

Williams [26] for a concise review on FDSs for the Schrödinger equation.

3 The General k·p-Model

In this section introduce the general k ·p-model. Let d ∈ N denote the number of con-

sidered bands of the semiconductor and F(x) ∈ C
d the vector of the envelope functions

F1, . . . , Fd ∈ C. Let m(x), e(x) ∈ R
d×d be diagonal, real and regular d × d-matrices,
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Figure 2: Comparison of the L2-errors of the numerical schemes for the resonance energy

E = Eresonance ≈ 544. Note that the L2-errors of the Numerov FDS and the Mickens FDS

coincide with the L2-error of the standard FDS for the used level of detail in (a), while the

L2-error of the Mickens FDS coincides with the L2-error of the Numerov FDS for the used

level of detail in (b).



Discrete Transparent Boundary Conditions for MEMAs 21

Up(x),Upq(x),v(x) ∈ C
d×d Hermitian d × d-matrices and M0(x),M1(x),M2(x) ∈

C
d×d skew-Hermitian d× d-matrices. Then we will refer to

EF(x) = − d

dx

(

m(x)
d

dx
F(x)

)

+ M0(x)
d

dx
F(x) − d

dx

(

MH
0 (x)F(x)

)

+ k1

(

M1(x)
d

dx
F(x) − d

dx

(

MH
1 (x)F(x)

)

)

+ k2

(

M2(x)
d

dx
F(x) − d

dx

(

MH
2 (x)F(x)

)

)

+ k1U1(x)F(x) + k2U2(x)F(x)

+ k2
1U11(x)F(x) + k2

2U22(x)F(x) + k1k2 (U12(x) + U21(x))F(x)

+ v(x)F(x) + e(x)F(x),

(48)

with x ∈ R and k1, k2 ∈ R, as d-band k ·p-Schrödinger equation, cf. [5]. In order to

abbreviate this physical formulation we introduce the skew-Hermitian d× d-matrix

MS(x) = M0(x) + k1M1(x) + k2M2(x), (49a)

and the Hermitian d× d-matrix

V(x) = k1U1(x) + k2U2(x)

+ k2
1U11(x) + k2

2U22(x) + k1k2 (U12(x) + U21(x)) + v(x) + e(x). (49b)

Then (48) reads

EF(x) = − d

dx

(

m(x)
d

dx
F(x)

)

+ MS(x)
d

dx
F(x) − d

dx

(

MH
S (x)F(x)

)

+ V(x)F(x),

(50)

with x ∈ R.

We consider a semiconductor of length L connected to reservoirs at x = 0 and x = L.

Let us assume that the matrices m, MS and V are constant in the reservoirs with

m(x) ≡ m0, MS(x) ≡ MS,0, V(x) ≡ V0 x ≤ 0,

and

m(x) ≡ mL, MS(x) ≡ MS,L, V(x) ≡ VL x ≥ L.

3.1 The Exterior Problem and the Dispersion Relation

Let us study the exterior problem of the general k ·p-model. In the exterior domains the

matrices m, MS and V are constant. Without loss of generality, we focus on the left

exterior domain x ≤ 0 with m(x) = m0, MS(x) = MS,0 and V(x) = V0. Note that the

results for the right exterior domain x ≥ L can be derived analogously. For simplicity let

us omit the subscript 0 in m0, MS,0 and V0. With these simplifying assumptions, Eq. (48)



22 Dirk Klindworth, Matthias Ehrhardt and Thomas Koprucki

regarded on the half line x ≤ 0 is a second order system of ODEs with constant coefficients

that can be written in the form

−N
d2

dx2
F + iM

d

dx
F + (V − E1)F = 0, x ≤ 0, (51)

with N = m and M = −iMS + iMH
S = −2iMS. Note that M is Hermitian since MS is

skew-Hermitian.

By introducing the substitution Φ =
(

F, d
dx

F
)T

we can reduce Eq. (51) to a first order

system of ODEs with constant coefficients

A
d

dx
Φ = BΦ, x ≤ 0, (52)

with

A =

(

M iN
−iN 0

)

∈ C
(2d)×(2d), B =

(

iV − iE1 0

0 −iN

)

∈ C
(2d)×(2d).

Zisowsky [28] showed for the transient general k·p-model that the matrices

At = A, Bt =

(

iV + s1 0

0 −iN

)

,

with the Laplace parameter s of the Laplace-transformed exterior problem, are regular for

Re(s) > 0. Moreover she proved a splitting theorem saying that the matrix A−1
t Bt has

exactly d eigenvalues with positive real part and d eigenvalues with negative real part.

Our aim is to show a similar result for the stationary general k·p-model (52). First let us

show that A and B are regular and hence, A−1B exists and is also regular. Since At = A,

the matrix A is regular and A−1B exists. Since V is Hermitian, it is diagonalizable with

the real eigenvalues v1, . . . , vd. Let us suppose that the energy E satisfies E 6= vp, for

p = 1, . . . , d, then the matrix iV − iE1 is similar to diag (i (v1 − E) , . . . , i (vd − E))
which is regular. Considering that N is regular, the matrix B is regular and hence, the

matrix A−1B is regular.

Thus, we can write Eq. (52) in the form

d

dx
Φ = A−1BΦ, x ≤ 0, (53)

with

A−1B =

(

0 1

N−1 (V − E1) iN−1M

)

∈ C
(2d)×(2d). (54)

The solution of Eq. (52) takes the form

Φ(x) = aeκx, x ≤ 0, (55)

where κ = κ1, . . . , κ2d ∈ C denotes an eigenvalue and a = a(κ) ∈ C
2d the corresponding

eigenvector of the matrix A−1B. Since the vector of the envelope functions F is represented
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by the first d components of Φ, we introduce the amplitude F̂ ∈ C
d of F that contains the

first d components of a(κ) ∈ C
2d. Then the vector of the envelope functions F takes the

form

F(x) = F̂eikx, (56)

where k = k̂ + iǩ = −iκ is called wave vector of F with the propagation coefficient k̂
and the attenuation coefficient ǩ. If the attenuation coefficient ǩ is zero, we say that F is

traveling, while F is called evanescent otherwise. Again we shall refer to the vector F of

the envelope functions as envelope wave since it can be written in the form of a plane wave.

By applying the solution (55) to the general k·p-model (48) we get

ĤF̂ = EF̂, (57)

with

Ĥ = Ĥ(k) = k2N − kM + V. (58)

Note that Ĥ is Hermitian if k is real.

Now we propose the main theorem of this section.

Theorem 3.1 (Splitting Theorem). Let n denote the number of positive eigenvalues of N.

Then there exists an energy Ee
0 ∈ R such that for all energies E > Ee

0

(i) there are exactly n positive and n negative wave vectors (i.e. n right and n left-

traveling envelope waves),

(ii) there are exactly 2 (d− n) complex wave vectors, d− n with positive imaginary part

(i.e. d− n evanescent envelope waves decaying for x→ ∞) and d− n with negative

imaginary part (i.e. d− n evanescent envelope waves growing for x→ ∞).

Moreover, there exists an energy Eh
0 < Ee

0 such that for all energies E < Eh
0

(iii) there are exactly d− n positive and d− n negative wave vectors (i.e. d− n right and

d− n left-traveling envelope waves) and

(iv) there are exactly 2n complex wave vectors, n with positive imaginary part (i.e. n
evanescent envelope waves decaying for x→ ∞) and n with negative imaginary part

(i.e. n evanescent envelope waves growing for x→ ∞).

Numerical evidence strongly supports the validity of this theorem. However, we were

unable to prove it analytically. For the simple case M = 0 and V = diag (v1, . . . , vd) a

proof can be found in [13].

Remark 3.2. In all examples considered, the d amplitudes F̂(k) that correspond to the n
positive wave vectors and the d − n complex wave vectors with positive imaginary part

are linearly independent. Moreover, the d amplitudes F̂(k) associated with the n negative

wave vectors and the d−n complex wave vectors with negative imaginary part are linearly

independent.
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3.2 Transparent Boundary Conditions

Let us recall the strategy we used for the single-band model in order to derive the TBCs.

We considered a traveling envelope wave Fin with amplitude of norm 1 that enters the

computational domain at x = 0. This means that depending on the energy E we require

the matrix N to have at least one positive or negative eigenvalue in order to get at least one

pair of traveling envelope waves.

Let us from now on assume that the energy E is greater than some lower bound Ee
0

and hence, the number n of positive eigenvalues of N is equal to the number of pairs of

traveling envelope waves.

If there are two or more pairs of traveling envelope waves, the incoming envelope wave

is not unique. In this case we shall consider a unitary superposition of all right-traveling

envelope waves to enter the semiconductor at x = 0. This means that we have to specify a

priori the values of the n coefficients of the superposition of incoming envelope waves.

Let k̂+
0,l, l = 1, . . . , n, denote the n positive wave vectors and k̂−0,l, l = 1, . . . , n, the

n negative wave vectors in the left exterior domain. Moreover, let ǩ+
0,l, l = 1, . . . , d − n,

denote the d−n complex wave vectors with positive imaginary part and ǩ−0,l, l = 1, . . . , d−
n, the d−n complex wave vectors with negative imaginary part in the left exterior domain.

The wave vectors in the right exterior domain are defined analogously with subscript L
instead of 0.

Note that in all considered examples, k̂+
l = −k̂−l , for l = 1, . . . , n, and ǩ+

l = −ǩ−l , for

l = 1, . . . , d− n.

Let F̂0(k) denote the amplitude of norm 1 in the left exterior domain that corresponds

to the wave vector k, i.e. the eigenvector of norm 1 of Ĥ(k) to the energy eigenvalue E. On

the other hand, let F̂L(k) denote the corresponding amplitude in the right exterior domain.

Let us consider the superposition of all right-traveling envelope functions

Fin =

n
∑

l=1

ωlF̂0(k̂
+
0,l)e

ik̂+

0,l
x, x < 0, (59)

with the coefficients ω1, . . . , ωn ∈ C that satisfy the normalization condition
∑n

l=1 |ωl|2 =
1. This incoming superposition of envelope functions is partly reflected at the left boundary

at x = 0, yielding a superposition of left-traveling and evanescent envelope functions

Fr =
n
∑

l=1

r̂lF̂0(k̂
−
0,l)e

ik̂−

0,l
x +

d−n
∑

l=1

řlF̂0(ǩ
−
0,l)e

iǩ−

0,l
x, x < 0, (60)

with the reflection coefficients r̂l and řl. Furthermore, the incoming waves are partly trans-

mitted at the right boundary at x = L, which results in a superposition of right-traveling

and evanescent envelope functions that takes the form

Ft =

n
∑

l=1

t̂lF̂0(k̂
+
0,l)e

ik̂+

0,l
x +

d−n
∑

l=1

ťlF̂0(ǩ
+
0,l)e

iǩ+

0,l
x, x > L, (61)
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with the transmission coefficients t̂l and ťl. Thus, the solution in the left exterior domain is

F = Fin + Fr, x < 0, (62)

while the solution in the right exterior domain is given by

F = Ft, x > L. (63)

In order to determine the TBC at the left boundary we evaluate the envelope function F

and its first derivative d
dx

F at x = 0. We get

F(0) =

n
∑

l=1

ωlF̂0(k̂
+
0,l) +

n
∑

l=1

r̂lF̂0(k̂
−
0,l) +

d−n
∑

l=1

řlF̂0(ǩ
−
0,l) (64a)

and

d

dx
F(0) =

n
∑

l=1

ik̂+
0,lωlF̂0(k̂

+
0,l) +

n
∑

l=1

ik̂−0,lr̂lF̂0(k̂
−
0,l) +

d−n
∑

l=1

iǩ−0,lřlF̂0(ǩ
−
0,l). (64b)

Let us introduce

P0 =
(

F̂0(k̂
−
0,1) · · · F̂0(k̂

−
0,n) F̂0(ǩ

−
0,1) · · · F̂0(ǩ

−
0,d−n)

)

∈ C
d×d,

and

K0 = diag
(

ik̂−0,1, . . . , ik̂
−
0,n, iǩ

−
0,1, . . . , iǩ

−
0,d−n

)

∈ C
d×d,

as well as

r = (r̂1, . . . , r̂n, ř1, . . . , řd−n)T ∈ C
d.

Then we can rewrite the envelope wave F and its first derivative d
dx

F at x = 0 in the

form

P0r = F(0) −
n
∑

l=1

ωlF̂0(k̂
+
0,l), (65a)

and

P0K0r =
d

dx
F(0) −

n
∑

l=1

ik̂+
0,lωlF̂0(k̂

+
0,l). (65b)

Since the amplitudes F̂0(k̂
−
0,1), . . . , F̂0(k̂

−
0,n), F̂0(ǩ

−
0,1), . . . , F̂0(ǩ

−
0,d−n) are linearly in-

dependent, cf. Remark 3.2, the matrix P0 is regular and hence, its inverse P−1
0 exists. Then

the reflection coefficient vector r reads

r = P−1
0

(

F(0) −
n
∑

l=1

ωlF̂0(k̂
+
0,l)

)

,
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cf. Eq. (65a). Applied to Eq. (65b) we get the left TBC

Fx(0) − P0K0P
−1
0 F(0) =

n
∑

l=1

(

ik̂+
0,l1− P0K0P

−1
0

)

ωlF̂0(k̂
+
0,l). (66)

At the right boundary we proceed analogously. The envelope wave F and its first deriva-

tive d
dx

F at x = L read

F(L) =

n
∑

l=1

t̂lF̂L(k̂+
L,l)e

ik̂+

L,l
L +

d−n
∑

l=1

ťlF̂L(ǩ+
L,l)e

iǩ+

L,l
L, (67a)

and

d

dx
F(L) =

n
∑

l=1

ik̂+
L,l t̂lF̂L(k̂+

L,l)e
ik̂+

L,l
L +

d−n
∑

l=1

iǩ+
L,l ťlF̂L(ǩ+

L,l)e
iǩ+

L,l
L. (67b)

Let us introduce

PL =
(

F̂L(k̂+
L,1)e

ik̂+

L,1
L · · · F̂L(k̂+

L,n)eik̂
+

L,n
L

F̂L(ǩ+
L,1)e

iǩ+

L,1
L · · · F̂L(ǩ+

L,d−n)eiǩ
+

L,d−n
L
)

∈ C
d×d,

and

KL = diag
(

ik̂+
L,1, . . . , ik̂

+
L,n, iǩ

+
L,1, . . . , iǩ

+
L,d−n

)

∈ C
d×d,

as well as

t =
(

t̂1, . . . , t̂n, ť1, . . . , ťd−n

)T ∈ C
d.

Then we can rewrite the envelope wave F and its first derivative d
dx

F at x = L in the

form

PLt = F(L), (68a)

and

PLKLt =
d

dx
F(L). (68b)

Since the amplitudes F̂L(k̂+
L,1), . . . , F̂L(k̂+

L,n), F̂L(ǩ+
L,1), . . . , F̂L(ǩ+

L,d−n) are linearly

independent, cf. Remark 3.2, so are

F̂L(k̂+
L,1)e

ik̂+

L,1
L, . . . , F̂L(k̂+

L,n)eik̂
+

L,n
L, F̂L(ǩ+

L,1)e
iǩ+

L,1
L, . . . , F̂L(ǩ+

L,d−n)eiǩ
+

L,d−n
L

and hence, the matrix PL is regular and its inverse P−1
L exists. Then the transmission

coefficient vector t becomes

t = P−1
L F(L),

cf. Eq. (68a). Applied to Eq. (68b) we get the right TBC

Fx(L) − PLKLP−1
L F(L) = 0. (69)
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Let us remark that the coefficients ω1, . . . , ωn restrict the solution at the left boundary.

However, in physical applications, for example the unstrained eight-band k·p-model of the

lowest conduction band and the three top-most valence bands, all doubly degenerate, with

k|| = 0 we will consider in our numerical examples in Sec. 3.5, one typically considers

only a particular incoming wave. In the example mentioned above, we have n = 2, for

E > Ee
0. As indicated, the bands are doubly degenerate. Mathematically, this means that

the eigenvalues of A−1B are 2-fold degenerate, i.e. there exist d distinct wave vectors k
and for every wave vector k there exist two corresponding amplitudes, if the geometric

multiplicity equals the algebraic multiplicity which is the case in our example. In this

particular example we have so-called spin-up solutions and spin-down solutions. If we only

consider spin-up envelope functions for example, we set the coefficient ω1 of the incoming

spin-up envelope wave to one and the coefficient ω2 of the incoming spin-down envelope

wave to zero. Depending on the band edge profile the resulting transmitted envelope waves

may also consist of spin-down solutions.

3.3 Discretization

We recall the uniform grid xj = jh, j = 0, . . . , J with L = Jh, of the computational

interval (0, L) with Nj = N(xj), MSj = MS(xj), Vj = V(xj) and the approximation

Fj ≈ F(xj), j = 0, . . . , J . In order to discretize the general k ·p-model (48) we apply

the second order centered difference operator Dcen
h as well as the standard second order

difference operator Dstd
h to the abbreviated continuous formulation of the general k ·p-

model (48)

EF = −NFxx + (−Nx + 2MS)Fx +
(

V − MH
S x

)

F, (70)

for x ∈ (0, L).

Thus the discretization of the general k·p-model leads to

EFj = −NjD
std
h Fj +

(

−Dcen
h Nj + 2MSj

)

Dcen
h Fj +

(

Vj − Dcen
h MH

S j − E1

)

Fj ,

(71)

with j = 1, . . . , J − 1, which implies

EFj =

(

− 1

h2
Nj +

1

2h

(

− 1

2h
(Nj+1 − Nj−1) + 2MSj

))

Fj+1

+

(

2

h2
Nj + Vj −

1

2h

(

MH
S j+1 − MH

S j−1

)

)

Fj

+

(

− 1

h2
Nj −

1

2h

(

− 1

2h
(Nj+1 − Nj−1) + 2MSj

))

Fj−1,

(72)

with j = 1, . . . , J − 1.

In the exterior domains x ≤ 0 and x ≥ L, the matrices N, MS and V are constant.

Without loss of generality we focus on the left exterior domain x ≤ 0 with N(x) = N0,

MS(x) = MS,0 and V(x) = V0. Note that the results for the right exterior domain x ≥ L
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can be derived analogously. For simplicity let us omit the subscript 0 in N0, MS,0 and V0.

Hence, Eq. (72) is a second order difference equation with constant coefficients of the form

EFj = M+Fj+1 + M0Fj + M−Fj−1, j < 0, (73)

with

M+ = − 1

h2
N +

1

h
MS, M0 =

2

h2
N + V, M− = − 1

h2
N − 1

h
MS. (74)

By introducing the substitution Φj = (Fj ,Fj+1)
T

, Eq. (73) can be transformed into a

first order difference equation with constant coefficients

AhΦj = BhΦj−1, j < 0, (75)

with

Ah =

(

1 0

0 −M+

)

, Bh =

(

0 1

M− (

M0 − E1
)

)

.

Note that M+ and M− are not necessarily regular. However, in all examples we exam-

ined M+ and M− are regular. In this case, Ah and Bh are regular and hence, we can write

Eq. (75) in the form

Φj = A−1
h BhΦj−1, j < 0,

with the regular matrix

A−1
h Bh =

(

0 1

(−M+)−1M− (−M+)−1
(

M0 − E1
)

)

.

Remark 3.3. In all examples we examined the geometric multiplicity of the eigenvalues

of A−1
h Bh is equal to their algebraic multiplicity. Hence, the eigenvectors of A−1

h Bh are

linearly independent and form a basis of C
4d.

This remark is important in order to use the fact that the first order difference equa-

tion (75) with the initial value Φ0 = a has a solution of the form Φj = aαj , where α ∈ C

is an eigenvalue of A−1
h Bh with corresponding eigenvector a ∈ C

2d. Thus, we can set the

discrete solution at the left boundary to some eigenvector a of A−1
h Bh.

The first d components of Φj ∈ C
2d represent the discrete solution Fj ∈ C

d. Therefore,

we introduce the discrete amplitude F̂h ∈ C
d that contains the first d components of a. The

discrete solution Fj becomes

Fj = F̂hα
j = F̂he

ikhjh, (76)

with the discrete wave vector kh = (arg(α) − i ln |α|) /h.

The discrete solution as given in Eq. (76) implies Fj+1e
−ikhh = Fj = Fj−1e

ikhh and

thus, applied to the difference equation (73) we obtain

ĤhF̂h = EF̂h, (77)

with Ĥh = Ĥh(kh) = M+eikhh + M0 + M−e−ikhh.

Now we shall state the discrete analogon of Theorem 3.1.



Discrete Transparent Boundary Conditions for MEMAs 29

Theorem 3.4 (Discrete Splitting Theorem). Let n denote the number of positive eigenvalues

of N. Then there exists an energy Ee
0,h ∈ R such that for all energies E > Ee

h,0

(i) there are exactly n positive and n negative discrete wave vectors (i.e. n right and n
left-traveling discrete envelope waves),

(ii) there are exactly 2 (d− n) complex discrete wave vectors, d − n with positive imag-

inary part (i.e. d − n evanescent discrete envelope waves decaying for x → ∞) and

d − n with negative imaginary part (i.e. d − n evanescent discrete envelope waves

growing for x→ ∞).

Moreover, there exists an energy Eh
h,0 < Ee

h,0 such that for all energies E < Eh
h,0

(iii) there are exactly d − n positive and d − n negative discrete wave vectors (i.e. d − n
right and d− n left-traveling discrete envelope waves) and

(iv) there are exactly 2n complex discrete wave vectors, n with positive imaginary part

(i.e. n evanescent discrete envelope waves decaying for x → ∞) and n with negative

imaginary part (i.e. n evanescent discrete envelope waves growing for x→ ∞).

Analogously to Theorem 3.1, numerical evidence strongly supports the validity of this

theorem. However, we were unable to prove it analytically.

We already pointed out that in all considered examples the geometric multiplicity of the

eigenvalues of A−1
h Bh is equal to their algebraic multiplicity and hence, the eigenvectors

are linearly independent. In addition, we note

Remark 3.5. In all considered examples the d discrete amplitudes F̂h(kh) that correspond

to the n positive discrete wave vectors and the d−n complex discrete wave vectors with pos-

itive imaginary part are linearly independent. Moreover, the d discrete amplitudes F̂h(kh)
that are associated with the n negative discrete wave vectors and the d−n complex discrete

wave vectors with negative imaginary part are linearly independent.

3.4 Discrete Transparent Boundary Conditions

In order to derive the DTBCs for the general k ·p-model we apply the discrete solution

derived in the previous section to the reflection and transmission conditions (62), (63) and

assume that they hold in a small vicinity of the two boundaries, i.e. j = 0, 1 and j = J−1, J
respectively.

Let us from now on assume that the energy is greater than some lower bound Ee
h,0

and hence, the number n of positive eigenvalues of N is equal to the number of purely

imaginary, complex conjugate pairs of discrete wave vectors.

Suppose that there is at least one pair of discrete traveling envelope functions, in other

words n ≥ 1. If n ≥ 2, then we have two or more pairs of traveling envelope functions

and hence, the incoming envelope function is not unique. In this case we shall proceed

accordingly to the derivation of the TBCs and consider a unitary superposition of all discrete

right-traveling envelope functions weighted by the coefficients ω1, . . . , ωn ∈ C.
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Let k̂+
h,0,l, l = 1, . . . , n, denote the n positive discrete wave vectors and k̂−h,0,l, l =

1, . . . , n, the n negative discrete wave vectors in the left exterior domain. Moreover, the

d−n complex discrete wave vectors with positive imaginary part in the left exterior domain

are called ǩ+
h,0,l, l = 1, . . . , d−n, and the d−n complex discrete wave vectors with negative

imaginary part are denoted by ǩ−h,0,l, l = 1, . . . , d − n. The discrete wave vectors in the

right exterior domain are defined analogously with subscript L instead of 0.

In all considered examples we have k̂+
h,l = −k̂−h,l, for l = 1, . . . , n, and ǩ+

h,l = −ǩ−h,l,

for l = 1, . . . , d− n.

Let F̂h,0(kh) denote the amplitude of norm 1 in the left exterior domain that corresponds

to the discrete wave vector kh, i.e. the eigenvector of norm 1 of Ĥh(kh) to the energy

eigenvalue E. On the other hand, let F̂h,L(kh) be the corresponding amplitude in the right

exterior domain.

Then we have

Fj = Fin
j + Fr

j =
n
∑

l=1

ωlF̂h,0(k̂
+
h,0,l)e

ik̂+

h,0,l
jh

+

n
∑

l=1

r̂h,lF̂h,0(k̂
−
h,0,l)e

ik̂−

h,0,l
jh +

d−n
∑

l=1

řh,lF̂h,0(ǩ
−
h,0,l)e

iǩ−

h,0,l
jh,

at the left boundary, i.e. for j = 0, 1, and

Fj = Ft
j =

n
∑

l=1

t̂hF̂h,L(k̂+
h,L,l)e

ik̂+

h,L,l
jh +

d−n
∑

l=1

ťhF̂h,L(ǩ+
h,L,l)e

iǩ+

h,L,l
jh,

at the right boundary, i.e. for j = J − 1, J .

Let us introduce

Ph,0 =
(

F̂h,0(k̂
−
h,0,1) · · · F̂h,0(k̂

−
h,0,n) F̂h,0(ǩ

−
h,0,1) · · · F̂h,0(ǩ

−
h,0,d−n)

)

∈ C
d×d,

and

Kh,0 = diag
(

eik̂
−

h,0,1
h, . . . , eik̂

−

h,0,n
h, eiǩ

−

h,0,1
h, . . . , eiǩ

−

h,0,d−n
h
)

∈ C
d×d,

as well as

rh = (r̂h,1, . . . , r̂h,n, řh,1, . . . , řh,d−n)T ∈ C
d.

Then we can rewrite the discrete envelope function Fj for j = 0, 1 in the form

Ph,0rh = F0 −
n
∑

l=1

ωlF̂h,0(k̂
+
h,0,l), (78a)

and

Ph,0Kh,0rh = F1 −
n
∑

l=1

ωlF̂h,0(k̂
+
h,0,l)e

ik̂+

h,0,l
h. (78b)
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Since F̂h,0(k̂
−
h,0,1), . . . , F̂h,0(k̂

−
h,0,n) and F̂h,0(ǩ

−
h,0,1), . . . , F̂h,0(ǩ

−
h,0,d−n) are linearly

independent, cf. Remark 3.5, the matrix Ph,0 is regular and hence, its inverse P−1
h,0 exists.

Then the reflection coefficient vector rh is given by

rh = P−1
h,0

(

F0 −
n
∑

l=1

ωlF̂h,0(k̂
+
h,0,l)

)

,

cf. Eq. (78a). Applied to Eq. (78b) we get the left DTBC

F1 − Ph,0Kh,0P
−1
h,0F0 =

n
∑

l=1

(

eik̂
+

h,0,l1− Ph,0Kh,0P
−1
h,0

)

ωlF̂h,0(k̂
+
h,0,l), (79)

compared to the left TBC (66).

At the right boundary we proceed analogously. Let us introduce

Ph,L =
(

p̂1 · · · p̂n p̌1 · · · p̌d−n

)

∈ C
d×d,

with the columns p̂l = F̂h,L(k̂+
h,L,l)e

ik̂+

h,L,l
hJ

and p̌l = F̂h,L(ǩ+
h,L,l)e

iǩ+

h,L,l
hJ

. Moreover,

we introduce

Kh,L = diag
(

e−ik̂+

h,L,1
h, . . . , e−ik̂+

h,L,n
h, e−iǩ+

h,L,1
h, . . . , e−iǩ+

h,L,d−n
h
)

∈ C
d×d,

as well as

th =
(

t̂h,1, . . . , t̂h,n, ťh,1, . . . , ťh,d−n

)T ∈ C
d.

Then we can rewrite the discrete envelope function Fj for j = J − 1, J in the form

Ph,Lth = FJ , (80a)

and

Ph,LKh,Lth = FJ−1. (80b)

Since the discrete amplitudes F̂h,L(k̂+
h,L,1), . . . , F̂h,L(k̂+

h,L,n) and F̂h,L(ǩ+
h,L,1), . . . ,

F̂h,L(ǩ+
h,L,d−n) are linearly independent, cf. Remark 3.5, so are F̂h,L(k̂+

h,L,1)e
ik̂+

h,L,1
hJ , . . . ,

F̂h,L(k̂+
h,L,n)eik̂

+

h,L,n
hJ

and F̂h,L(ǩ+
h,L,1)e

iǩ+

h,L,1
hJ , . . . , F̂h,L(ǩ+

h,L,d−n)eiǩ
+

h,L,d−n
hJ

. Thus,

the matrix Ph,L is regular and its inverse P−1
h,L exists. Then the transmission coefficient

vector th reads

th = P−1
h,LFJ ,

cf. Eq. (80a). Applied to Eq. (80b) we get the right DTBC

FJ−1 − Ph,LKh,LP−1
h,LFJ = 0, (81)

in contrast to the right TBC (69).
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3.5 Numerical Examples

3.5.1 The Free Scattering State

In our first example, we want to examine the numerical result of an unstrained eight-band

k·p-model of the lowest conduction band and the three top-most valence bands, all doubly

degenerate, with k|| = 0, in the case of the free scattering state and compare it with the

analytical solution, that can be derived from the results in Sec. 3.1.

In this case the 8 × 8-k·p-Hamiltonian reduces to

H = H0 + H∆ + H1
d

dx
+ H2

d2

dx2
, (82)

where H0 describes the band edge profile, H∆ denotes the spin orbit coupling, H1 contains

all first order couplings, i.e. the inter-band couplings, and H2 contains all second order

couplings, i.e. the intra-band couplings, see [12].

The band edge profile is given by

H0 = diag (Ec, Ev, Ev, Ev, Ec, Ev, Ev, Ev) ∈ R
8×8, (83)

where Ec is the conduction band edge and Ev is the valence band edge with the Eg =
Ec − Ev.

The spin orbit coupling matrix H∆ ∈ C
8×8 takes the form

H∆ =
∆so

3

(

G + iGz Gy + iGx

−Gy + iGx Gso − iGz

)

, (84)

with Gso = diag (0,−1,−1,−1) ∈ R
4×4 and Gx,Gy,Gz ∈ R

4×4 defined by (Gx)ij =

δi,4δj,3 − δi,3δj,4, (Gy)ij = δi,2δj,4 − δi,4δj,2, (Gz)ij = δi,3δj,2 − δi,2δj,3, where δi,j is

the usual Kronecker symbol with δi,j = 1 if i = j and δi,j = 0 otherwise. The parameter

∆so denotes the so-called spin orbit splitting.

The matrix H1 ∈ R
8×8 of first order couplings has components

(H1)ij = P0

(

δi,1δj,4 − δi,4δj,1 + δi,8δj,5 − δi,5δj,8
)

(85)

while the matrix H2 ∈ C
8×8 of second order couplings takes the form

H2 = −diag (α, µ, µ, λ, α, µ, µ, λ) , (86)

where the coefficients α, λ, µ ∈ C are given by

α =
~

2

2mc

− P 2
0

Eg

Eg + 2∆so

3

Eg + ∆so
, λ =

P 2
0

Eg
− ~

2

2m0
(γ1 + 4γ2) , µ = − ~

2

2m0
(γ1 − 2γ2) ,

with the effective mass mc of the conduction band and the Luttinger parameters γ1 and γ2.
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Written in the usual notation

−N
d2

dx2
F + iM

d

dx
F + (V − E1)F = 0, (87)

cf. Eq. (51), we have N = −H2, M = −iH1 and V = H0 + H∆.

For simplicity, we set ~ = m0 = 1 as well as L = 1. We use the dimensionless version

of the parameters as given in [14] that are given by α = 3.32, λ = −18.77, µ = −3.24,

P0 = 132.744 and ∆so = 419.07. According to [14], we set the band edges toEc = 905.96
and Ev = 0.

For these settings and a step size h = 1/50 Fig. 3 shows the analytical and discrete

dispersion relations. The discrete dispersion relation is 2π
h

-periodic and the positive trunk

of the discrete dispersion relation for these particular settings is injective in [0, π/h]. Thus,

there does not exist an energy window such that we expect spurious oscillations for all ad-

missible energies outside this window due to the wrong choice of the discrete wave vectors.

In the comparison of the numerical and analytical solution we observe a small phase

error in the numerical solution. This error decreases for smaller step sizes which can be

seen from the discrete L2-error. Recall that the discrete L2-error is the solution of the

nonlinear optimization problem

∆Fmin
h = min

ϕ∈[−π,π]
∆Fh = min

ϕ∈[−π,π]

1

J + 1

√

√

√

√

J
∑

j=0

‖F(xj) − Fjeiϕ‖2, (88)

where F(xj) denotes the analytical solution at x = xj and Fj the numerical solution using

the step size h = 1/J . The discrete L2-error is in O(h2) which coincides with the formal

order of the standard and centered difference operator we used in order to discretize the

general k·p-model.

3.5.2 The Single Barrier Potential

In our second example we want to analyze the numerical results of the unstrained eight-

band k ·p-model with k|| = 0 in the case of a single barrier potential. We consider a

semiconductor of length L that is split into three parts. Let 0 < x1 < x2 < L, then the three

subdomains of the semiconductor are defined by [0, x1), [x1, x2) and [x2, L]. The two outer

subdomains have the same physical properties and are denoted by A = [0, x1) ∪ [x2, L],
while the inner subdomain is called B = [x1, x2).

We use the same problem as in the previous example, but in the domain B we shall

set the band edges to EB
c = 1169.33 and EB

v = −167.60, see [14]. Due to physical

conventions, we shall refer to this band edge profile as quantum well structure.

Analogously to the single band case, we can compute the analytical solution since the

matrices N, M are constant the matrix V is piecewise constant. Let us denote the matrix V

in the domain A by VA and in the domain B by VB . Suppose that the energy E is greater
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(a) Analytical and discrete dispersion relations.
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Figure 3: Analytical (dotted line) and discrete (solid line) dispersion relations of the un-

strained eight-band k·p-model with k|| = 0. The discrete dispersion relation is plotted for

a step size h = 1/50.
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than some lower bound Ee
0, cf. Theorem 3.1. Then the number of positive wave vectors is

equal to the number n of positive eigenvalues of N .

Thus, in each domain the envelope function takes the form

F(x) =

n
∑

l=1

âlF̂(k̂+
l )eik̂

+

l
x +

d−n
∑

l=1

ǎlF̂(ǩ+
l )eiǩ

+

l
x +

n
∑

l=1

b̂lF̂(k̂−l )eik̂
−

l
x +

d−n
∑

l=1

b̌lF̂(ǩ−l )eiǩ
−

l
x,

with the coefficients âp, ǎq, b̂p, b̌q ∈ C, with p = 1, . . . , n and q = 1, . . . , d − n. Here we

used the notation of wave vectors and amplitudes we introduced in Sec. 3.2. Note that the

amplitudes are of norm 1. In the sequel we will add a subscript A or B to the amplitudes

and wave vectors in order to indicate which domain they belong to.

We consider a unitary superposition of all right-traveling envelope functions in A that

enters the semiconductor at x = 0. Again we shall multiply these n incoming envelope

waves with the coefficients ω1, . . . , ωn. At x = x1 this superposition of envelope functions

is partly reflected. On the other hand, we expect a superposition of transmitted envelope

functions in the domain [x2, L] that leaves the semiconductor at x = L. Thus, the envelope

function reads

F(x) =







FA1
(x) if x ∈ [0, x1),

FB(x) if x ∈ [x1, x2),
FA2

(x) if x ∈ [x2, L],
(89)

with

FA1
(x) =

n
∑

l=1

ωlF̂A(k̂+
A,l)e

ik̂+

A,l
x +

n
∑

l=1

r̂lF̂A(k̂−A,l)e
ik̂−

A,l
x +

d−n
∑

l=1

řlF̂A(ǩ−A,l)e
iǩ−

A,l
x,

FB(x) =

n
∑

l=1

âlF̂B(k̂+
B,l)e

ik̂+

B,l
x +

d−n
∑

l=1

ǎlF̂B(ǩ+
B,l)e

iǩ+

B,l
x

+

n
∑

l=1

b̂lF̂B(k̂−B,l)e
ik̂−

B,l
x +

d−n
∑

l=1

b̌lF̂B(ǩ−B,l)e
iǩ−

B,l
x,

FA2
(x) =

n
∑

l=1

t̂lF̂A(k̂+
A,l)e

ik̂+

A,l
x +

d−n
∑

l=1

ťlF̂A(ǩ+
A,l)e

iǩ+

A,l
x.

We know that the solution (89) and its derivative are continuous, cf. [14]. In particular

they are continuous at x = x1 and x = x2. Hence, we get a system of linear equations that

can be written in the form Qc = s with the vector

c = (r̂1, . . . , r̂n, ř1, . . . , řd−n, â1, . . . , ân, ǎ1, . . . , ǎd−n,

b̂1, . . . , b̂n, b̌1, . . . , b̌d−n, t̂1, . . . , t̂n, ť1, . . . , ťd−n

)T
∈ C

4d
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of the unknowns, the vector

s =











−∑n
l=1 ωlF̂A(k̂+

A,l)e
ik̂+

A,l
x1

0

−∑n
l=1 ik̂+

A,lωlF̂A(k̂+
A,l)e

ik̂+

A,l
x1

0











∈ C
4d,

corresponding to the incoming waves and the coefficient matrix

Q =
(

Qr̂ Qř Qâ Qǎ Q
b̂

Qb̌ Qt̂ Qť

)

∈ C
4d×4d.

The matrices Qr̂,Qâ,Qb̂
,Qt̂ ∈ C

4d×n and Qř,Qǎ,Qb̌,Qť ∈ C
4d×(d−n) are given in

Appendix A.

We shall not prove mathematically that the matrix Q is regular. Instead we point out that

a singular matrix Q implies that the homogeneous case of the system of linear equations has

a nonzero solution. Thus, there can exist envelope waves inside the computational domain

without the existence of an incoming envelope wave which is a physical contradiction. We

note that in our particular example the matrix Q is in fact regular and hence, the unknown

coefficients r̂p, řq, âp, ǎq, b̂p, b̌q, t̂p, ťq, with p = 1, . . . , n and q = 1, . . . , d− n are defined

uniquely.

Now let us compare the analytical and numerical solutions of the quantum well struc-

ture. Fig. 4 shows the norms and phases of the analytical and numerical solutions as well

as a schematic view of the band edge profile.

As expected, we do not observe any spurious oscillations. Fig. 3(b) illustrates that for

the chosen energy E = 1500 there exists a unique positive discrete wave vector in [0, π/h].
However, we observe a small phase error. This error decreases for smaller step sizes.

In Fig. 5 the analytical and numerical transmission coefficients are plotted against the

energy E. As before, the step size h = 1/150 is used. Since the curve of the numerical

transmission coefficient coincides with the curve of the analytical transmission coefficient

for the used level of detail in Fig. 5(a), only the analytical transmission coefficient is plotted.

We observe that the qualitative behavior of the transmission coefficient of this particular

quantum well structure is similar to the behavior of the transmission coefficient of the single

barrier examples in the previous chapters. Note that the first resonance is located at E ≈
1856.

Finally, we want to investigate the discrete L2-error of the numerical scheme. Recall

that we have to solve the optimization problem (88). Recall that the L2-error decayed

like O(h2) in the free scattering state example, which confirmed the formal order of the

numerical scheme. In the quantum well example, however, we observe that the numerical

scheme is of order one only.

4 Conclusion

In this chapter we derived DTBCs for stationary MEMAs. We first solved the continuous

exterior problem and derived elementary solutions in the exterior domains and defined the
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Figure 4: Comparison of the analytical solution (black) and the numerical solution (red) of

the quantum well structure for a step size h = 1/150, an energy E = 1500. The dotted line

indicates schematically the band end profile.
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Figure 5: Analytical and numerical transmission coefficients of the quantum well structure

for a step size h = 1/150.
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TBCs. After discretizing the underlying BVP and solving the discrete exterior problem,

we used the discrete elementary solutions in the exterior domains to derive DTBCs. This

fully discrete approach results in reflection-free boundary conditions, while an ad-hoc dis-

cretization of the TBCs leads to spurious oscillations of the numerical solution. We tested

the numerical schemes and the DTBCs in examples for which an analytical solution can be

derived, i.e. for semiconductor nanostructures with piecewise constant band edges.

We reviewed DTBCs for the scalar Schrödinger equation, i.e. the single-band effective

mass approximation, and analyzed alternative finite difference schemes. Considering the

numerical results we point out that the Mickens FDS is the most promising FDS among

the FDSs we introduced for the scalar Schrödinger equation. If the potential is constant the

Mickens FDS is an exact FDS and if the potential is not constant it is of order O(h2). Which

is the best possible order of convergence of the FDSs we introduced since the Numerov FDS

which is formally of order O(h4) is in fact also only O(h2) since it requires the potential

to be in C2(0, L). While the standard FDS and the Numerov FDS are also applicable, the

combined Numerov-Mickens FDS, however, leads to significant errors.

We introduced the general d-band k·p-model, developed the corresponding TBCs and

DTBCs, tested them numerically and pointed out that these BCs depend on the choice of

the elementary solutions in the exterior domain. It turned out that the numerical scheme

when applied to an example with discontinuous band edges is at most of order one.

A topic of future research is the comparison of the introduced methods to solve MEMAs

numerically with other methods, such as the transfer matrix method [24, 25] as well as the

R-matrix method [27]. In particular, a comparison of these methods is of interest when the

analytical solution cannot be derived, such as a quantum barrier structure with added bias.

Simulations of quantum cascade lasers are currently an extensively discussed topic [8].

The current density and the optical gain of quantum cascade lasers can be computed when

the envelope functions are known. Based on the DTBCs for MEMAs, developed in this

chapter, we plan to perform a fully discrete analysis of these simulations compared to the

approach in [20], where an ad-hoc discretization of the TBCs was used.

A Definition of the Coefficient Matrix Q

The matrices Qr̂,Qâ,Qb̂
,Qt̂ ∈ C

4d×n and Qř,Qǎ,Qb̌,Qť ∈ C
4d×(d−n) building the

coefficient matrix

Q =
(

Qr̂ Qř Qâ Qǎ Q
b̂

Qb̌ Qt̂ Qť

)

∈ C
4d×4d

of the single potential barrier problem in Section 3 are defined by

Qr̂ =











F̂A(k̂−A,1)e
ik̂−

A,1
x1 · · · F̂A(k̂−A,n)eik̂

−

A,n
x1

0 · · · 0

ik̂−A,1F̂A(k̂−A,1)e
ik̂−

A,1
x1 · · · ik̂−A,nF̂A(k̂−A,n)eik̂

−

A,n
x1

0 · · · 0
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Qř =











F̂A(ǩ−A,1)e
iǩ−

A,1
x1 · · · F̂A(ǩ−A,d−n)eiǩ

−

A,d−n
x1

0 · · · 0

iǩ−A,1F̂A(ǩ−A,1)e
iǩ−

A,1
x1 · · · iǩ−A,d−nF̂A(ǩ−A,d−n)eiǩ

−

A,d−n
x1

0 · · · 0











Qâ =















−F̂B(k̂+
B,1)e

ik̂+

B,1
x1 · · · −F̂B(k̂+

B,n)eik̂
+

B,n
x1

F̂B(k̂+
B,1)e

ik̂+

B,1
x2 · · · F̂B(k̂+

B,n)eik̂
+

B,n
x2

−ik̂+
B,1F̂B(k̂+

B,1)e
ik̂+

B,1
x1 · · · −ik̂+

B,nF̂B(k̂+
B,n)eik̂

+

B,n
x1

ik̂+
B,1F̂B(k̂+

B,1)e
ik̂+

B,1
x2 · · · ik̂+

B,nF̂B(k̂+
B,n)eik̂

+

B,n
x2















Qǎ =















−F̂B(ǩ+
B,1)e

iǩ+

B,1
x1 · · · −F̂B(ǩ+

B,d−n)eiǩ
+

B,d−n
x1

F̂B(ǩ+
B,1)e

iǩ+

B,1
x2 · · · F̂B(ǩ+

B,d−n)eiǩ
+

B,d−n
x2

−iǩ+
B,1F̂B(ǩ+

B,1)e
iǩ+

B,1
x1 · · · −iǩ+

B,d−nF̂B(ǩ+
B,d−n)eiǩ

+

B,d−n
x1

iǩ+
B,1F̂B(ǩ+

B,1)e
iǩ+

B,1
x2 · · · iǩ+

B,d−nF̂B(ǩ+
B,d−n)eiǩ

+

B,d−n
x2















Q
b̂
=















−F̂B(k̂−B,1)e
ik̂−

B,1
x1 · · · −F̂B(k̂−B,n)eik̂

−

B,n
x1

F̂B(k̂−B,1)e
ik̂−

B,1
x2 · · · F̂B(k̂−B,n)eik̂

−

B,n
x2

−ik̂−B,1F̂B(k̂−B,1)e
ik̂−

B,1
x1 · · · −ik̂−B,nF̂B(k̂−B,n)eik̂

−

B,n
x1

ik̂−B,1F̂B(k̂−B,1)e
ik̂−

B,1
x2 · · · ik̂−B,nF̂B(k̂−B,n)eik̂

−

B,n
x2















Qb̌ =















−F̂B(ǩ−B,1)e
iǩ−

B,1
x1 · · · −F̂B(ǩ−B,d−n)eiǩ

−

B,d−n
x1

F̂B(ǩ−B,1)e
iǩ−

B,1
x2 · · · F̂B(ǩ−B,d−n)eiǩ

−

B,d−n
x2

−iǩ−B,1F̂B(ǩ−B,1)e
iǩ−

B,1
x1 · · · −iǩ−B,d−nF̂B(ǩ−B,d−n)eiǩ

−

B,d−n
x1

iǩ−B,1F̂B(ǩ−B,1)e
iǩ−

B,1
x2 · · · iǩ−B,d−nF̂B(ǩ−B,d−n)eiǩ

−

B,d−n
x2















Qt̂ =











0 · · · 0

F̂A(k̂+
A,1)e

ik̂+

A,1
x2 · · · F̂A(k̂+

A,n)eik̂
+

A,n
x2

0 · · · 0

ik̂+
A,1F̂A(k̂+

A,1)e
ik̂+

A,1
x2 · · · ik̂+

A,nF̂A(k̂+
A,n)eik̂

+

A,n
x2











Qť =











0 · · · 0

−F̂A(ǩ+
A,1)e

iǩ+

A,1
x2 · · · −F̂A(ǩ+

A,d−n)eiǩ
+

A,d−n
x2

0 · · · 0

−iǩ+
A,1F̂A(ǩ+

A,1)e
iǩ+

A,1
x2 · · · −iǩ+

A,d−nF̂A(ǩ+
A,d−n)eiǩ

+

A,d−n
x2
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